Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 362
Filter
1.
Bioorg Chem ; 153: 107801, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39244973

ABSTRACT

Resistance to proteasome inhibitors like Bortezomib is a major challenge in the treatment of multiple myeloma (MM). Proteolysis targeting chimeras (PROTACs), an emerging therapeutic approach that induces selective degradation of target proteins, offer a promising solution to overcome drug resistance. In this study, we designed and synthesized novel small-molecule PROTACs that induce 20S proteasome subunit ß5 degradation as a strategy to overcome Bortezomib resistance. These 20S proteasome subunit ß5 PROTACs demonstrated considerable binding affinity to 20S proteasome subunit ß5 and cereblon (CRBN), effectively induced 20S proteasome subunit ß5 degradation, and exhibited potent antiproliferative activity against a panel of cancer cell lines. Notably, PROTACs 12f and 14 displayed robust antitumor effects against both the pharyngeal carcinoma cell line FaDu and the Bortezomib-resistant MM cell line KM3/BTZ in vitro and in vivo with excellent safety profiles. Taken together, our findings highlight the potential of PROTACs 12f and 14 as novel 20S proteasome subunit ß5-degrading agents for the treatment of pharyngeal carcinoma and overcoming Bortezomib resistance in MM.

2.
Acta Pharm Sin B ; 14(8): 3295-3311, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39220870

ABSTRACT

Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.

3.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39101502

ABSTRACT

PROteolysis TArgeting Chimeras (PROTACs) has recently emerged as a promising technology. However, the design of rational PROTACs, especially the linker component, remains challenging due to the absence of structure-activity relationships and experimental data. Leveraging the structural characteristics of PROTACs, fragment-based drug design (FBDD) provides a feasible approach for PROTAC research. Concurrently, artificial intelligence-generated content has attracted considerable attention, with diffusion models and Transformers emerging as indispensable tools in this field. In response, we present a new diffusion model, DiffPROTACs, harnessing the power of Transformers to learn and generate new PROTAC linkers based on given ligands. To introduce the essential inductive biases required for molecular generation, we propose the O(3) equivariant graph Transformer module, which augments Transformers with graph neural networks (GNNs), using Transformers to update nodes and GNNs to update the coordinates of PROTAC atoms. DiffPROTACs effectively competes with existing models and achieves comparable performance on two traditional FBDD datasets, ZINC and GEOM. To differentiate the molecular characteristics between PROTACs and traditional small molecules, we fine-tuned the model on our self-built PROTACs dataset, achieving a 93.86% validity rate for generated PROTACs. Additionally, we provide a generated PROTAC database for further research, which can be accessed at https://bailab.siais.shanghaitech.edu.cn/service/DiffPROTACs-generated.tgz. The corresponding code is available at https://github.com/Fenglei104/DiffPROTACs and the server is at https://bailab.siais.shanghaitech.edu.cn/services/diffprotacs.


Subject(s)
Deep Learning , Proteolysis , Drug Design , Ligands , Proteolysis Targeting Chimera
4.
Drug Dev Res ; 85(5): e22241, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39104176

ABSTRACT

The role of KRAS mutation in non-small cell lung cancer (NSCLC) initiation and progression is well-established. However, "undruggable" KRAS protein poses the research of small molecule inhibitors a significant challenge. Addressing this, proteolysis-targeting chimeras (PROTACs) have become a cutting-edge treatment method, emphasizing protein degradation. A modified ethanol injection method was employed in this study to formulate liposomes encapsulating PROTAC drug LC-2 (LC-2 LPs). Precise surface modifications using cell-penetrating peptide R8 yielded R8-LC-2 liposomes (R8-LC-2 LPs). Comprehensive cellular uptake and cytotoxicity studies unveiled that R8-LC-2 LPs depended on concentration and time, showcasing the superior performance of R8-LC-2 LPs compared to normal liposomes. In vivo pharmacokinetic profiles demonstrated the capacity of DSPE-PEG2000 to prolong the circulation time of LC-2, leading to higher plasma concentrations compared to free LC-2. In vivo antitumor efficacy research underscored the remarkable ability of R8-LC-2 LPs to effectively suppress tumor growth. This study contributed to the exploration of enhanced therapeutic strategies for NSCLC, specifically focusing on the development of liposomal PROTACs targeting the "undruggable" KRAS protein. The findings provide valuable insights into the potential of this innovative approach, offering prospects for improved drug delivery and heightened antitumor efficacy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Liposomes , Lung Neoplasms , Proteolysis , Proto-Oncogene Proteins p21(ras) , Animals , Humans , Mice , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell-Penetrating Peptides , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Proteolysis/drug effects , Proteolysis Targeting Chimera/administration & dosage , Proteolysis Targeting Chimera/pharmacokinetics , Proteolysis Targeting Chimera/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Rats
5.
J Chromatogr A ; 1732: 465226, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39111181

