Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.193
Filter
1.
Medicina (Kaunas) ; 60(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929608

ABSTRACT

Bacground and Objectives: The objective of this study is to investigate how different therapies modulating insulin resistance, either causally or consequently, affect metabolic parameters in treatment-naïve subjects with T2DM. Subjects and Methods: A total of 212 subjects were assigned to receive either a tight Japanese diet (n = 65), pioglitazone at doses ranging from 15-30 mg/day (n = 70), or canagliflozin at doses ranging from 50-100 mg/day (n = 77) for a duration of three months. Correlations and changes (Δ) in metabolic parameters relative to insulin resistance were investigated. Results: Across these distinct therapeutic interventions, ΔHOMA-R exhibited significant correlations with ΔFBG and ΔHOMA-B, while demonstrating a negative correlation with baseline HOMA-R. However, other parameters such as ΔHbA1c, ΔBMI, ΔTC, ΔTG, Δnon-HDL-C, or ΔUA displayed varying patterns depending on the treatment regimens. Participants were stratified into two groups based on the median value of ΔHOMA-R: the lower half (X) and upper half (Y). Group X consistently demonstrated more pronounced reductions in FBG compared to Group Y across all treatments, while other parameters including HbA1c, HOMA-B, TC, TG, HDL-C, non-HDL-C, TG/HDL-C ratio, or UA exhibited distinct regulatory responses depending on the treatment administered. Conclusions: These findings suggest that (1) regression to the mean is observed in the changes in insulin resistance across these therapies and (2) the modulation of insulin resistance with these therapies, either causally or consequentially, results in differential effects on glycemic parameters, beta-cell function, specific lipids, body weight, or UA.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Insulin Resistance , Pioglitazone , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Insulin Resistance/physiology , Male , Female , Middle Aged , Pioglitazone/therapeutic use , Hypoglycemic Agents/therapeutic use , Canagliflozin/therapeutic use , Blood Glucose/analysis , Aged , Glycated Hemoglobin/analysis , Adult
2.
Clin Exp Nephrol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935212

ABSTRACT

BACKGROUND: Renal ischemia-reperfusion injury (RIRI) is a critical phenomenon that compromises renal function and is the most serious health concern related to acute kidney injury (AKI). Pioglitazone (Pio) is a known agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ). PPAR-γ is a nuclear receptor that regulates genes involved in inflammation, metabolism, and cellular differentiation. Activation of PPAR-γ is associated with antiinflammatory and antioxidant effects, which are relevant to the pathophysiology of RIRI. This study aimed to investigate the protective effects of Pio in RIRI, focusing on oxidative stress and inflammation. METHODS: We conducted a comprehensive literature search using electronic databases, including PubMed, ScienceDirect, Web of Science, Scopus, and Google Scholar. RESULTS: The results of this study demonstrated that Pio has antioxidant, anti-inflammatory, and anti-apoptotic activities that counteract the consequences of RIRI. The study also discussed the underlying mechanisms, including the modulation of various pathways such as TNF-α, NF-κB signaling systems, STAT3 pathway, KIM-1 and NGAL pathways, AMPK phosphorylation, and autophagy flux. Additionally, the study presented a summary of various animal studies that support the potential protective effects of Pio in RIRI. CONCLUSION: Our findings suggest that Pio could protect the kidneys from RIRI by improving antioxidant capacity and decreasing inflammation. Therefore, these findings support the potential of Pio as a therapeutic strategy for preventing RIRI in different clinical conditions.

3.
Cureus ; 16(5): e59850, 2024 May.
Article in English | MEDLINE | ID: mdl-38854289

ABSTRACT

Management of type 2 diabetes mellitus (T2DM) largely relies on medication adherence of individuals with diabetes to achieve optimal glycemic control. The economic burden of diabetes could impede adherence, leading to a reduction in treatment efficacy and increased risk of complications. Furthermore, monotherapy in diabetes is losing traction due to its ineffectiveness in achieving early and sustained optimal glycemic control in a significant proportion of the population. Hence, clinicians prefer combination treatment due to their improved efficacy and safety. Considering these factors, the current review highlights the safety and efficacy of the affordable combination therapies, a dual therapy, glipizide + metformin, and a triple-drug combination of glimepiride + metformin + pioglitazone and its applicability in the management of T2DM among individuals with diabetes in India.

