Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.659
Filter
1.
Biosens Bioelectron ; 266: 116736, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39226751

ABSTRACT

In photoelectrochemical (PEC) sensors, traditional detection modes such as "signal-on", "signal-off", and "polarity-switchable" limit target signals to a single polarity range, necessitating novel design strategies to enhance the operational scope. To overcome this limitation, we propose, for the first time, a "polarity-transcendent" design concept that enables a continuous response across the polarity spectrum, significantly broadening the sensor's concentration detection range. This concept is exemplified in our new "background-enhanced signal-off polarity-switchable" (BESOPS) mode, where the model analyte let-7a activates a cascade shearing reaction of a DNAzyme walker in conjunction with CRISPR/Cas12a, quantitatively peeling off Cu2O-H2 strands at the Cu2O/TiO2 electrode interface to expose the TiO2 surface. This exposure generates an anodic photocurrent at the expense of the cathodic photocurrent from Cu2O/TiO2, facilitating a seamless transition of the target signal from cathodic to anodic. Through systematic experiments and comparative analyses, the BESOPS sensor demonstrates highly sensitive and precise quantification of let-7a, with a detection limit of 2.5 aM and a broad operating range of 10 aM to 10 nM. Its performance exceeds most reported sensor platforms, highlighting the significant potential of our polarity-transcendent design in expanding the operational range of PEC sensors. This innovative approach paves the way for developing next-generation PEC sensors with enhanced applicability and heightened sensitivity in various critical fields.

2.
J Mol Model ; 30(10): 329, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256229

ABSTRACT

CONTEXT: Extensive studies using a trial-and-error approach have been conducted on low-rank coal flotation collectors. However, screening efficient collectors remains a considerable challenge due to the lack of suitable screening principles. It has proven that polar compounds such as carboxylic acids and esters are effective collectors for low-rank coal flotation. In this work, the effects of carboxylic acid, alcohol, and methyl ester on the floatability of low-rank coal were compared, the flotation performance of the polar collector was evaluated with theoretical calculations, a suitable evaluation parameter was determined and a screening principle based on this parameter was determined. The results show that the enhancement effects of polar collectors on low-rank coal floatability follow the order of methyl decanoate > methyl laurate > methyl octanoate > sec-octanol > methyl oleate (or methyl oleate > sec-octanol) > n-octanoic acid. Compared with the molecular polarity index, the hydrophobicity indices log P and dipole moment cannot be used to accurately evaluate different types of collectors and the same type of collectors, respectively. At room temperature, liquid polar compounds with molecular polarity indices in the range of 6.0 ~ 8.0 kcal/mol effectively enhance the floatability of low-rank coal. The molecular polarity index of the collector is used for the first time to screen effective collectors of low-rank coal in this work. This parameter is anticipated to be highly important for the development and research of low-rank coal and other mineral collectors. METHODS: To obtain reasonable and accurate molecular structure, geometry optimization and frequency calculations of the studied collectors were conducted via the Gaussian 09 software package based on density functional theory at the B3LYP/6-311 + G (d, p) level. The integral equation formalism for the polarizable continuum model (IEF-PCM) was utilized with water as the solvent (dielectric constant = 78.36, T = 298 K) for all the calculations. Then, the atomic charge distributions (MPA and NPA) and electrostatic potential maps, the dipole moment and molecular polarity index, and the log P and water solubilities of studied collectors were shown or calculated by Gauss View 5.0, Mutiwfn program and website ( https://www.molsoft.com/mprop/mprop.cgi ), respectively.

3.
J Cell Sci ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239869

ABSTRACT

The body plan of the human parasite Toxoplasma gondii has a well-defined polarity. The minus ends of the 22 cortical microtubules are anchored to the apical polar ring, a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end, and is critical for cytokinesis. How this apical-basal polarity is initiated was unknown. Here we examined the development of the apical polar ring and the basal complex using expansion microscopy. We found that substructures in the apical polar ring have different sensitivity to perturbations. In addition, apical-basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the nascent daughter framework grows towards the centrioles, the apical and basal arcs co-develop ahead of the microtubule array. Lastly, two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of individual proteins has modest impact on the lytic cycle. However, the loss of both results in abnormalities in the microtubule array and highly reduced plaquing and invasion efficiency.