ABSTRACT

The last few years have seen a rise in the identification and development of bio-therapeutics through the use of cutting-edge delivery methods or bio-formulations, which has created bio-analytical difficulties. Every year, new bio-pharmaceutical product innovations come out, but the analytical development of these products is challenging. Quantifying the products and components of conjugated molecular structures is essential for preclinical and clinical research in order to guide therapeutic development, given their intrinsic complexity. Furthermore, a significant amount of information is needed for the measurement of these unique modalities by LC-MS techniques. Numerous LC-MS based methods have been developed, including AEX-HPLC-MS, RP-IP-LCMS, HILIC-MS, LCHRMS, Microflow-LC-MS, ASMS, Hybrid LBA/LC-MS, and more. However, these methods continue to face problems, prompting the development of alternative approaches. Therefore, developing bio-molecules that are this complicated and, low in concentration requires a skilled LC-MS based approach and knowledgeable personnel. This review covers general novel modalities classifications, sample preparation techniques, current status and bio-analytical strategies for analyzing various novel modalities, including gene bio-therapeutics, oligonucleotides, antibody-drug conjugates, monoclonal antibodies and PROTACs. It also covers how these strategies have been used in the past and how they are being used now to address challenges in the development of LC-MS based methods, as well as improvement strategies, current advancements and recent developed methods. We additionally covered on the benefits and drawbacks of different LC-MS based techniques for the examination of bio-pharmaceutical products and the future perspectives.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Humans , Chromatography, High Pressure Liquid/methods , Liquid Chromatography-Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry/trends , Pharmaceutical Preparations/analysis
6.
Biomedicines ; 12(8)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39200265

ABSTRACT

Resistance to cancer drugs is a complex phenomenon that poses a significant challenge in the treatment of various malignancies. This review comprehensively explores cancer resistance mechanisms and discusses emerging strategies and modalities to overcome this obstacle. Many factors contribute to cancer resistance, including genetic mutations, activation of alternative signaling pathways, and alterations in the tumor microenvironment. Innovative approaches, such as targeted protein degradation, immunotherapy combinations, precision medicine, and novel drug delivery systems, hold promise for improving treatment outcomes. Understanding the intricacies of cancer resistance and leveraging innovative modalities are essential for advancing cancer therapy.

7.
Cell Commun Signal ; 22(1): 415, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192247

ABSTRACT

The antiapoptotic protein BCL2A1 is highly, but very heterogeneously expressed in Diffuse Large B-cell Lymphoma (DLBCL). Particularly in the context of resistance to current therapies, BCL2A1 appears to play an important role in protecting cancer cells from the induction of cell death. Reducing BCL2A1 levels may have therapeutic potential, however, no specific inhibitor is currently available. In this study, we hypothesized that the signaling network regulated by epigenetic readers may regulate the transcription of BCL2A1 and hence that inhibition of Bromodomain and Extra-Terminal (BET) proteins may reduce BCL2A1 expression thus leading to cell death in DLBCL cell lines. We found that the mechanisms of action of acetyl-lysine competitive BET inhibitors are different from those of proteolysis targeting chimeras (PROTACs) that induce the degradation of BET proteins. Both classes of BETi reduced the expression of BCL2A1 which coincided with a marked downregulation of c-MYC. Mechanistically, BET inhibition attenuated the constitutively active canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway and inhibited p65 activation. Furthermore, signal transducer of activated transcription (STAT) signaling was reduced by inhibiting BET proteins, targeting another pathway that is often constitutively active in DLBCL. Both pathways were also inhibited by the IκB kinase inhibitor TPCA-1, resulting in decreased BCL2A1 and c-MYC expression. Taken together, our study highlights a novel complex regulatory network that links BET proteins to both NFκB and STAT survival signaling pathways controlling both BCL2A1 and c-MYC expression in DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , NF-kappa B , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-myc , Signal Transduction , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction/drug effects , NF-kappa B/metabolism , Cell Line, Tumor , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects , Bromodomain Containing Proteins , Proteins , Minor Histocompatibility Antigens
8.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119827, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39187067