4.
J Diabetes Res ; 2024: 3470654, 2024.
Article in English | MEDLINE | ID: mdl-38846063

ABSTRACT

Aims: We compared the glycaemic and cardiorenal effects of combination therapy involving metformin, pioglitazone, sodium-glucose-linked-cotransporter-2 inhibitor (SGLT2i), and glucagon-like peptide-1 receptor agonist (GLP-1RA) versus a more conventional glucocentric treatment approach combining sulphonylureas (SU) and insulin from the point of type 2 diabetes (T2D) diagnosis. Methods: We performed a retrospective cohort study using the Global Collaborative Network in TriNetX. We included individuals prescribed metformin, pioglitazone, an SGLT2i, and a GLP-1 RA for at least 1-year duration, within 3 years of a T2D diagnosis, and compared with individuals prescribed insulin and a SU within the same temporal pattern. Individuals were followed up for 3 years. Results: We propensity score-matched (PSM) for 26 variables. A total of 1762 individuals were included in the final analysis (n = 881 per cohort). At 3-years, compared to the insulin/SU group, the metformin/pioglitazone/SGLT2i/GLP-1 RA group had a lower risk of heart failure (HR 0.34, 95% CI 0.13-0.87, p = 0.018), acute coronary syndrome (HR 0.29, 95% CI 0.12-0.67, p = 0.002), stroke (HR 0.17, 95% CI 0.06-0.49, p < 0.001), chronic kidney disease (HR 0.50, 95% CI 0.25-0.99, p = 0.042), and hospitalisation (HR 0.59, 95% CI 0.46-0.77, p < 0.001). Conclusions: In this real-world study, early, intensive polytherapy, targeting the distinct pathophysiological defects in T2D, is associated with significantly more favourable cardiorenal outcomes, compared to insulin and SU therapy.


Subject(s)
Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Insulin , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Sulfonylurea Compounds , Humans , Diabetes Mellitus, Type 2/drug therapy , Female , Male , Hypoglycemic Agents/therapeutic use , Retrospective Studies , Middle Aged , Aged , Metformin/therapeutic use , Sulfonylurea Compounds/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Insulin/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Pioglitazone/therapeutic use , Databases, Factual , Blood Glucose/metabolism , Blood Glucose/drug effects , Treatment Outcome
5.
J Control Release ; 372: 531-550, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38851535

ABSTRACT

Recovery and survival following traumatic brain injury (TBI) depends on optimal amelioration of secondary injuries at lesion site. Delivering mitochondria-protecting drugs to neurons may revive damaged neurons at sites secondarily traumatized by TBI. Pioglitazone (PGZ) is a promising candidate for TBI treatment, limited by its low brain accumulation and poor targetability to neurons. Herein, we report a ROS-responsive nanosystem, camouflaged by hybrid membranes of platelets and engineered extracellular vesicles (EVs) (C3-EPm-|TKNPs|), that can be used for targeted delivery of PGZ for TBI therapy. Inspired by intrinsic ability of macrophages for inflammatory chemotaxis, engineered M2-like macrophage-derived EVs were constructed by fusing C3 peptide to EVs membrane integrator protein, Lamp2b, to confer them with ability to target neurons in inflamed lesions. Platelets provided hybridized EPm with capabilities to target hemorrhagic area caused by trauma via surface proteins. Consequently, C3-EPm-|PGZ-TKNPs| were orientedly delivered to neurons located in the traumatized hemisphere after intravenous administration, and triggered the release of PGZ from TKNPs via oxidative stress. The current work demonstrate that C3-EPm-|TKNPs| can effectively deliver PGZ to alleviate mitochondrial damage via mitoNEET for neuroprotection, further reversing behavioral deficits in TBI mice. Our findings provide proof-of-concept evidence of C3-EPm-|TKNPs|-derived nanodrugs as potential clinical approaches against neuroinflammation-related intracranial diseases.

6.
Molecules ; 29(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38731628

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) has proven to be a useful method for analyzing various aspects of material science and biology, like the supramolecular organization of (slightly) fluorescent compounds or the metabolic activity in non-labeled cells; in particular, FLIM phasor analysis (phasor-FLIM) has the potential for an intuitive representation of complex fluorescence decays and therefore of the analyzed properties. Here we present and make available tools to fully exploit this potential, in particular by coding via hue, saturation, and intensity the phasor positions and their weights both in the phasor plot and in the microscope image. We apply these tools to analyze FLIM data acquired via two-photon microscopy to visualize: (i) different phases of the drug pioglitazone (PGZ) in solutions and/or crystals, (ii) the position in the phasor plot of non-labelled poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), and (iii) the effect of PGZ or PGZ-containing NPs on the metabolism of insulinoma (INS-1 E) model cells. PGZ is recognized for its efficacy in addressing insulin resistance and hyperglycemia in type 2 diabetes mellitus, and polymeric nanoparticles offer versatile platforms for drug delivery due to their biocompatibility and controlled release kinetics. This study lays the foundation for a better understanding via phasor-FLIM of the organization and effects of drugs, in particular, PGZ, within NPs, aiming at better control of encapsulation and pharmacokinetics, and potentially at novel anti-diabetics theragnostic nanotools.


