Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.373
Filter
1.
Methods Mol Biol ; 2852: 181-196, 2025.
Article in English | MEDLINE | ID: mdl-39235745

ABSTRACT

This chapter introduces protocols for culturing and maintaining Dictyostelium discoideum and methods for conducting virulence assays in this organism to study bacterial pathogenicity. It outlines advanced techniques, such as automated microscopy and flow cytometry, for detailed cellular analysis and traditional microbiological approaches. These comprehensive protocols will enable researchers to probe the virulence factors of pathogens like Klebsiella pneumoniae and to elucidate the details of host-pathogen interactions within a cost-effective and adaptable laboratory framework.


Subject(s)
Dictyostelium , Flow Cytometry , Klebsiella pneumoniae , Dictyostelium/microbiology , Flow Cytometry/methods , Klebsiella pneumoniae/pathogenicity , Phagocytosis , Virulence , Host-Pathogen Interactions , Microscopy/methods
2.
Methods Mol Biol ; 2852: 199-209, 2025.
Article in English | MEDLINE | ID: mdl-39235746

ABSTRACT

This document outlines the steps necessary to assemble and submit the standard data package required for contributing to the global genomic surveillance of enteric pathogens. Although targeted to GenomeTrakr laboratories and collaborators, these protocols are broadly applicable for enteric pathogens collected for different purposes. There are five protocols included in this chapter: (1) quality control (QC) assessment for the genome sequence data, (2) validation for the contextual data, (3) data submission for the standard pathogen package or Pathogen Data Object Model (DOM) to the public repository, (4) viewing and querying data at NCBI, and (5) data curation for maintaining relevance of public data. The data are available through one of the International Nucleotide Sequence Database Consortium (INSDC) members, with the National Center for Biotechnology Information (NCBI) being the primary focus of this document. NCBI Pathogen Detection is a custom dashboard at NCBI that provides easy access to pathogen data plus results for a standard suite of automated cluster and genotyping analyses important for informing public health and regulatory decision-making.


Subject(s)
Genomics , Quality Control , Humans , Genomics/methods , Genomics/standards , Databases, Genetic , Software , Genome, Bacterial , Data Curation/methods
3.
Chemistry ; : e202402871, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39219235

ABSTRACT

The differential sensing approach uses fingerprint patterning to distinguish uncharacterized biological samples. Inspired by natural sensory systems, an array of cross-reactive sensors generates unique response fingerprint depending on the samples. Until today, this array system has been developed using various materials, including the library of surface-charged nanoparticles and chemosensors. Many differential array systems have demonstrated accurate identification of bacterial species, viral subtypes, and cancer cells, as well as distinguishing disease states in blood or urine. This capability is particularly important for distinguishing between normal and abnormal states when specific marker molecules have not yet been identified, providing a powerful diagnostic tool. In this concept, we summarized representative outcomes of differential sensing applications for biological sample discrimination.

4.
Philos Trans R Soc Lond B Biol Sci ; 379(1912): 20220532, 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-39230447

ABSTRACT

Social and spatial structures of host populations play important roles in pathogen transmission. For environmentally transmitted pathogens, the host space use interacts with both the host social structure and the pathogen's environmental persistence (which determines the time-lag across which two hosts can transmit). Together, these factors shape the epidemiological dynamics of environmentally transmitted pathogens. While the importance of both social and spatial structures and environmental pathogen persistence has long been recognized in epidemiology, they are often considered separately. A better understanding of how these factors interact to determine disease dynamics is required for developing robust surveillance and management strategies. Here, we use a simple agent-based model where we vary host mobility (spatial), host gregariousness (social) and pathogen decay (environmental persistence), each from low to high levels to uncover how they affect epidemiological dynamics. By comparing epidemic peak, time to epidemic peak and final epidemic size, we show that longer infectious periods, higher group mobility, larger group size and longer pathogen persistence lead to larger, faster growing outbreaks, and explore how these processes interact to determine epidemiological outcomes such as the epidemic peak and the final epidemic size. We identify general principles that can be used for planning surveillance and control for wildlife host-pathogen systems with environmental transmission across a range of spatial behaviour, social structure and pathogen decay rates. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.