4.
Cancer Cytopathol ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258829

ABSTRACT

BACKGROUND: Papillary renal neoplasm with reverse polarity is a recently recognized low-grade neoplasm with a favorable prognosis. To date, its cytologic features have not been well documented. METHODS: Two patients with papillary renal neoplasm with reverse polarity sampled by fine needle aspiration and core needle biopsy are described, one of whom is under active surveillance without clinical progression and the other is alive and well 16 years after partial nephrectomy. RESULTS: The cytologic features included a mix of papillae and dispersed cells with abundant oncocytic cytoplasm and round, bland nuclei apically displaced away from the papillary core. Immunohistochemistry showed positive staining for GATA3 in both cases. Molecular studies on one of the cases showed a KRAS p.G12V mutation. CONCLUSIONS: The cytologic features of this distinctive, indolent neoplasm are important to recognize because patients with papillary renal neoplasm with reverse polarity may be excellent candidates for partial nephrectomy or even active surveillance.

5.
Angew Chem Int Ed Engl ; : e202414938, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39255399

ABSTRACT

Polarity-reversal catalysts (PRCs) for hydrogen-atom transfer reactions have been known in radical chemistry for more than 60 years but are rarely described and utilized in the field of photopolymerization up to now. Herein, we present the use of thiols in a unique dual function as thiol-ene click reagents and as polarity-reversal catalyst (PRC) for the radical-mediated redox rearrangements of benzylidene acetals. During the rearrangement reaction, cyclic benzylidene acetals are transformed into benzoate esters leading to a significant volumetric expansion to reduce thermoset shrinkage. We were able to show that this expansion on a molecular level reduces shrinkage and polymerization stress but does not significantly affect the (thermo-)mechanical properties of the cross-linked networks. One of the key advantages of this process lies in its simplicity. No additives like sensitizers or combinations of different initiators (radical and cationic) are needed. Furthermore, the same light source can be used for both the polymerization reaction and expansion through rearrangement. Additionally, the applied photoinitiator enables spatial and temporal control of the polymerization; thus, the developed system can be an excellent platform for additive manufacturing processes.

6.
Biosens Bioelectron ; 267: 116749, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243445

ABSTRACT

Photocurrent-polarity conversion strategies are typically realized by constructing complex photovoltaic electrodes or changing the relevant conditions, but most involve poor photogenerated carrier transfer efficiency and cumbersome experimental steps. To this end, a photoelectrochemical (PEC) biosensor by utilizing ascorbic acid (AA)-induced photocurrent-polarity-switching was proposed for the detection of carcinoembryonic antigen (CEA). Under light excitation, the electron donor AA was oxidized by the photogenerated holes of photoactive material Co-NC/CdS, resulting in the conversion of cathodic photocurrent to the anodic direction. In the presence of the target CEA, alkaline phosphatase (ALP) was introduced into the microplates by the sandwiched immunoreaction, which then catalyzed the production of AA from ascorbic acid-2-phosphate (AAP). Finally, the catalytic product AA was transferred onto Co-NC/CdS-modified screen-printed carbon electrode, thus activating photocurrent-polarity-switching platform. The anodic photocurrent values gradually increased with increasing CEA concentration in the range of 0.02-80 ng mL-1 and reached a limit of detection (LOD) of 8.47 pg mL-1 (S/N = 3). In addition, the results of actual sample detection prove the reliability of the constructed PEC biosensor. Importantly, this work relies on a mobile smartphone wireless Bluetooth device coupled with the PEC biosensor for immediate detection, providing another idea for detecting CEA in clinical diagnosis.

7.
Evol Dev ; : e12491, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39228078

ABSTRACT

Fossils of the Ediacara Biota preserve the oldest evidence for complex, macroscopic animals. Most are difficult to constrain phylogenetically, however, the presence of rare, derived groups suggests that many more fossils from this period represent extant groups than are currently appreciated. One approach to recognize such early animals is to instead focus on characteristics widespread in animals today, for example multicellularity, motility, and axial polarity. Here, we describe a new taxon, Quaestio simpsonorum gen. et sp. nov. from the Ediacaran of South Australia. Quaestio is reconstructed with a thin external membrane connecting more resilient tissues with anterior-posterior polarity, left-right asymmetry and tentative evidence for dorsoventral differentiation. Associated trace fossils indicate an epibenthic and motile lifestyle. Our results suggest that Quaestio was a motile eumetazoan with a body plan not previously recognized in the Ediacaran, including definitive evidence of chirality. This organization, combined with previous evidence for axial patterning in a variety of other Ediacara taxa, demonstrates that metazoan body plans were well established in the Precambrian.