Subject(s)
Nanoparticles , Pioglitazone , Pioglitazone/pharmacology , Pioglitazone/chemistry , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Humans , Microscopy, Fluorescence/methods , Rats , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry
7.
Curr Med Chem ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818915

ABSTRACT

BACKGROUND: Beta-1-adrenergic receptor antibodies (ß1-AAbs) function as arrhythmogenic molecules in autoimmune-related atrial fibrillation (AF). This study examined the potential impact of pioglitazone, an agonist for peroxisome proliferator-activated receptor-γ (PPAR-γ), on atrial remodeling induced by ß1-AAbs. METHODS: An in vivo study was performed to confirm the protective effects of pioglitazone on ß1- AAbs-induced atrial remodeling. GW9662, a PPAR-γ antagonist, was employed to identify the potential therapeutic target of pioglitazone. The rats were administered subcutaneous injections of the second extracellular loop peptide for 8 weeks to establish active immunization models. Pioglitazone was then administered orally for 2 weeks. Epicardial electrophysiologic studies, multielectrode array measurements, and echocardiography were conducted to examine atrial remodeling. Glucose metabolism products and key metabolic molecules were measured to evaluate the atrial substrate metabolism. Mitochondrial morphologies and function indices were tested to depict the underlying links between atrial metabolism and mitochondrial homeostasis under the pioglitazone treatment. RESULTS: Pioglitazone significantly reversed ß1-AAbs-induced AF susceptibility, ameliorated atrial structural remodeling, decreased the global insulin resistance reflected in the plasma glucose and insulin levels, and increased the protein expressions of glycolipid uptake and transportation (GLUT1, CD36, and CPT1a). These trends were counterbalanced by the GW9662 intervention. Mechanistically, pioglitazone mitigated the atrial mitochondrial network damage and partly renovated the mitochondrial biogenesis, even the mitochondrial dynamics, which were reversed by inhibiting the PPAR-γ target. CONCLUSION: Pioglitazone effectively reduced the AF vulnerability and recovered the atrial myocardial metabolism and mitochondrial damage. The potential anti-remodeling effect of pioglitazone on the atrium was associated with the moderately increased expression of key membrane proteins related to glucose transporter and fatty acid uptake, which may promote the increased myocardial preference for utilization of FA as the key cardiac oxidative fuel and ameliorate the atrial metabolic inflexibility.

8.
Front Endocrinol (Lausanne) ; 15: 1325230, 2024.
Article in English | MEDLINE | ID: mdl-38818508

ABSTRACT

Introduction: Polycystic ovary syndrome (PCOS) is often associated with metabolic-associated fatty liver disease (MAFLD). MAFLD has been associated with altered hepatic function, systemic dysmetabolism, and abnormal circulating levels of signaling molecules called organokines. Here, we assessed the effects of two randomized treatments on a set of organokines in adolescent girls with PCOS and without obesity, and report the associations with circulating biomarkers of liver damage, which were assessed longitudinally in the aforementioned studies as safety markers. Materials and methods: Liver enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT)] were assessed as safety markers in previous randomized pilot studies comparing the effects of an oral contraceptive (OC) with those of a low-dose combination of spironolactone-pioglitazone-metformin (spiomet) for 1 year. As a post hoc endpoint, the organokines fibroblast growth factor-21 (FGF21), diazepam-binding protein-1 (DBI), and meteorin-like protein (METRNL) were assessed by ELISA after 6 months of OC (N = 26) or spiomet (N = 28). Auxological, endocrine-metabolic, body composition (using DXA), and abdominal fat partitioning (using MRI) were also evaluated. Healthy, age-matched adolescent girls (N = 17) served as controls. Results: Circulating ALT and GGT levels increased during OC treatment and returned to baseline concentrations in the post-treatment phase; in contrast, spiomet treatment elicited no detectable changes in ALT and GGT concentrations. In relation to organokines after 6 months of treatment, (1) FGF21 levels were significantly higher in PCOS adolescents than in control girls; (2) DBI levels were lower in OC-treated girls than in controls and spiomet-treated girls; and (3) no differences were observed in METRNL concentrations between PCOS girls and controls. Serum ALT and GGT levels were directly correlated with circulating METRNL levels only in OC-treated girls (R = 0.449, P = 0.036 and R = 0.552, P = 0.004, respectively). Conclusion: The on-treatment increase in ALT and GGT levels occurring only in OC-treated girls is associated with circulating METRNL levels, suggesting enhanced METRNL synthesis as a reaction to the hepatic changes elicited by OC treatment. Clinical Trial Registration: https://doi.org, identifiers 10.1186/ISRCTN29234515, 10.1186/ISRCTN11062950.