Subject(s)
Animals, Wild , Animals , Social Behavior , Models, Biological , Host-Pathogen Interactions
5.
Mol Biol Rep ; 51(1): 952, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230600

ABSTRACT

Ribosomal protein SA (RPSA) plays multiple roles in cells, including ribosomal biogenesis and translation, cellular migration, and cytoskeleton reorganization. RPSA is crucial in the process of pathogen infection. Extensive research has examined RPSA's role in pathogen adhesion and invasion, but its broader functions, particularly its anti-infective capabilities, have garnered increasing attention in recent years. This dual role is closely related to its structural domains, which influence its localization and function. This review summarizes key research findings concerning the functional domains of RPSA and analyzes the relationship between its membrane localization and structural domains. Additionally, the functional implications of RPSA are categorized based on its different localizations during pathogen infection. Specifically, when RPSA is located on the cell surface, it promotes pathogen adhesion and invasion of host cells; conversely, when RPSA is located intracellularly, it exhibits anti-infective properties. Overall, RPSA shows a dual nature, both in facilitating pathogen invasion of the host and in possessing the ability to resist pathogen infection. This review comprehensively examines the dual role of RPSA in pathogen infection by analyzing its structural domains, localization, and interactions with cellular and pathogen molecules. Our aim is to update and deepen researchers' understanding of the various functions of RPSA during pathogen infection.


Subject(s)
Ribosomal Proteins , Ribosomal Proteins/metabolism , Humans , Host-Pathogen Interactions , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Animals
6.
Planta ; 260(4): 92, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261328

ABSTRACT

MAIN CONCLUSION: The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.


Subject(s)
Host-Pathogen Interactions , Hypocreales , Oryza , Plant Diseases , Quantitative Trait Loci , Oryza/microbiology , Plant Diseases/microbiology , Hypocreales/pathogenicity , Hypocreales/genetics , Hypocreales/physiology , Virulence/genetics , Quantitative Trait Loci/genetics , Disease Resistance/genetics , Genome, Fungal
7.
Plant Dis ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261747

ABSTRACT

Monstera deliciosa Liebm. (Araceae) is a monocotyledonous plant that is native to tropical forests of southern Mexico to Panama. It is widely grown as an ornamental in the United States because of its easy maintenance and attractive, fenestrate leaves. On May 10th, 2024, at a nursery and garden center in Henrico County, Virginia, four M. deliciosa plants in 3.8 L containers were observed with necrotic spots surrounded by a yellow halo on the leaves (Fig. 1A). Uredinia were present in the center of the lesions with dense, reddish-brown sporulation mostly on the abaxial surface of the leaves (Fig. 1B). Urediniospores with pedicels were golden brown in color, globose, echinulate, with two opposite germ pores, averaging (28) 25.2 x 25 (23) µm (n = 40) in size and a wall thickness of 1.5 to 2 µm (n = 40) (Fig. 1F - K). Telia were not present. The host, symptoms, and urediniospore size was comparable to reports of Pseudocerradoa paullula (Syd. & P. Syd.) M. Ebinghaus & Dianese from South Carolina (22.9 to 27.9 µm), Florida (24 to 31 µm), and Japan (24.8 to 29.3 µm) (Ebinghaus et al. 2022; Sakamoto et al. 2023; Urbina et al. 2023; Yang et al. 2023). Urediniospores from the infected plants were collected with a sterile needle and DNA was extracted using a Qiagen DNeasy PowerLyzer Microbial Kit (Germantown, MD) according to the manufacturer's instructions. PCR and sequencing of the small ribosomal subunit (SSU) and large ribosomal subunit (LSU) gene regions was performed with primer sets NS1/Rust18SR and LRust1R/LR3 (Beenken et al. 2012; Vilgalys and Hester 1990). The resulting 1,630bp and 638 bp sequence fragments of the SSU and LSU loci from strain GS24-AE50 were deposited into the NCBI Genbank database under accessions PQ059898 and PQ059897, respectively. A pairwise alignment of the SSU gene shared 1,363/1,366 (99%) nucleotides with the P. paullula voucher (ON887197) from Florida. A Genbank nBLAST analysis of the LSU gene shared 636/638 (99%), 636/638 (99%), and 592/600 (99%) nucleotides with vouchers from M. deliciosa from South Carolina (OQ746460), Florida (ON887197) and Japan (OK509070) (Sakamoto et al. 20222; Urbina et al. 2023; Yang et al. 2023). Koch's postulates were fulfilled by spraying four, healthy, non-wounded M. deliciosa plants to run-off with a urediniospore suspension (1 x 106 spores/ml distilled water, 20 ml per plant) that was collected from the original infected plants. An additional four, healthy control plants were sprayed with distilled water only. After 6 weeks in a greenhouse at 22 ± 2°C with ≥85% relative humidity under an 8-h photoperiod, uredinia in the center of lesions identical to those on the original symptomatic plants developed on 12 out of 20 leaves from the inoculated plants, while all the leaves from the control plants remained asymptomatic (Fig.1C - E). Urediniospores collected from the inoculated plants were morphologically identical to the urediniospores from the original infected plants with 100% LSU sequence homology to accession PQ059897. Globally, P. paullula has been reported from Australia, China, Japan, Malaysia, the Philippines, and the United States, where the pathogen was detected at the port of Los Angeles in 2014, Florida in 2019, and South Carolina in 2023 (Sakamoto et al. 2023; Shaw et al. 1991; Urbina et al. 2023; Yang et al. 2023). Although the pathogen is not known to be established in Virginia, the recent surge of reports suggests that the pathogen's distribution is expanding. The impact of aroid leaf rust on M. deliciosa production is unclear, but it has the potential to reduce the aesthetic and commercial value of plants under favorable conditions.