ABSTRACT

Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/ß-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.

9.
Trends Pharmacol Sci ; 45(9): 811-823, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117533

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) has been widely considered as a therapeutic target for various diseases, especially tumors. Thus far, several STAT3 inhibitors have been advanced to clinical trials; however, the development of STAT3 inhibitors is hindered by numerous dilemmas. Fortunately, STAT3 degraders represent an alternative and promising strategy to block STAT3, attracting extensive research interest. Here, we analyze the recent advancements of STAT3 degraders, including proteolysis targeting chimeras (PROTACs) and small-molecule natural products, focusing on their structures, mechanisms, and biological activities. We discuss the potential opportunities and challenges for developing STAT3 degraders. It is hoped that this Review will provide insights into the discovery of potent STAT3-targeting drugs.


Subject(s)
Proteolysis , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Signal Transduction/drug effects , Biological Products/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Molecular Targeted Therapy
10.
Eur J Med Chem ; 277: 116789, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39208743

ABSTRACT

The transcriptional repressor B cell lymphoma 6 (BCL6) plays a critical role in driving tumorigenesis of diffuse large B-cell lymphoma (DLBCL). However, the therapeutic potential of inhibiting or degrading BCL6 for DLBCL has not been thoroughly understood. Herein, we reported the discovery of a series of novel BCL6-targeting PROTACs based on our previously reported N-phenyl-4-pyrimidinamine BCL6 inhibitors. The optimal compound DZ-837 degraded BCL6 with DC50 values around 600 nM and effectively inhibited the proliferation of several DLBCL cell lines. Further study indicated that DZ-837 induced significant G1 phase arrest and exhibited sustained reactivation of BCL6 downstream genes. In the SU-DHL-4 xenograft model, DZ-837 significantly inhibited tumor growth with TGI of 71.8 % at 40 mg/kg once daily. Furthermore, the combination of DZ-837 with BTK inhibitor Ibrutinib showed synergistic effects and overcame acquired resistance against DLBCL cells. Overall, our findings demonstrate that DZ-837 is an effective BCL6 degrader for DLBCL treatment as a monotherapy or in combination with Ibrutinib.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Discovery , Drug Screening Assays, Antitumor , Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-bcl-6 , Humans , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Cell Proliferation/drug effects , Mice , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Cell Line, Tumor , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Proteolysis Targeting Chimera
11.
Eur J Med Chem ; 277: 116717, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39094274