Subject(s)
Alanine Transaminase , Fibroblast Growth Factors , Liver , Metformin , Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/blood , Adolescent , Metformin/therapeutic use , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/metabolism , Liver/drug effects , Liver/metabolism , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Pioglitazone/therapeutic use , Biomarkers/blood , Spironolactone/therapeutic use , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/metabolism , gamma-Glutamyltransferase/blood , gamma-Glutamyltransferase/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Contraceptives, Oral/adverse effects , Contraceptives, Oral/therapeutic use , Contraceptives, Oral/administration & dosage , Hypoglycemic Agents/therapeutic use
9.
Diabetes Obes Metab ; 26(8): 3137-3146, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38699792

ABSTRACT

AIM: To examine the effects of the thiazolidinedione (TZD) pioglitazone on reducing ketone bodies in non-obese patients with T2DM treated with the sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin. METHODS: Crossover trials with two periods, each treatment period lasting 4 weeks, with a 4-week washout period, were conducted. Participants were randomly assigned in a 1:1 ratio to receive pioglitazone combined with canagliflozin (PIOG + CANA group) versus canagliflozin monotherapy (CANA group). The primary outcome was change (Δ) in ß-hydroxybutyric acid (ß-HBA) before and after the CANA or PIOG + CANA treatments. The secondary outcomes were Δchanges in serum acetoacetate and acetone, the rate of conversion into urinary ketones, and Δchanges in factors related to SGLT2 inhibitor-induced ketone body production including non-esterified fatty acids (NEFAs), glucagon, glucagon to insulin ratio, and noradrenaline (NA). Analyses were performed in accordance with the intention-to-treat principle. RESULTS: Twenty-five patients with a mean age of 49 ± 7.97 years and a body mass index of 25.35 ± 2.22 kg/m2 were included. One patient discontinued the study during the washout period. Analyses revealed a significant increase in the levels of serum ketone bodies and an elevation in the rate of conversion into urinary ketones after both interventions. However, differernces in levels of ketone bodies (except for acetoacetate) in the PIOG + CANA group were significantly smaller than in the CANA group (219.84 ± 80.21 µmol/L vs. 317.69 ± 83.07 µmol/L, p < 0.001 in ß-HBA; 8.98 ± 4.17 µmol/L vs. 12.29 ± 5.27 µmol/L, p = 0.018 in acetone). NEFA, glucagon, glucagon to insulin ratio, and NA were also significantly increased after both CANA and PIOG + CANA treatments; while only NEFAs demonstrated a significant difference between the two groups. Correlation analyses revealed a significant association between the difference in Δchanges in serum NEFA levels with the differences in Δchanges in ketones of ß-HBA and acetoacetate. CONCLUSION: Supplementation of pioglitazone could alleviate canagliflozin-induced ketone bodies. This benefit may be closely associated with decreased substrate NEFAs rather than other factors including glucagon, fasting insulin and NA.


Subject(s)
Canagliflozin , Cross-Over Studies , Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Hypoglycemic Agents , Ketone Bodies , Pioglitazone , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Middle Aged , Ketone Bodies/blood , Female , Pioglitazone/therapeutic use , Canagliflozin/therapeutic use , Hypoglycemic Agents/therapeutic use , 3-Hydroxybutyric Acid/blood , Acetoacetates/blood , Insulin/blood , Adult , Glucagon/blood , Thiazolidinediones/therapeutic use , Fatty Acids, Nonesterified/blood , Blood Glucose/drug effects , Blood Glucose/metabolism
10.
Ann Med Surg (Lond) ; 86(5): 2696-2701, 2024 May.
Article in English | MEDLINE | ID: mdl-38694345