8.
Heliyon ; 10(17): e36526, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39263095

ABSTRACT

Around 2 billion people utilize a water source contaminated with fecal-origin microorganisms, used for both human consumption and irrigation of crops. In Colombia, the water from the Bogotá River is employed for irrigating agricultural products, including raw-consumption foods like strawberries and lettuce. This poses a risk to the end consumer, as these foods are marketed as fresh products ready for direct consumption without undergoing any disinfection or cooking treatment. The aim of this study was to determine the origin of fecal contamination in strawberries and lettuce irrigated with surface waters from Cundinamarca, Colombia, using non-human and human molecular markers, along with Helicobacter pylori (H. pylori). A total of 50 samples were collected, 25 of strawberries and 25 of lettuce, taken from crops, markets, and supermarkets. Microbiological indicators (bacterial and viral) were detected through cultivation techniques, and Microbial Source Tracking (MST) markers and H. pylori were detected through PCR. The results of our study demonstrate the presence of Escherichia coli (E. coli) (12.5 %), Enterococcus (≥25 %), spores and vegetative forms of Spores of sulphite-reducing Clostridia (SRC) (≥37.5 %), coliphages (≥12.5 %), and Salmonella sp. (≥12.5 %), in both strawberries and lettuce. In the different samples analyzed, molecular markers were detected to differentiate the source of fecal contamination above 12.5 % (HF187, CF128, ADO and DEN) and H. pylori between 0 % and 25 %, highlighting deficiencies in the production chain. of food, and the risks they pose to food security. Highlighting deficiencies in the food production chain and the risks they pose to food safety.

9.
Pediatric Health Med Ther ; 15: 279-288, 2024.
Article in English | MEDLINE | ID: mdl-39263589

ABSTRACT

Purpose: During the COVID-19 pandemic, multifaceted non-pharmaceutical interventions have not only reduced the transmission of SARS-CoV2 but also affected the prevalence of other respiratory pathogens. With the lifting of many restrictions, a surge in cases of pneumonia in children has been reported in many hospitals in China. The study assessed the changes in pathogen and symptoms of children with community-acquired pneumonia (CAP) before and after the adjustments of prevention and control measures of epidemic and provided recommendations for CAP in children. Patients and methods: Children diagnosed with CAP were enrolled in the study from 2022 to 2023. A cross-sectional retrospective study was conducted in a general hospital. We analyzed the data about demographic data, clinical symptoms, pathogens, and medical treatments. The Chi-square and Mann-Whitney U-test were used to assess the statistical significance of groups. Results: We studied 1103 children, 339 in 2022 and 764 in 2023. Compared with children in 2022, more children were diagnosed with CAP in 2023 and these children had a higher body temperature and levels of CRP and PCT, which indicated these children got severe inflammation. The positive rate of the pathogen was also higher in 2023, especially the detective rate of Mycoplasma pneumoniae. The number of children infected with more than two pathogens was higher in 2023, especially those co-infected with the virus and M. Pneumoniae. Concerning the medicine therapy, the usage of ß-lactam antibiotics, Macrolide antibiotics, and antiviral drugs kept rapid growth. Conclusion: After the adjustment of epidemic prevention and control policies in 2023, more children got CAP with severe clinical symptoms, and more antibiotics and antiviral drugs were used. Further study is needed to explore the reasons for the increase in children with CAP and to explore the rationality of treatment.