ABSTRACT

The urgent and unmet medical demand of acute myeloid leukemia (AML) patients has driven the drug discovery process for expansion of the landscape of AML treatment. Despite the several agents developed for treatment of AML, more than 60 % of treated patients undergo relapse again after re-emission, thus, no complete cure for this complex disease has been reached yet. Targeted oncoprotein degradation is a new paradigm that can be employed to solve drug resistance, disease relapse, and treatment failure in complex diseases as AML, the most lethal hematological malignancy. AML is an aggressive blood cancer form and the most common type of acute leukemia, with bad outcomes and a very poor 5-year survival rate. FLT3 mutations occur in about 30 % of AML cases and FLT3-ITD is associated with poor prognosis of this disease. Prevalent FLT3 mutations include internal tandem duplication and point mutations (e.g., D835) in the tyrosine kinase domain, which induce FLT3 kinase activation and result in survival and proliferation of AML cells again. Currently approved FLT3 inhibitors suffer from limited clinical efficacy due to FLT3 reactivation by mutations, therefore, alternative new treatments are highly needed. Proteolysis-targeting chimera (PROTAC) is a bi-functional molecule that consists of a ligand of the protein of interest, FLT3 inhibitor in our case, that is covalently linked to an E3 ubiquitin ligase ligand. Upon FLT3-specific PROTAC binding to FLT3, the PROTAC can recruit E3 for FLT3 ubiquitination, which is subsequently subjected to proteasome-mediated degradation. In this review we tried to address the question if PROTAC technology has succeeded in tackling the disease relapse and treatment failure of AML. Next, we explored the latest FLT3-targeting PROTACs developed in the past few years such as quizartinib-based PROTACs, dovitinib-based PROTACs, gilteritinib-based PROTACs, and others. Then, we followed with a deep analysis of their advantages regarding potency improvement and overcoming AML drug resistance. Finally, we discussed the challenges facing these chimeric molecules with proposed future solutions to circumvent them.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Drug Resistance, Neoplasm/drug effects , Proteolysis/drug effects , Molecular Structure , Proteolysis Targeting Chimera
12.
Eur J Med Chem ; 277: 116751, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39128328

ABSTRACT

SMARCA2 and SMARCA4 are the mutually exclusive catalytic subunits of the mammalian Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, and have recently been considered as attractive synthetic lethal targets for PROTAC-based cancer therapy. However, the potential off-tissue toxicity towards normal tissues remains a concern. Here, we optimize a GSH-inducible SMARCA2/4-based PROTAC precursor with selective antitumor activity towards lung cancer cells and negligible cytotoxicity towards normal cells in both in vitro and in vivo studies. The precursor is not bioactive or cytotoxic, but preferentially responds to endogenous GSH in GSH-rich lung cancer cells, releasing active PROTAC to degrade SMARCA2/4 via PROTAC-mediated proteasome pathway. Subsequent xenograft model study reveals that selective SMARCA2/4 degradation in lung tumors triggers DNA damage and apoptosis, which significantly inhibits lung cancer cell proliferation without obvious adverse events towards normal tissues. This study exemplifies the targeted degradation of SMARCA2/4 in lung cancer cells by the GSH-responsive PROTAC precursor, highlighting its potential as an encouraging cancer therapeutic strategy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Glutathione , Lung Neoplasms , Transcription Factors , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Glutathione/metabolism , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Apoptosis/drug effects , Mice , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Line, Tumor , DNA Helicases/metabolism , DNA Helicases/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism
13.
Eur J Med Chem ; 276: 116696, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39094429

ABSTRACT

Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.


Subject(s)
Histone Deacetylase Inhibitors , Histone Deacetylases , Humans , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Neoplasms/drug therapy , Neoplasms/metabolism , Molecular Structure , Animals , Structure-Activity Relationship
14.
Eur J Med Chem ; 275: 116645, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959730

ABSTRACT

Hypoxia-inducible factor 2α (HIF-2α) is a critical transcription factor that regulates cellular responses under hypoxic conditions. In situations of insufficient oxygen supply or patients with Von Hippel-Lindau (VHL) mutations, HIF-2α accumulates and forms a heterodimeric complex with aryl hydrocarbon receptor nuclear translocator (ARNT, or HIF-ß). This complex further binds to coactivator p300 and interacts with hypoxia response elements (HREs) on the DNA of downstream target genes, regulating the transcription of a variety of genes (e.g. VEGFA, CCND1, CXCR4, SLC2A1, etc) involved in various processes like angiogenesis, mitochondrial metabolism, cell proliferation, and metastasis. Targeting HIF-2α holds great promise for effectively addressing solid tumors associated with aberrant oxygen-sensing pathways and hypoxia mechanisms, offering broad application prospects. In this review, we provide an overview of recent advancements (2009-2024) in HIF-2α modulators such as inhibitors, agonists, and degraders for cancer therapy. Additionally, we discuss in detail the challenges and future directions regarding HIF-2α modulators.