ABSTRACT

Background: Polycystic ovarian syndrome (PCOS) is one of the significant causes of infertility. Impaired glucose metabolism and insulin resistance add chiefly to the pathogenesis of PCOS. This study aimed to evaluate the efficacy of metformin and pioglitazone (insulin sensitizers) on the quality of the ovum and pregnancy rate in the IVF cycle. Methods: In this randomized clinical trial study, 172 infertile women with PCO were enrolled and randomly assigned to receive either 15 mg pioglitazone (case group) or 1000 mg metformin (control group) twice a day for 6 weeks before IVF, and the pregnancy rate was compared across the groups. The number of ovum and embryos were also accessed and compared between the two groups. Results: In the study, 172 patients participated. The mean age in the control and case groups was 32.09±3.9 years and 32.12±3.9 years, respectively, with no significant age difference. In both groups, the mean number of IVF eggs retrieved was 11.76±3.7 (control) and 11.86±3.7 (case), and the number of embryos formed was 7.43±2.8 (control) and 7.87±3.5 (case), with no significant disparities (P<0.05). Regarding positive pregnancies, 28 out of 86 (32.6%) occurred in the control group, while 42 out of 86 (48.8%) happened in the case group, demonstrating a significant difference (P=0.03). Conclusions: According to the results obtained in this study, it may be concluded that pioglitazone is superior to metformin in IVF cycles in PCOS-associated infertile women leading to a higher pregnancy rate.

11.
Expert Opin Pharmacother ; 25(7): 867-884, 2024 May.
Article in English | MEDLINE | ID: mdl-38803314

ABSTRACT

INTRODUCTION: The neuroimmune system has emerged as a novel target for the treatment of substance use disorders (SUDs), with immunomodulation producing encouraging therapeutic benefits in both preclinical and clinical settings. AREAS COVERED: In this review, we describe the mechanism of action and immune response to methamphetamine, opioids, cocaine, and alcohol. We then discuss off-label use of immunomodulators as adjunctive therapeutics in the treatment of neuropsychiatric disorders, demonstrating their potential efficacy in affective and behavioral disorders. We then discuss in detail the mechanism of action and recent findings regarding the use of ibudilast, minocycline, probenecid, dexmedetomidine, pioglitazone, and cannabidiol to treat (SUDs). These immunomodulators are currently being investigated in clinical trials described herein, specifically for their potential to decrease substance use, withdrawal severity, central and peripheral inflammation, comorbid neuropsychiatric disorder symptomology, as well as their ability to improve cognitive outcomes. EXPERT OPINION: We argue that although mixed, findings from recent preclinical and clinical studies underscore the potential benefit of immunomodulation in the treatment of the behavioral, cognitive, and inflammatory processes that underlie compulsive substance use.


Subject(s)
Substance-Related Disorders , Humans , Substance-Related Disorders/drug therapy , Substance-Related Disorders/immunology , Animals , Immunologic Factors/therapeutic use , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/pharmacology , Off-Label Use , Alcoholism/drug therapy , Alcoholism/immunology , Immunomodulation
12.
Adv Ther ; 41(6): 2168-2195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38683294

ABSTRACT

INTRODUCTION: Polycystic ovary syndrome (PCOS) is a complex endocrine condition affecting women of reproductive age. It is characterised by insulin resistance and is a risk for type 2 diabetes mellitus (T2DM). The aim of this study was to review the literature on the effect of pioglitazone and rosiglitazone in women with PCOS. METHODS: We searched PubMed, MEDLINE, Scopus, Embase, Cochrane Library and the Web of Science in April 2020 and updated in March 2023. Studies were deemed eligible if they were randomised controlled trials (RCTs) reporting the effect of pioglitazone and rosiglitazone in PCOS. The study follows the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Two reviewers independently extracted data and assessed the risk of bias using the Cochrane risk of bias tool. RESULTS: Out of 814 initially retrieved citations, 24 randomised clinical trials (RCTs) involving 976 participants were deemed eligible. Among women with PCOS, treatment with rosiglitazone compared to metformin resulted in a significant increase in the mean body weight (mean difference (MD) 1.95 kg; 95% CI 0.03-3.87, p = 0.05). Metformin treatment was associated with a reduction in mean body mass index (BMI) compared to pioglitazone (MD 0.85 kg/m2; 95% CI 0.13-1.57, p = 0.02). Both pioglitazone compared to placebo (MD 2.56 kg/m2; 95% CI 1.77-3.34, p < 0.00001) and rosiglitazone compared to metformin (MD 0.74 kg/m2; 95% CI 0.07-1.41, p = 0.03) were associated with a significant increase in BMI. Treatment with pioglitazone compared to placebo showed a significant reduction in triglycerides (MD - 0.20 mmol/L; 95% CI - 0.38 to - 0.03, p = 0.02) and fasting insulin levels (MD - 11.47 mmol/L; 95% CI - 20.20, - 2.27, p = 0.01). Rosiglitazone compared to metformin was marginally significantly associated with a reduction in the luteinising hormone (LH) (MD - 0.62; 95% CI - 1.25-0.00, p = 0.05). CONCLUSION: Both pioglitazone and rosiglitazone were associated with significant increases in body weight and BMI when compared with metformin or placebo. Pioglitazone significantly reduced triglycerides and fasting insulin when compared with placebo while rosiglitazone showed a modest reduction of LH when compared with metformin. PROSPERO REGISTRATION NO: CRD42020178783.