10.
Phytopathology ; : PHYTO10230366IA, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264350

ABSTRACT

Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture. Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota, including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.

11.
Infect Dis (Lond) ; : 1-11, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264585

ABSTRACT

OBJECTIVE: Accurate and rapid identification of causative pathogens is essential to guide the clinical management of lower respiratory tract infections (LRTIs). Here we conducted a single-centre prospective study in 284 patients suspected of lower respiratory tract infections to evaluate the utility of a nucleic acid test based on highly multiplexed polymerase chain reaction (PCR) and CRISPR-Cas12a. METHODS: We determined the analytical and diagnostic performance of the CRISPR assay using a combination of reference standards, including conventional microbiological tests (CMTs), metagenomic Next-Generation Sequencing (mNGS), and clinical adjudication by a panel of experts on infectious diseases and microbiology. RESULTS: The CRISPR assay showed a higher detection rate (63.0%) than conventional microbiological tests (38.4%) and was lower than metagenomic Next-Generation Sequencing (72.9%). In detecting polymicrobial infections, the positivity rate of the CRISPR assay (19.4%) was higher than conventional microbiological tests (3.5%) and lower than metagenomic Next-Generation Sequencing (28.9%). The overall diagnostic sensitivity of the CRISPR assay (67.8%) was higher than conventional microbiological tests (41.8%), and lower than metagenomic Next-Generation Sequencing (93.2%). CONCLUSIONS: Considering the low cost, ease of operation, short turnaround time, and broad range of pathogens detected in a single test, the CRISPR assay has the potential to be implemented as a screening tool for the aetiological diagnosis of lower respiratory tract infections patients, especially in cases where atypical bacteria or coinfections are suspected.

12.
Future Sci OA ; 10(1): 2387961, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39248050

ABSTRACT

Macrophages are integral part of the body's defense against pathogens and serve as vital regulators of inflammation. Adaptor molecules, featuring diverse domains, intricately orchestrate the recruitment and transmission of inflammatory responses through signaling cascades. Key domains involved in macrophage polarization include Toll-like receptors (TLRs), Src Homology2 (SH2) and other small domains, alongside receptor tyrosine kinases, crucial for pathway activation. This review aims to elucidate the enigmatic role of macrophage adaptor molecules in modulating macrophage activation, emphasizing their diverse roles and potential therapeutic and investigative avenues for further exploration.


In our manuscript, we explore the vital role of adaptor proteins regarding ways, our immune cells, specifically macrophages, detect and respond to threats. These proteins act as crucial messengers, helping macrophages recognize harmful invaders and initiate the body's defense mechanisms. Understanding this process not only sheds light on how our immune system works but also holds promise for developing new therapies to combat infections and inflammatory diseases. Our findings offer insight into the intricate world of immune response, potentially paving the way for improved treatments for a range of health conditions.

13.
Front Microbiol ; 15: 1442922, 2024.
Article in English | MEDLINE | ID: mdl-39252837

ABSTRACT

Introduction: Camellia anthracnose is caused by multiple Colletotrichum species, resulting in severe yield losses of oil-tea Camellia. Colletotrichum fructicola is one of the major anthracnose pathogens of oil-tea Camellia worldwide. However, developing unique molecular markers for the rapid and accurate detection of Colletotrichum fructicola from diverse Colletotrichum species, as well as early monitoring and effective control of the disease, remains largely unexplored. Methods: C. fructicola-specific genes were obtained using a BLAST search of the sequences of predicted genes in C. fructicola against the genome sequences of Colletotrichum fungal pathogens. In this study, Colletotrichum fructicola-specific molecular markers were developed for rapid and accurate detection of C. fructicola among Camellia anthracnose causing fungal pathogens. Results: Using genomic DNA-based end-point PCR and qPCR, three C. fructicola-specific genes with the ability to distinguish C. fructicola from other oil-tea Camellia anthracnose-related Colletotrichum species, including Colletotrichum camelliae, Colletotrichum gloeosporioides, and Colletotrichum siamense, and oil-tea Camellia fungal pathogens belonging to the genus Neopestalotiopsis, Pestalotiopsis, and Alternaria, were validated as molecular markers. In addition, these three molecular markers were highly sensitive to detecting C. fructicola using DNA extracted from the inoculated leaves of oil-tea Camellia. Discussion: These findings enable us to rapidly and uniquely detect the Camellia anthracnose disease caused by Colletotrichum fructicola, which will equip farmers with an effective tool for monitoring Camellia anthracnose disease in the field and taking timely control measurements in advance.