8.
Ther Adv Chronic Dis ; 15: 20406223241264539, 2024.
Article in English | MEDLINE | ID: mdl-39091507

ABSTRACT

Background: Metabolic associated fatty liver disease (MAFLD) stands as the leading cause of chronic liver disease globally. Notably, individuals with metabolic risk factors, such as diabetes and obesity, exhibit a staggering prevalence of MAFLD, with estimates reaching up to 70%. However, despite its widespread occurrence, there's a noticeable gap in understanding and awareness about MAFLD among these high-risk groups. Objectives: The main objective of this study was to assess the awareness and prevalence of MAFLD among diabetic patients who regularly receive secondary care focusing particularly on how multiethnic backgrounds and associated lifestyle preferences influence these health outcomes. Design: Cross-sectional study. Methods: Patients with type 2 diabetes (T2D) who regularly attend Lambeth Diabetes Intermediate Care Team clinics were invited to undergo MAFLD screening using FibroScan. Those who agreed to participate were provided with structured questionnaires on diet, physical activity, and MAFLD knowledge by a hepatologist. For each participant, anthropometric data, medical history, liver stiffness measurement, and controlled attenuation parameter (CAP) were documented. Steatosis was identified with a CAP value of ⩾275 dB/m, and advanced fibrosis was flagged at values of ⩾8 kPa. Results: The FibroScan data was valid in 96.4% (215), 53.5% (115/215) had steatosis and 26.2% (58/215) had liver fibrosis in this multiethnic high-risk group. Awareness of MAFLD was notably low at 30.9%. Alarmingly, 69% of patients diagnosed with liver fibrosis were unfamiliar with the condition. Additionally, understanding of MAFLD showed variation among different ethnic groups with highest levels were demonstrated in the Caucasian/White population (46%). Majority (96%) of these subjects were receiving specific lifestyle advice from healthcare professionals due to metabolic conditions and comorbidities. However, most patients preferred diets that were rich in carbohydrates (65.8%) and only 43% subjects performed moderate exercise daily highlighting lack of understanding regarding MAFLD and lifestyle management. Conclusion: There's a pressing need for increased awareness of MAFLD, especially in multiethnic high-risk groups. Additionally, the development of cost-effective strategies to stratify risk is essential to address this growing health concern.


Ethnic differences and lack of awareness increase fatty liver disease risk in South London diabetics Metabolic associated fatty liver disease (MAFLD) or more commonly fatty liver disease is the leading cause of chronic liver disease globally, particularly affecting individuals with diabetes and obesity. This study focuses on patients with type 2 diabetes in South London who regularly receive secondary care, examining the awareness and prevalence of MAFLD, especially across different ethnic groups. Participants, all with Type 2 Diabetes, attended clinics run by the Diabetes Intermediate Care Team where they underwent MAFLD screening using Fibroscan. This tool measures liver stiffness (fibrosis) and fat levels. In addition to the scans, participants answered questions about their diet, physical activity, and knowledge of MAFLD. Key findings include a low overall awareness of MAFLD, with only about 30.9% of patients aware of the disease. Among those diagnosed with liver fibrosis, 69% were unfamiliar with the condition, indicating a significant awareness gap. Interestingly, awareness levels varied among ethnic groups, with Caucasian/white patients showing the highest awareness at 46%. Despite receiving lifestyle advice from health professionals, many participants preferred carbohydrate-rich diets and only a minority engaged in daily moderate exercise. This behaviour highlights a general lack of understanding about MAFLD and its management through lifestyle changes. The study concludes that there is a critical need to raise awareness about MAFLD among high-risk, multi-ethnic groups in South London. It also highlights the necessity for developing cost-effective strategies to better identify and manage this growing health concern.

10.
Tissue Barriers ; : 2387408, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087432

ABSTRACT

Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.