Subject(s)
Hypoglycemic Agents , Pioglitazone , Polycystic Ovary Syndrome , Randomized Controlled Trials as Topic , Rosiglitazone , Polycystic Ovary Syndrome/drug therapy , Humans , Female , Hypoglycemic Agents/therapeutic use , Pioglitazone/therapeutic use , Rosiglitazone/therapeutic use , Rosiglitazone/pharmacology , Thiazolidinediones/therapeutic use , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Body Mass Index
13.
Hum Cell ; 37(4): 959-971, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38607518

ABSTRACT

Acute kidney injury (AKI) induced by renal ischemia/reperfusion injury (IRI) is a severe clinical condition. ROS accumulation, antioxidant pathways deficiency, and inflammation are involved in IRI. Pioglitazone (Pio) exerts anti-inflammatory and antioxidant effects. The aim of this study was to explore the protective effects of pioglitazone against IRI-induced AKI. Pathogen-free Sprague-Dawley (SD) rats were arbitrarily divided into four groups: Sham operation group Control (CON) group, CON + Pio group, I/R + Saline group, and I/R + Pio group. In addition, HK-2 cells were subjected to hypoxia and reoxygenation to develop an H/R model for investigation of the protective mechanism of Pio. Pretreatment with pioglitazone in the model rats reduced urea nitrogen and creatinine levels, histopathological scores, and cytotoxicity after IRI. Pioglitazone treatment significantly attenuated renal cell apoptosis, decreased cytotoxicity, increased Bcl-2 expression, and downregulated Bax expression. Besides, the levels of ROS and inflammatory factors, including NLRP3, ASC, pro-IL-1ß, pro-caspase-1, cleaved-caspase-1, TNF-α, IL-6, and IL-1ß, in I/R rats and H/R cells were normalized by the pioglitazone treatment. Pioglitazone improved IRI-induced AKI by attenuating oxidative stress and NLRP3 inflammasome activation. Therefore, pioglitazone has the potential to serve as a novel agent for renal IRI treatment and prevention.


Subject(s)
Acute Kidney Injury , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Pioglitazone , Rats, Sprague-Dawley , Reperfusion Injury , Pioglitazone/pharmacology , Reperfusion Injury/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Oxidative Stress/drug effects , Inflammasomes/metabolism , Animals , Humans , Male , Disease Models, Animal , Rats , Apoptosis/drug effects , Antioxidants/pharmacology , Cell Line
14.
Nat Prod Res ; : 1-6, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563125

ABSTRACT

Using structural similarity approach we identified dillapiole, a phenylpropanoid, the main component of Piper aduncum L. and Anethum graveolens L. essential oils as potential PPARγ agonist. Molecular docking revealed that dillapiole binds to the active site of PPARγ, similar to pioglitazone binding. In silico ADME studies showed that dillapiole has high water solubility and GI absorption. Dillapiole was also observed to be partial agonist of PPARγ receptors with EC50 of 43.95 µM. In BHK-21 cells cultured under hyperglycaemic conditions, dillapiole administration reduced oxidative stress and prevented decrease in histone H3 acetylation (k9/14) levels. In HFD + STZ induced diabetic mice, dillapiole treatment for 7 days was able to improve renal functions and decrease plasma glucose level to 138.39 ± 12.36 mg/dl along with decreasing total cholesterol (29%), triglycerides (48.8%), LDL (24.7%), and VLDL (65%) levels in serum. These results show that dillapiole is a potential PPARγ-agonist and thus needs to explore further.