14.
Front Cell Infect Microbiol ; 14: 1388765, 2024.
Article in English | MEDLINE | ID: mdl-39253328

ABSTRACT

Objective: To investigate the diagnostic value of metagenomic next-generation sequencing (mNGS) in detecting pathogens from joint infection (JI) synovial fluid (SF) samples with previous antibiotic exposure. Methods: From January 2019 to January 2022, 59 cases with suspected JI were enrolled. All cases had antibiotic exposure within 2 weeks before sample collection. mNGS and conventional culture were performed on SF samples. JI was diagnosed based on history and clinical symptoms in conjunction with MSIS criteria. The diagnostic values, including sensitivity, specificity, positive/negative predictive values (PPV/NPV), and accuracy, were in comparison with mNGS and culture. Results: There were 47 of the 59 cases diagnosed with JI, while the remaining 12 were diagnosed with non-infectious diseases. The sensitivity of mNGS was 68.1%, which was significantly higher than that of culture (25.5%, p<0.01). The accuracy of mNGS was significantly higher at 71.2% compared to the culture at 39.0% (p <0.01). Eleven pathogenic strains were detected by mNGS but not by microbiological culture, which included Staphylococcus lugdunensis, Staphylococcus cohnii, Finegoldia magna, Enterococcus faecalis, Staphylococcus saprophytics, Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Acinetobacter pittii, Brucella ovis, andCoxiella burnetii. Antibiotic therapy was adjusted based on the mNGS results in 32 (68.1%) patients, including 12 (25.5%) and 20 (42.6%) patients, in whom treatment was upgraded and changed, respectively. All JI patients underwent surgery and received subsequent antibiotic therapy. They were followed up for an average of 23 months (20-27 months), and the success rate of treatment was 89.4%. Out of the 33 patients who had positive results for pathogens, reoperation was performed in 1 case (3.03%), while out of the 14 cases with negative results for both mNGS and cultures, reoperation was performed in 4 cases (28.6%). Conclusions: mNGS has advantages over conventional culture in detecting pathogens in SF samples from JI patients previously treated with antibiotics, potentially improving clinical outcomes.


Subject(s)
Anti-Bacterial Agents , Bacteria , High-Throughput Nucleotide Sequencing , Metagenomics , Synovial Fluid , Humans , Metagenomics/methods , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Male , Female , Middle Aged , Aged , Synovial Fluid/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/drug effects , Sensitivity and Specificity , Adult , Arthritis, Infectious/microbiology , Arthritis, Infectious/diagnosis , Arthritis, Infectious/drug therapy
15.
Food Microbiol ; 124: 104615, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244367

ABSTRACT

Seeds are important microbial vectors, and seed-associated pathogens can be introduced into a country through trade, resulting in yield and quality losses in agriculture. The aim of this study was to characterize the microbial communities associated with barley seeds, and based on which, to develop technical approaches to trace their geographical origins, and to inspect and identify quarantine pathogens. Our analysis defined the core microbiota of barley seed and revealed significant differences in the barley seed-associated microbial communities among different continents, suggesting a strong geographic specificity of the barley seed microbiota. By implementing a machine learning model, we achieved over 95% accuracy in tracing the origin of barley seeds. Furthermore, the analysis of co-occurrence and exclusion patterns provided important insights into the identification of candidate biocontrol agents or microbial inoculants that could be useful in improving barley yield and quality. A core pathogen database was developed, and a procedure for inspecting potential quarantine species associated with barley seed was established. These approaches proved effective in detecting four fungal and three bacterial quarantine species for the first time in the port of China. This study not only characterized the core microbiota of barley seeds but also provided practical approaches for tracing the regional origin of barley and identifying potential quarantine pathogens.