11.
BMC Genomics ; 25(1): 788, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148037

ABSTRACT

BACKGROUND: Somatic embryogenesis (SE) exemplifies the unique developmental plasticity of plant cells. The regulatory processes, including epigenetic modifications controlling embryogenic reprogramming of cell transcriptome, have just started to be revealed. RESULTS: To identify the genes of histone acetylation-regulated expression in SE, we analyzed global transcriptomes of Arabidopsis explants undergoing embryogenic induction in response to treatment with histone deacetylase inhibitor, trichostatin A (TSA). The TSA-induced and auxin (2,4-dichlorophenoxyacetic acid; 2,4-D)-induced transcriptomes were compared. RNA-seq results revealed the similarities of the TSA- and auxin-induced transcriptomic responses that involve extensive deregulation, mostly repression, of the majority of genes. Within the differentially expressed genes (DEGs), we identified the master regulators (transcription factors - TFs) of SE, genes involved in biosynthesis, signaling, and polar transport of auxin and NITRILASE-encoding genes of the function in indole-3-acetic acid (IAA) biosynthesis. TSA-upregulated TF genes of essential functions in auxin-induced SE, included LEC1/LEC2, FUS3, AGL15, MYB118, PHB, PHV, PLTs, and WUS/WOXs. The TSA-induced transcriptome revealed also extensive upregulation of stress-related genes, including those related to stress hormone biosynthesis. In line with transcriptomic data, TSA-induced explants accumulated salicylic acid (SA) and abscisic acid (ABA), suggesting the role of histone acetylation (Hac) in regulating stress hormone-related responses during SE induction. Since mostly the adaxial side of cotyledon explant contributes to SE induction, we also identified organ polarity-related genes responding to TSA treatment, including AIL7/PLT7, RGE1, LBD18, 40, HB32, CBF1, and ULT2. Analysis of the relevant mutants supported the role of polarity-related genes in SE induction. CONCLUSION: The study results provide a step forward in deciphering the epigenetic network controlling embryogenic transition in somatic cells of plants.


Subject(s)
Arabidopsis , Gene Expression Profiling , Gene Expression Regulation, Plant , Histones , Indoleacetic Acids , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/drug effects , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Acetylation , Gene Expression Regulation, Plant/drug effects , Histones/metabolism , Plant Somatic Embryogenesis Techniques , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcriptome , Hydroxamic Acids/pharmacology , Transcription Factors/metabolism , Transcription Factors/genetics , Histone Deacetylase Inhibitors/pharmacology
12.
Cell Tissue Res ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152365

ABSTRACT

We have analyzed the organization of the microtubule system in photoreceptor cells and pigment cells within the adult Drosophila compound eye. Immunofluorescence localization of tubulin and of Short stop, a spectraplakin that has been reported to be involved in the anchorage of microtubule minus ends at the membrane, suggests the presence of non-centrosomal microtubule-organizing centers at the distal tip of the visual cells. Ultrastructural analyses confirm that microtubules emanate from membrane-associated plaques at the site of contact with cone cells and that all microtubules are aligned in distal-proximal direction within the photoreceptor cells. Determination of microtubule polarities demonstrated that about 95% of the microtubules in photoreceptor cells are oriented with their plus end in the direction of the synapse. Pigment cells in the eye contain only microtubules aligned in distal-proximal direction, with their plus end pointing towards the retinal floor. There, two populations of microtubules can be distinguished, single microtubules and bundled microtubules, the latter associated with actin filaments. Whereas microtubules in both photoreceptor cells and pigment cells are acetylated and mono/bi-glutamylated on α-tubulin, bundled microtubules in pigment cells are apparently also mono/bi-glutamylated on ß-tubulin, providing the possibility of binding different microtubule-associated proteins.

13.
Cells ; 13(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39120298

ABSTRACT

The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation.


Subject(s)
Axons , Cell Polarity , Wnt-5a Protein , Animals , Wnt-5a Protein/metabolism , Cell Polarity/drug effects , Axons/metabolism , Axons/drug effects , Mice , Wnt Signaling Pathway/drug effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neuronal Outgrowth/drug effects , Neurons/metabolism , Neurons/cytology , Wnt3A Protein/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics
14.
Chemistry ; : e202401763, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105366