15.
Saudi Pharm J ; 32(5): 102059, 2024 May.
Article in English | MEDLINE | ID: mdl-38601974

ABSTRACT

Peroxisome proliferator-activated receptor-gamma (PPARγ) has been recently shown to play a role in many cancers. The breast tissue of triple-negative breast cancer (TNBC) patients were found to have a significantly lower expression of PPARγ than the other subtypes. Furthermore, PPARγ activation was found to exert anti-tumor effects by inhibiting cell proliferation, differentiation, cell growth, cell cycle, and inducing apoptosis. To start with, we performed a bioinformatic analysis of data from OncoDB, which showed a lower expression pattern of PPARγ in different cancer types. In addition, high expression of PPARγ was associated with better breast cancer patient survival. Therefore, we tested the impact of pioglitazone, a PPARγ ligand, on the cytotoxic activity of cisplatin in the TNBC cell line. MDA-MB-231 cells were treated with either cisplatin (40 µM) with or without pioglitazone (30 or 60 µM) for 72 h. The MTT results showed a significant dose-dependent decrease in cell viability as a result of using cisplatin and pioglitazone combination compared with cisplatin alone. In addition, the protein expression of Bcl-2, a known antiapoptotic marker, decreased in the cells treated with cisplatin and pioglitazone combination at doses of 40 and 30 µM, respectively. On the other hand, cleaved- poly-ADP ribose polymerase (PARP) and -caspase-9, which are known as pro-apoptotic markers, were upregulated in the combination group compared with the solo treatments. Taken together, the addition of pioglitazone to cisplatin further reduced the viability of MDA-MB-231 cells and enhanced apoptosis compared with chemotherapy alone.

16.
Diabetes Metab J ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38650099

ABSTRACT

Background: Guidelines for switching to triple combination therapy directly after monotherapy failure are limited. This study investigated the efficacy, long-term sustainability, and safety of either mono or dual add-on therapy using alogliptin and pioglitazone for patients with type 2 diabetes mellitus (T2DM) who did not achieve their target glycemic range with metformin monotherapy. Methods: The Practical Evidence of Antidiabetic Combination Therapy in Korea (PEAK) was a multicenter, placebo-controlled, double-blind, randomized trial. A total of 214 participants were randomized to receive alogliptin+pioglitazone (Alo+Pio group, n=70), alogliptin (Alo group, n=75), or pioglitazone (Pio group, n=69). The primary outcome was the difference in glycosylated hemoglobin (HbA1c) levels between the three groups at baseline to 24 weeks. For durability, the achievement of HbA1c levels <7% and <6.5% was compared in each group. The number of adverse events was investigated for safety. Results: After 24 weeks of treatment, the change of HbA1c in the Alo+Pio, Alo, and Pio groups were -1.38%±0.08%, -1.03%±0.08%, and -0.84%±0.08%, respectively. The Alo+Pio group had significantly lower HbA1c levels than the other groups (P=0.0063, P<0.0001) and had a higher proportion of patients with target HbA1c achievement. In addition, insulin sensitivity and ß-cell function, lipid profiles, and other metabolic indicators were also improved. There were no significant safety issues in patients treated with triple combination therapy. Conclusion: Early combination triple therapy showed better efficacy and durability than the single add-on (dual) therapy. Therefore, combination therapy with metformin, alogliptin, and pioglitazone is a valuable early treatment option for T2DM poorly controlled with metformin monotherapy.

17.
Liver Int ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597373

ABSTRACT

BACKGROUND AND AIMS: Iron overload, oxidative stress and ferroptosis are associated with liver injury in alcohol-associated liver disease (ALD), however, the crosstalk among these regulatory pathways in ALD development is unclear. METHODS: ALD mouse model and general control of amino acid synthesis 5 like 1 (GCN5L1) liver knockout mice were generated to investigate the role of GCN5L1 in ALD development. Proteomic screening tests were performed to identify the key factors mediating GCN5L1 loss-induced ALD. RESULTS: Gene Expression Omnibus data set analysis indicates that GCN5L1 expression is negatively associated with ALD progression. GCN5L1 hepatic knockout mice develop severe liver injury and lipid accumulation when fed an alcohol diet. Screening tests identified that GCN5L1 targeted the mitochondrial iron transporter CISD1 to regulate mitochondrial iron homeostasis in ethanol-induced ferroptosis. GCN5L1-modulated CISD1 acetylation and activity were crucial for iron accumulation and ferroptosis in response to alcohol exposure. CONCLUSION: Pharmaceutical modulation of CISD1 activity is critical for cellular iron homeostasis and ethanol-induced ferroptosis. The GCN5L1/CISD1 axis is crucial for oxidative stress and ethanol-induced ferroptosis in ALD and is a promising avenue for novel therapeutic strategies.