Subject(s)
Bacteria , Fungi , Hordeum , Microbiota , Plant Diseases , Seeds , Hordeum/microbiology , Seeds/microbiology , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fungi/isolation & purification , Fungi/classification , Fungi/genetics , China , Quarantine
16.
J Vet Sci ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39237364

ABSTRACT

IMPORTANCE: Despite advancements in herd management, feeding, and pharmaceutical interventions, neonatal calf diarrhea (NCD) remains a major global health concern. Bacteria, viruses, and parasites are the major contributors to NCD. Although several pathogens have been identified in the Republic of Korea (ROK), the etiological agents of numerous NCD cases have not been identified. OBJECTIVES: To identify, for the first time, the prevalence and impact of Boosepivirus (BooV) on calf diarrhea in the ROK. METHODS: Here, the unknown cause of calf diarrhea was determined using metagenomics We then explored the prevalence of certain pathogens, including BooV, that cause NCD. Seventy diarrheal fecal samples from Hanwoo (Bos taurus coreanae) calves were analyzed using reverse transcriptase and quantitative real-time polymerase chain reaction for pathogen detection and BooV isolate sequencing. RESULTS: The complete genome of BooV was detected from unknown causes of calf diarrhea. And also, BooV was the most frequently detected pathogen (35.7%) among 8 pathogens in 70 diarrheic feces from Hanwoo calves. Co-infection analyses indicated that most BooV-positive samples were solely infected with BooV, indicating its significance in NCD in the ROK. All isolates were classified as BooV B in phylogenetic analysis. CONCLUSIONS AND RELEVANCE: This is the first study to determine the prevalence and molecular characteristics of BooV in calf diarrhea in the ROK, highlighting the potential importance of BooV as a causative agent of calf diarrhea and highlighting the need for further research on its epidemiology and pathogenicity.

17.
Plant Dis ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238249

ABSTRACT

In the summer of 2021, a field survey of several tomato-growing counties in Tennessee (TN) was conducted for plants exhibiting virus-like symptoms. While scouting in September in Grainger County, one of the largest areas under tomato (Solanum lycopersicum) production in TN, leaves from six tomato plants (cv. BHN 589) growing on a farm located near Rutledge were collected and subsequently stored at -80˚C. Only one of the plants exhibited symptoms typical of tomato yellow leaf curl virus (TYLCV) infection, which included chlorosis, leaf curling, downward cupping, thickening, and mottling. Total DNA was isolated using the DNeasy Plant Mini Kit (Qiagen, Santa Clara, CA) and subjected to PCR using primers TYv2337F (5'-ACGTAGGTCTTGACATCTGTTGAGCTC-3') and TYc138-R: (5'-AAGTGGGTCCCACAATTGCAAGAC-3') and Ex-Taq polymerase (Takara Bio, Mountain View, CA) to amplify a 634-bp genomic fragment of TYLCV (Alkowni et al. 2019). Primers against tomato elongation factor-1 served as internal PCR control (Dias et al. 2023). Each primer set amplified amplicons of expected sizes; however, the TYLCV fragment was detected only from the plant exhibiting typical symptoms of infection. Amplicons were purified with the QIAquick PCR purification kit (Qiagen) and sequenced directly bi-directionally by Eurofins USA using the above primers. The resultant sequences were edited and analyzed with CLC Genomic Workbench v. 24.0.1. Blast analysis of the sequences (606 nts) against those available in GenBank showed 93 TYLCV isolates with over 95% nucleotide sequence identity. Subsequently, the full-length genome was PCR amplified using primers TYBamHIv (5'- GGATCCACTTCTAAATGAATTTCCTG-3') and TYBamHI2c (5'-GGATCCCACATAGTGCAAGACAAAC-3') (Rojas et al. 2007), ligated into pGEM-T (Promega, Madison, WI) and cloned. Plasmids were purified using QIAprep Spin Miniprep kit (Qiagen) and five independent plasmids clones were sequenced using Oxford Nanopore sequencing (v14 library chemistry & R10.4.1 flow cell) by Eurofins USA. The resultant sequences were edited and analyzed with CLC Genomic Workbench and a consensus sequence representing the full-length genome (2,781 nts) was generated and submitted to GenBank (Accession No. PP505780). Blast analysis showed over 98% nucleotide sequence identity with 100 TYLCV isolates from GenBank. The highest sequence identity of 98.6% was with the sequence of an isolate from Florida (AY530931). To the best of our knowledge, this is the first report of the occurrence of TYLCV in TN. The virus was detected in a tomato plant grown from seed. The seed transmissibility of TYLCV remains controversial (Perry 2018; and references therein); thus, the most likely source of infection in this report is transmission by rare viruliferous vectors (Bemisia tabaci). It remains unknown, however, whether TYLCV is endemic in TN, or recently introduced by mobile vectors from neighboring states. The presence of TYLCV has been reported in Alabama (Akad et al. 2007), Kentucky (de Sá et al. 2008), Mississippi (Ingram and Henn 2001), Georgia (Momol et al. 1999) and North Carolina (Polston et al. 2002). The B. tabaci vector of the virus has sporadic occurrences in crops within TN (Li et al. 2021). Tennessee is one of the leading tomato producers exporting globally with production covering over 1,300 hectares and over 430 producers (Dias et al. 2023). Because of the potential threat of TYLCV to tomato industry in the state, additional surveillance measures need to be put in place to determine TYLCV incidence.