ABSTRACT

Lipid droplets (LDs) are subcellular organelles that are dynamic and play a central role in energy homeostasis and lipid metabolism. They also contribute to the transport and maturation of cellular proteins and are closely associated with several diseases. The important role of the cellular microenvironment in maintaining cellular homeostasis. Changes in cell polarity, particularly in organelles, have been found to be strongly linked to inflammation, Alzheimer's disease, cancer, and other illnesses. It is essential to check the polarity of the LDs. A series of arylated naphthalimide derivatives were synthesized using the Suzuki reaction. Modification of synthesized aryl naphthalimides using oligomeric PEG based on intramolecular charge transfer (ICT) mechanism. A series of fluorescent probes were designed to target LDs and detect their polarity. Nap-TPA-PEG3 probe exhibited high sensitivity to polarity. The addition of oligomeric polyethylene glycol (PEG) to the probe not only significantly improved its solubility in water, but also effectively reduced its cytotoxicity. In addition, the probe exhibited excellent aggregation-induced luminescence (AIE) properties and solvent discolouration effects. Nap-TPA-PEG3 probe exhibited high Pearson correlation coefficient (0.957163) in lipid droplet co-localization in cells. Nap-TPA-PEG3 could be used as an effective hand tool to monitor cell polarity.

15.
Sensors (Basel) ; 24(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39123953

ABSTRACT

In complex maritime scenarios where the grayscale polarity of ships is unknown, existing infrared ship detection methods may struggle to accurately detect ships among significant interference. To address this issue, this paper first proposes an infrared image smoothing method composed of Grayscale Morphological Reconstruction (GMR) and a Relative Total Variation (RTV). Additionally, a detection method considering the grayscale uniformity of ships and integrating shape and spatiotemporal features is established for detecting bright and dark ships in complex maritime scenarios. Initially, the input infrared images undergo opening (closing)-based GMR to preserve dark (bright) blobs with the opposite suppressed, followed by smoothing the image with the relative total variation model to reduce clutter and enhance the contrast of the ship. Subsequently, Maximally Stable Extremal Regions (MSER) are extracted from the smoothed image as candidate targets, and the results from the bright and dark channels are merged. Shape features are then utilized to eliminate clutter interference, yielding single-frame detection results. Finally, leveraging the stability of ships and the fluctuation of clutter, true targets are preserved through a multi-frame matching strategy. Experimental results demonstrate that the proposed method outperforms ITDBE, MRMF, and TFMSER in seven image sequences, achieving accurate and effective detection of both bright and dark polarity ship targets.

16.
Talanta ; 280: 126787, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39213887

ABSTRACT

Utilizing non-invasive, real-time dynamic imaging and high-resolution detection tools to track polarity changes in Sjögren's syndrome (SS) contributes to a better understanding of the disease progression. Herein, a ratiometric polarity-sensitive fluorescent probe (DIM) was designed and synthesized, DIM consisted of dicyanoisophorone as the fluorophore and morpholine moiety as lysosome targeting. DIM showed a ratiometric response to polarity and high selectivity (unaffected by viscosity, pH, ROS, RNS, etc.), offering a more accurate analysis of intracellular polarity through a built-in internal reference calibration. The polarity abnormality of submandibular glands in non-obese diabetic (NOD) mice was revealed and verified by in vivo ratiometric fluorescence imaging of DIM, suggesting that fluorescent probe have great potential in the diagnosis of salivary gland abnormalities.

17.
Polymers (Basel) ; 16(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39204577

ABSTRACT

The insulation of high-voltage direct-current (HVDC) cables experiences a short period of voltage polarity reversal when the power flow is adjusted, leading to sever field distortion in this situation. Consequently, improving the insulation performance of the composite insulation structure in these cables has become an urgent challenge. In this paper, SiC-SR (silicone rubber) and TiO2-SR nanocomposites were chosen for fabricating HVDC cable accessories. These nanocomposites were prepared using the solution blending method, and an electro-acoustic pulse (PEA) space charge test platform was established to explore the electron transfer mechanism. The space charge characteristics and field strength distribution of a double-layer dielectric composed of cross-linked polyethylene (XLPE) and nano-composite SR at different concentrations were studied during voltage polarity reversal. Additionally, a self-built breakdown platform for flake samples was established to explore the effect of the nanoparticle doping concentration on the breakdown field strength of double-layer composite media under polarity reversal. Therefore, a correlation was established between the micro electron transfer process and the macro electrical properties of polymers (XLPE/SR). The results show that optimal concentrations of nano-SiC and TiO2 particles introduce deep traps in the SR matrix, significantly inhibiting charge accumulation and electric field distortion at the interface, thereby effectively improving the dielectric strength of the double-layer polymers (XLPE/SR).