18.
Iran J Basic Med Sci ; 27(5): 640-646, 2024.
Article in English | MEDLINE | ID: mdl-38629099

ABSTRACT

Objectives: The effects of Crocus sativus, safranal, and pioglitazone on aerosolized paraquat (PQ)-induced systemic changes were examined. Materials and Methods: Control (Ctrl) and PQ groups of rats were exposed to saline or PQ (27 and 54 mg/m3, PQ-L and PQ-H) aerosols eight times on alternate days. Nine PQ-H groups were treated with dexamethasone (0.03 mg/kg/day, Dexa), two doses of C. sativus extract (20 and 80 mg/kg/day, CS-L and CS-H), safranal (0.8 and 3.2 mg/kg/day, Saf-L and Saf-H), pioglitazone (5 and 10 mg/kg/day, Pio-L and Pio-H), and the combination of low dose of the pioglitazone and extract or safranal (Pio + CS and Pio + Saf) after the end of PQ exposure. Results: Interferon-gamma (INF-γ), interleukin 10 (IL-10), superoxide dismutase (SOD), catalase (CAT), and thiol serum levels were reduced, but tumor necrosis factor (TNF-α), malondialdehyde (MDA), and total and differential WBC were increased in both PQ groups (P<0.05 to P<0.001). All measured variables were improved in all treated groups (P<0.05 to P<0.001). The effects of high dose of C. sativus and safranal on measured parameters were higher than dexamethasone (P<0.05 to P<0.001). The effects of Pio + CS and Pio + Saf treatment on most variables were significantly higher than three agents alone (P<0.05 to P<0.001). Conclusion: C. sativus and safranal improved inhaled PQ-induced systemic inflammation and oxidative stress similar to those of dexamethasone and showed synergic effects with pioglitazone suggesting the possible PPARγ receptor-mediated effects of the plant and its constituent.

19.
Nano Lett ; 24(15): 4354-4361, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563599

ABSTRACT

The recent focus of cancer therapeutics research revolves around modulating the immunosuppressive tumor microenvironment (TME) to enhance efficacy. The tumor stroma, primarily composed of cancer-associated fibroblasts (CAFs), poses significant obstacles to therapeutic penetration, influencing resistance and tumor progression. Reprogramming CAFs into an inactivated state has emerged as a promising strategy, necessitating innovative approaches. This study pioneers the design of a nanoformulation using pioglitazone, a Food and Drug Administration-approved anti-diabetic drug, to reprogram CAFs in the breast cancer TME. Glutathione (GSH)-responsive dendritic mesoporous organosilica nanoparticles loaded with pioglitazone (DMON-P) are designed for the delivery of cargo to the GSH-rich cytosol of CAFs. DMON-P facilitates pioglitazone-mediated CAF reprogramming, enhancing the penetration of doxorubicin (Dox), a therapeutic drug. Treatment with DMON-P results in the downregulation of CAF biomarkers and inhibits tumor growth through the effective delivery of Dox. This innovative approach holds promise as an alternative strategy for enhancing therapeutic outcomes in CAF-abundant tumors, particularly in breast cancer.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Nanoparticles , Humans , Female , Pioglitazone/pharmacology , Pioglitazone/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Tumor Microenvironment
20.
Adv Lab Med ; 5(1): 85-89, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38634079

ABSTRACT

Objectives: The prevalence of diabetes mellitus type 2 (DMT2) is increasing exponentially worldwide. DMT2 patients have been found to be at a higher risk for bone fractures than the healthy population. Hence, improving our understanding of the impact of antidiabetic drugs on bone metabolism is crucial. Methods: A descriptive, retrospective study involving 106 patients receiving six groups of antidiabetic drugs: insulin; dipeptidylpeptidase four inhibitors (DPP4i); glucagon-like peptide type 1 receptor agonists (GLP1ra); sulfonylureas; sodium-glucose cotransporter two inhibitors (SGLT2i); and pioglitazone, in which osteocalcin (OC), bone alkaline phosphatase (BAP) and C-terminal telopeptide of collagen type 1 or beta-crosslaps (ß-CTx) were determined. Results: ß-CTx concentrations were higher in the patients treated with pioglitazone, as compared to patients treated with DPP4i (p=0.035), SGLT2i (p=0.020) or GLP1ra (p<0.001). The lowest ß-CTx concentrations were observed in the patients treated with GLP1ra. Conclusions: Bone remodeling is influenced by the type of antidiabetic drug administered to DMT2 patients. In our study, the patients who received pioglitazone showed higher ß-CTx concentrations, as compared to patients treated with other types of antidiabetic drugs. This finding highlights the convenience of avoiding these drugs, especially in postmenopausal women with DMT2. GLP1ra drugs were associated with the lowest ß-CTx concentrations, which suggests that these agents could exert beneficial effects on bone metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...