18.
Plant Dis ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238251

ABSTRACT

Amorphophallus konjac, commonly called voodoo lily, is a cash crop widely cultivated in southwest China (Gao et al. 2022). In August 2022, leaf spot symptoms were observed in a field (1 ha) located at Fuyuan (25.67°N; 104.25°E), Yunnan, China, resulting in substantial economic losses. Brown lesions, with an incidence ranging from 20 to 40%, typically had a whitish or gray center and were surrounded by yellow halos. Microscopic observations of the spots revealed anamorphic species Cercospora chevalieri. Conidiophores were 50-150 × 4-7 µm, cylindrical, unbranched, smooth-walled, pale brown and aggregated in dense fascicles arising from a brown stroma. The conidiogenous cells were integrated, terminal or intercalary, pale brown to brown and proliferated sympodially. The conidiogenous loci were thickened and darkened, and 2-3 µm in diam. The conidia were formed singly, obclavate-cylindrical, 90-160 × 5-7 µm, with an average of 130 × 6 µm (n = 30), 6-11 septa, thin-walled, smooth, hyaline or subhyaline, straight or curved with an obtuse apex and obconically truncate base, with thickened and darkened hilum. These morphological characteristics matched those of C. chevalieri, the causal agent of leaf spot on A. paeoniifolius (Braun et al. 2014; Saccardo et al. 1913). A conidial suspension in sterile water from lesions was used to inoculate water agar, and germinated conidia were transferred to potato dextrose agar(PDA) and incubated at 27°C for 7 days. Induction of sporulation was unsuccessful using PDA, as well as malt extract agar, potato sucrose agar and synthetic nutrient-poor agar. Two out of ten isolates were selected for molecular identification and pathogenicity assay. Genomic DNA from two pure isolates (KUNCC22-12536 and KUNCC22-12537) was extracted for PCR and amplified with primers for the internal transcribed spacers (ITS: ITS1/ITS4), calmodulin (CMD: CAL228F/CAL2Rd), translation elongation factor 1-alpha (TEF1-α: 728F/986R), actin (ACT: 512F/783R), histone H3 (HIS3: CYLH3F/CYLH3R), beta-tubulin gene (TUB2: BT-1F/BT-1R) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH: Gpd1/Gpd2), respectively (Vaghefi et al. 2021). The newly generated sequences for ITS (OP719153/OP719154), CMD(OP740904/OP740905), TEF1-α (OP740910/OP740911), ACT (OP740902/OP740903), HIS3 (OP740908/OP740909), TUB2 (OP740912/OP740913), GAPDH (OP740906/OP740907) of C. chevalieri were submitted to GenBank. So far, no sequence data of C. chevalieri were available in the GenBank database. As expected, most genes (TEF1-α, ACT, CMD, HIS, TUB2 and GAPDH) showed 91 to 95% identity to their best hits within species of the genus Cercospora. The phylogenetic tree showed that sequences retrieved from two isolates obtained from the A. konjac leaf spots clustered together within Cercospora forming a strongly supported clade. To test Koch's postulates, ten four-month-old healthy A. konjac plants grown in pots were used for a pathogenicity test in a greenhouse. One leaf of each plant was inoculated with mycelial plugs, and one leaf was inoculated with a sterile PDA plug. These plants were enclosed in plastic bags for 72 h. Only leaves inoculated with mycelium plugs produced brown lesions, which appeared after 10 to 14 days on inoculated leaves. Control plants treated with sterile PDA plugs remained asymptomatic. This experiment was repeated twice with the same results. C. chevalieri was reisolated from infected leaves and identified based on morphology and Sanger sequencing of the ITS region. To our knowledge, this is the first report of C. chevalieri causing leaf spot on A. konjac and the first report of this species from China (Braun et al. 2014), which provides key information for diagnosis and management of this disease.