18.
Biophys Physicobiol ; 21(2): e210015, 2024.
Article in English | MEDLINE | ID: mdl-39206130

ABSTRACT

Mycoplasma mobile is a parasitic bacterium that forms gliding machinery on the cell pole and glides on a solid surface in the direction of the cell pole. The gliding machinery consists of both internal and surface structures. The internal structure is divided into a bell at the front and chain structure extending from the bell. In this study, the internal structures prepared under several conditions were analyzed using negative-staining electron microscopy and electron tomography. The chains were constructed by linked motors containing two complexes similar to ATP synthase. A cylindrical spacer with a maximum diameter of 6 nm and a height of 13 nm, and anonymous linkers with a diameter of 0.9-8.3 nm and length of 14.7±6.9 nm were found between motors. The bell is bowl-shaped and features a honeycomb surface with a periodicity of 8.4 nm. The chains of the motor are connected to the rim of the bell through a wedge-shaped structure. These structures may play roles in the assembly and cooperation of gliding machinery units.

19.
Proc Natl Acad Sci U S A ; 121(35): e2405217121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172791

ABSTRACT

Intercellular signaling mediated by evolutionarily conserved planar cell polarity (PCP) proteins aligns cell polarity along the tissue plane and drives polarized cell behaviors during tissue morphogenesis. Accumulating evidence indicates that the vertebrate PCP pathway is regulated by noncanonical, ß-catenin-independent Wnt signaling; however, the signaling components and mechanisms are incompletely understood. In the mouse hearing organ, both PCP and noncanonical Wnt (ncWnt) signaling are required in the developing auditory sensory epithelium to control cochlear duct elongation and planar polarity of resident sensory hair cells (HCs), including the shape and orientation of the stereociliary hair bundle essential for sound detection. We have recently discovered a Wnt/G-protein/PI3K pathway that coordinates HC planar polarity and intercellular PCP signaling. Here, we identify Wnt7b as a ncWnt ligand acting in concert with Wnt5a to promote tissue elongation in diverse developmental processes. In the cochlea, Wnt5a and Wnt7b are redundantly required for cochlear duct coiling and elongation, HC planar polarity, and asymmetric localization of core PCP proteins Fzd6 and Dvl2. Mechanistically, Wnt5a/Wnt7b-mediated ncWnt signaling promotes membrane recruitment of Daple, a nonreceptor guanine nucleotide exchange factor for Gαi, and activates PI3K/AKT and ERK signaling, which promote asymmetric Fzd6 localization. Thus, ncWnt and PCP signaling pathways have distinct mutant phenotypes and signaling components, suggesting that they act as separate, parallel pathways with nonoverlapping functions in cochlear morphogenesis. NcWnt signaling drives tissue elongation and reinforces intercellular PCP signaling by regulating the trafficking of PCP-specific Frizzled receptors.


Subject(s)
Cell Polarity , Wnt Proteins , Wnt Signaling Pathway , Wnt-5a Protein , Animals , Cell Polarity/physiology , Wnt Proteins/metabolism , Wnt Proteins/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Mice , Wnt Signaling Pathway/physiology , Cochlea/metabolism , Cochlea/cytology , Cochlea/growth & development , Hair Cells, Auditory/metabolism , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Morphogenesis
20.
Angew Chem Int Ed Engl ; : e202411961, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39193663

ABSTRACT

Bicyclo[1.1.1]pentane (BCP), recognized as a bioisostere for para-disubstituted benzene, has gained widespread interest in drug development due to its ability to enhance the physicochemical properties of pharmaceuticals. In this work, we introduce a photoinduced, halogen bonding-initiated, metal-free strategy for synthesizing various BCP derivatives. This method involves the generation of nucleophilic α-aminoalkyl radicals via halogen-bonding adducts. These undergo selective radical addition to [1.1.1]propellane, yielding electrophilic BCP radicals that subsequently participate in polarity-matched additions, culminating in the difunctionalization of bicyclopentane. The versatility and practicality of this metal-free approach are underscored by its broad substrate scope, which includes late-stage functionalization and a series of valuable transformations, all conducted under mild reaction conditions.

SELECTION OF CITATIONS
SEARCH DETAIL