Subject(s)
Antineoplastic Agents , Basic Helix-Loop-Helix Transcription Factors , Drug Development , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/metabolism , Molecular Structure , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
15.
Curr Top Med Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963108

ABSTRACT

In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAget-ing Chimeras) technology has been particularly pronounced since its introduction in the 21st cen-tury. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This ex-panded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders. This comprehensive review explores the broadening landscape of PROTAC application, high-lighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives. To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Time-resolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance. Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a ver-satile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.

16.
Oncol Res ; 32(8): 1257-1264, 2024.
Article in English | MEDLINE | ID: mdl-39055890

ABSTRACT

The Kirsten rat sarcoma virus-son of sevenless 1 (KRAS-SOS1) axis drives tumor growth preferentially in pancreatic, colon, and lung cancer. Now, KRAS G12C mutated tumors can be successfully treated with inhibitors that covalently block the cysteine of the switch II binding pocket of KRAS. However, the range of other KRAS mutations is not amenable to treatment and the G12C-directed agents Sotorasib and Adragrasib show a response rate of only approximately 40%, lasting for a mean period of 8 months. One approach to increase the efficacy of inhibitors is their inclusion into proteolysis-targeting chimeras (PROTACs), which degrade the proteins of interest and exhibit much higher antitumor activity through multiple cycles of activity. Accordingly, PROTACs have been developed based on KRAS- or SOS1-directed inhibitors coupled to either von Hippel-Lindau (VHL) or Cereblon (CRBN) ligands that invoke the proteasomal degradation. Several of these PROTACs show increased activity in vitro and in vivo compared to their cognate inhibitors but their toxicity in normal tissues is not clear. The CRBN PROTACs containing thalidomide derivatives cannot be tested in experimental animals. Resistance to such PROTACS arises through downregulation or inactivation of CRBN or factors of the functional VHL E3 ubiquitin ligase. Although highly active KRAS and SOS1 PROTACs have been formulated their clinical application remains difficult.


Subject(s)
Proteolysis , Proto-Oncogene Proteins p21(ras) , SOS1 Protein , Humans , SOS1 Protein/metabolism , SOS1 Protein/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Proteolysis Targeting Chimera
17.
Pharmaceutics ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065621

ABSTRACT

PROTACs, proteolysis targeting chimeras, are bifunctional molecules inducing protein degradation through a unique proximity-based mode of action. While offering several advantages unachievable by classical drugs, PROTACs have unfavorable physicochemical properties that pose challenges in application and formulation. In this study, we show the solubility enhancement of two PROTACs, ARV-110 and SelDeg51, using Poly(vinyl alcohol). Hereby, we apply a three-fluid nozzle spray drying set-up to generate an amorphous solid dispersion with a 30% w/w drug loading with the respective PROTACs and the hydrophilic polymer. Dissolution enhancement was achieved and demonstrated for t = 0 and t = 4 weeks at 5 °C using a phosphate buffer with a pH of 6.8. A pH shift study on ARV-110-PVA is shown, covering transfer from simulated gastric fluid (SGF) at pH 2.0 to fasted-state simulated intestinal fluid (FaSSIF) at pH 6.5. Additionally, activity studies and binding assays of the pure SelDeg51 versus the spray-dried SelDeg51-PVA indicate no difference between both samples. Our results show how modern enabling formulation technologies can partially alleviate challenging physicochemical properties, such as the poor solubility of increasingly large 'small' molecules.

18.
J Pharm Biomed Anal ; 249: 116348, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38996751

ABSTRACT

Chemically induced, targeted protein degradation with proteolysis targeting chimeras (PROTACs) has shown to be a promising pharmacological strategy to circumvent the poor "druggability" of intracellular targets. However, the favorable pharmacology comes with complex molecular properties limiting the oral bioavailability of these drugs. To foster the translation of PROTACs into the clinics it is of high importance to establish sensitive bioanalytical methods that enable the assessment of absorption, bioavailability, and disposition of PROTACs after oral dosing. In this study, two highly sensitive LC-MS/MS methods (LLOQ = 0.5 ng/mL) were developed and validated for the quantification of bavdeglutamide (ARV-110) and vepdegestrant (ARV-471) in rat plasma. Plasma samples were processed by protein precipitation and separated on a C18 column over a gradient of acetonitrile and water with 0.1 % formic acid. Selected reaction monitoring in positive ESI mode was applied to quantify ARV-110 and ARV-471. Both methods showed linearity, accuracy, and precision as well as matrix effects and carry-over within the predefined acceptance criteria. High stability of the compounds in plasma was demonstrated at long-term storage for seven weeks at -20 °C, three freeze-thaw cycles, up to 20 min at room temperature, and as extracts in the autosampler. The plasma concentration-time curves after intravenous and intraduodenal bolus single-dose administrations in rats could be successfully quantified at clinically relevant doses per body weight. The highly sensitive bioanalytical assays presented in this work enable the application of a broad spectrum of in vivo studies to elucidate the oral absorption, bioavailability, and disposition of PROTACs.