19.
J Fish Dis ; : e14007, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239795

ABSTRACT

Type III secretion system (T3SS) is an important virulence system in Gram-negative bacteria. In this investigation, different environmental conditions that regulate the expression of T3SS genes in Yersinia ruckeri were investigated aimed at obtaining a better understanding about its modulation after various environmental challenges. Four isolates of Y. ruckeri CSF007-82, ATCC29473, A7959-11 and YRNC10 were cultivated under the diverse in vitro challenges iron depletion, high salt, low pH and in the presence of fish serum or in the fish cell culture (Chinook Salmon Embryo - CHSE). The transcriptional modulation of the chromosomal genes ysaV, ysaC, ysaJ and prgH of ysa were investigated using quantitative real-time PCR. The expression of prgH, ysaV, ysaC and ysaJ was differentially expressed in all four strains under evaluation. The highest gene expression levels were observed for Y. ruckeri YRNC10 AN after addition of 0.3 M NaCl in Luria Bertani broth. The results obtained from this study provide initial insights into T3SS responses in Y. ruckeri, which pave the way for further studies aimed at expanding our knowledge on the functional roles of the T3SS genes in Y. ruckeri.

20.
JMIR Public Health Surveill ; 10: e54750, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240545

ABSTRACT

Background: The COVID-19 pandemic highlighted the need for pathogen surveillance systems to augment both early warning and outbreak monitoring/control efforts. Community wastewater samples provide a rapid and accurate source of environmental surveillance data to complement direct patient sampling. Due to its global presence and critical missions, the US military is a leader in global pandemic preparedness efforts. Clinical testing for COVID-19 on US Air Force (USAF) bases (AFBs) was effective but costly with respect to direct monetary costs and indirect costs due to lost time. To remain operating at peak capacity, such bases sought a more passive surveillance option and piloted wastewater surveillance (WWS) at 17 AFBs to demonstrate feasibility, safety, utility, and cost-effectiveness from May 2021 to January 2022. Objective: We model the costs of a wastewater program for pathogens of public health concern within the specific context of US military installations using assumptions based on the results of the USAF and Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense pilot program. The objective was to determine the cost of deploying WWS to all AFBs relative to clinical swab testing surveillance regimes. Methods: A WWS cost projection model was built based on subject matter expert input and actual costs incurred during the WWS pilot program at USAF AFBs. Several SARS-CoV-2 circulation scenarios were considered, and the costs of both WWS and clinical swab testing were projected. Analysis was conducted to determine the break-even point and how a reduction in swab testing could unlock funds to enable WWS to occur in parallel. Results: Our model confirmed that WWS is complementary and highly cost-effective when compared to existing alternative forms of biosurveillance. We found that the cost of WWS was between US $10.5-$18.5 million less expensive annually in direct costs as compared to clinical swab testing surveillance. When the indirect cost of lost work was incorporated, including lost work associated with required clinical swab testing, we estimated that over two-thirds of clinical swab testing could be maintained with no additional costs upon implementation of WWS. Conclusions: Our results support the adoption of WWS across US military installations as part of a more comprehensive and early warning system that will enable adaptive monitoring during disease outbreaks in a more cost-effective manner than swab testing alone.


Subject(s)
COVID-19 , Wastewater , Humans , United States/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Pilot Projects , Military Personnel/statistics & numerical data , Military Facilities , Costs and Cost Analysis , Cost-Benefit Analysis
SELECTION OF CITATIONS
SEARCH DETAIL