Subject(s)
Biological Availability , Liquid Chromatography-Mass Spectrometry , Proteolysis Targeting Chimera , Proteolysis , Tandem Mass Spectrometry , Animals , Male , Rats , Administration, Oral , Chromatography, Liquid/methods , Drug Stability , Liquid Chromatography-Mass Spectrometry/methods , Proteolysis Targeting Chimera/administration & dosage , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/pharmacokinetics , Rats, Sprague-Dawley , Reproducibility of Results , Tandem Mass Spectrometry/methods
19.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062757

ABSTRACT

Bruton's tyrosine kinase (BTK), a non-receptor tyrosine kinase crucial for B cell development and function, acts downstream of the B cell receptor (BCR) in the BCR pathway. Other kinases involved downstream of the BCR besides BTK such as Syk, Lyn, PI3K, and Mitogen-activated protein (MAP) kinases also play roles in relaying signals from the BCR to provide pro-survival, activation, and proliferation cues. BTK signaling is implicated in various B-cell lymphomas such as mantle cell lymphoma, Waldenström Macroglobulinemia, follicular lymphoma, and diffuse large B cell lymphoma, leading to the development of transformative treatments like ibrutinib, the first-in-class covalent BTK inhibitor, and pirtobrutinib, the first-in-class noncovalent BTK inhibitor. However, kinase-deficient mutations C481F, C481Y, C481R, and L528W in the BTK gene confer resistance to both covalent and non-covalent BTK inhibitors, facilitating B cell survival and lymphomagenesis despite kinase inactivation. Further studies have revealed BTK's non-catalytic scaffolding function, mediating the assembly and activation of proteins including Toll-like receptor 9 (TLR9), vascular cell adhesion protein 1 (VCAM-1), hematopoietic cell kinase (HCK), and integrin-linked kinase (ILK). This non-enzymatic role promotes cell survival and proliferation independently of kinase activity. Understanding BTK's dual roles unveils opportunities for therapeutics targeting its scaffolding function, promising advancements in disrupting lymphomagenesis and refining B cell lymphoma treatments.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Lymphoma, B-Cell , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Humans , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/genetics , Signal Transduction/drug effects , Animals , Receptors, Antigen, B-Cell/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology
20.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892104

ABSTRACT

Dysregulation of the insulin-like growth factor (IGF) system determines the onset of various pathological conditions, including cancer. Accordingly, therapeutic strategies have been developed to block this system in tumor cells, but the results of clinical trials have been disappointing. After decades of research in the field, it is safe to say that one of the major reasons underlying the poor efficacy of anti-IGF-targeting agents is derived from an underestimation of the molecular complexity of this axis. Genetic, transcriptional, post-transcriptional and functional interactors interfere with the activity of canonical components of this axis, supporting the need for combinatorial approaches to effectively block this system. In addition, cancer cells interface with a multiplicity of factors from the extracellular compartment, which strongly affect cell destiny. In this review, we will cover novel extracellular mechanisms contributing to IGF system dysregulation and the implications of such dangerous liaisons for cancer hallmarks and responses to known and new anti-IGF drugs. A deeper understanding of both the intracellular and extracellular microenvironments might provide new impetus to better decipher the complexity of the IGF axis in cancer and provide new clues for designing novel therapeutic approaches.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/drug therapy , Animals , Tumor Microenvironment , Somatomedins/metabolism , Signal Transduction , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL