Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
1.
Mar Pollut Bull ; 205: 116657, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38950514

ABSTRACT

Pakistan, a country with limited water resources and highly vulnerable to the adverse effects of climate change, faces numerous challenges in managing its water supply. In this sense, this study assessed potentially toxic elements (PTEs) in the surface water and sediments of Pakistan's Indus River and its tributaries. Key water quality parameters such as pH, electrical conductivity (EC), and total dissolved solids (TDS) were determined, with respective average values of 7.1, 40 µS/cm, and 208 mg L-1. The concentrations of Cd, Cr, Cu, Ni, and Zn in surface water samples averaged 26 µg L-1, 0.9 µg L-1, 1.4 µg L-1, 22 µg L-1, and 2.1 µg L-1, respectively. The general sediment PTE profile was Ni > Cd > Zn > Cu > Cr. Certain PTE levels exceeded recommended thresholds, indicating the establishment of environmental pollution. Calculated geo-accumulation index values suggested moderate to heavy pollution levels in sediment, with PERI (404) values reinforcing the ecological risk posed by elevated PTE concentrations. Furthermore, significant correlations were observed between specific PTE pairs in both water and sediment samples. This study contributes with novel insights into the distribution and ecological implications of PTE contamination in the Indus River and its tributaries, paving the way for ecological risk management efforts.

2.
Environ Geochem Health ; 46(9): 312, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001963

ABSTRACT

The ground cracks resulting from coal mining activities induce alterations in the physical and chemical characteristics of soil. However, limited knowledge exists regarding the impact of subsidence caused by coal mining on the distribution of potentially toxic elements (PTEs) fractions in farmland soil. In this study, we collected 19 soil profiles at varying depths from the soil surface and at horizontal distances of 0, 1, 2, and 5 m from the vertical crack. Using BCR extraction fractionation, we determined the geochemical fractions and total concentrations of Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) to investigate their ecological risk, spatial fraction distribution, and main influencing factors. Results showed that the E r i values of Cd appearing in 68.7% of the samples were higher than 40 and less than 80, presented a moderate ecological risk. Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) were mainly bound to residual fractions (> 60%) with lower mobility and Cd was dominated by F1 (acid-soluble fractions, 50%) and F2 (reducible fractions, 29%) in surface soil (0-20 cm). The geochemical fractionation revealed that the mobile fractions (F1-acid-soluble and F2-reducible) of PTEs were primarily located near the crack, influenced by available potassium. In contrast, the less mobile fractions (F3-oxidizable and F4-residual) exhibited higher concentrations at distances of 2 and 5 m from the crack, except for arsenic, influenced by the presence of clay particles and available phosphorus.


Subject(s)
Coal Mining , Environmental Monitoring , Metals, Heavy , Soil Pollutants , Soil Pollutants/analysis , Soil Pollutants/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Soil/chemistry , Farms , Risk Assessment
3.
Article in English | MEDLINE | ID: mdl-39012531

ABSTRACT

The patterns of the potentially toxic elements (PTEs: Cr, Fe, Ni, Cu, Zn, As, Mo, Pb, Hg) distribution in soils were studied together with the health risk assessment in the area of ore mineralization, past gold activity, and tailing effects of the Sarala gold-ore group located in the Republic of Khakassia, Russia. High PTE concentrations were found in soils with the presence of potential negative impact on human health based on the following: local background investigation, according to statistics; geochemical, environmental, and human health risk calculations; and comparative analysis using international and local reference, such as continental crust, clarke, and permissible concentrations. Sources of PTE soil enrichment and pollution were statistically identified in ascending order of degree: geogenic (local background) < geogenic-technogenic (sites with geological exploration traces - trenches) < technogenic (waste tailings). The main pollutants are Hg and As which showed moderate to significant ecological risk. Negative impact of Cr on soils was found. The pollution degree and toxicity (moderate to significant) of other PTEs increase in the location of ore mineralization zone with exploration trenches and waste tailings. Arsenic poses a carcinogenic risk to adults and children upon contact with polluted soils and non-carcinogenic effect on children in areas affected by tailings and ore mineralization zone. The non-carcinogenic effect of Fe on children was found in soils of all sites. The results provide useful information regarding the studied PTEs and their impact on the environment and human health. Such information can be helpful for the state-level decision-making process when addressing solutions for contaminated areas.

4.
J Hazard Mater ; 476: 135110, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970976

ABSTRACT

Potentially toxic elements (PTEs) in seawater and sediments may be amplified along the aquatic food chain, posing a health threat to humans. This study comprehensively analyzed the concentrations, distribution, potential sources, and health risk of 7 PTEs in multimedia (seawater, sediment and organism) in typical subtropical bays in southern China. The results indicated that Zn was the most abundant element in seawater, and the average concentration of Cd in sediment was 3.93 times higher than the background value. Except for As, the seasonal differences in surface seawater were not significant. The content of Zn in fishes, crustacea, and shellfish was the highest, while the contents of Hg and Cd were relatively low. Bioaccumulation factor indicated that Zn was a strongly bioaccumulated element in seawater, while Cd was more highly enriched by aquatic organisms in sediment. According to principal component analysis (PCA), and positive matrix factorization (PMF), the main sources of PTEs in Quanzhou Bay were of natural derivation, industrial sewage discharge, and agricultural inputs, each contributing 40.4 %, 24.2 %, and 35.4 %, respectively. This study provides fundamental and significant information for the prevention of PTEs contamination in subtropical bays, the promotion of ecological safety, and the assessment of human health risk from PTEs in seafood.

5.
Environ Geochem Health ; 46(8): 273, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958773

ABSTRACT

To enhance risk assessment for contaminated sites, incorporating bioavailability through bioaccessibility as a corrective factor to total concentration is essential to provide a more realistic estimate of exposure. While the main in vitro tests have been validated for As, Cd, and/or Pb, their potential for assessing the bioaccessibility of additional elements remains underexplored. In this study, the physicochemical parameters, pseudototal Cr and Ni concentrations, soil phase distribution, and oral bioaccessibility of twenty-seven soil samples were analysed using both the ISO 17924 standard and a simplified test based on hydrochloric acid. The results showed wide variability in terms of the concentrations (from 31 to 21,079 mg kg-1 for Cr, and from 26 to 11,663 mg kg-1 for Ni) and generally low bioaccessibility for Cr and Ni, with levels below 20% and 30%, respectively. Bioaccessibility variability was greater for anthropogenic soils, while geogenic enriched soils exhibited low bioaccessibility. The soil parameters had an influence on bioaccessibility, but the effects depended on the soils of interest. Sequential extractions provided the most comprehensive explanation for bioaccessibility. Cr and Ni were mostly associated with the residual fraction, indicating limited bioaccessibility. Ni was distributed in all phases, whereas Cr was absent from the most mobile phase, which may explain the lower bioaccessibility of Cr compared to that of Ni. The study showed promising results for the use of the simplified test to predict Cr and Ni bioaccessibility, and its importance for more accurate human exposure evaluation and effective soil management practices.


Subject(s)
Biological Availability , Chromium , Nickel , Soil Pollutants , Nickel/analysis , Nickel/pharmacokinetics , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Chromium/pharmacokinetics , Chromium/analysis , Humans , Risk Assessment , Environmental Exposure , Environmental Monitoring/methods , Soil/chemistry
6.
Front Pharmacol ; 15: 1398394, 2024.
Article in English | MEDLINE | ID: mdl-39027336

ABSTRACT

Introduction: Early risk assessment studies usually based on total heavy metal (loid) contents, inevitably leading to an overestimation of the health risks. In addition, inputs are represented as single-point estimates in deterministic models, leading to underestimation or overestimation of the health risks. Methods: To overcome these barriers, a novel probabilistic risk assessment strategy based on the combinational use of bioaccessibility and Monte Carlo simulation was developed to assess heavy metal (loid) associated health risks of earthworms in this study. To obtain a realistic and robust probabilistic risk assessment, heavy metal (loid) exposure duration and frequency were determined using our questionnaire data. Results: As a result, the mean gastrointestinal bioaccessibility was in the order: Cd > As > Cu > Hg. The mean hazard index (HI) values for investigated metal (loid)s were 0.65 and 0.59 for male and female, respectively, demonstrating an acceptable health risk in an average community. However, the 90th percentile of HI values was 1.87 and 1.65 for male and female, respectively. And the total non-cancer risks of heavy metal (loid) exposure exceeded the acceptable threshold for 19.9% and 17.8% of male and female, respectively. In addition, the total cancer risk (TCR) value through co-exposure to As and Cd suggested that the carcinogenic risks may be of concern for average exposure population. Sensitivity analyses revealed that the exposure frequency and bioaccessible As concentration were the dominant contributors to the total risk variance, which provided meaningful implications for environmental management. Conclusion: Altogether, the refined strategy based on bioaccessibility and Monte Carlo simulation is the first of its kind, such effort attempts to scientifically guide the rational clinic use of TCM and the improvement of population-health.

7.
Food Chem Toxicol ; 191: 114862, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986833

ABSTRACT

This study investigates concentrations of toxic and potentially toxic elements (PTEs) in organic and conventional wheat flour and grains marketed in Las Vegas. Geographic origins of the samples were evaluated using Linear Discriminant Analysis (LDA). Monte Carlo Simulation technique was also employed to evaluate non-carcinogenic risk in four life stages. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, and Zn were determined using inductively coupled plasma mass spectrometry (ICP-MS) following hot block-assisted digestion. Obtained results showed non-significant differences in contents of toxic and PTEs between conventional and organic wheat grains/flour. Using LDA, metal (loid)s were found to be indicative of geographical origin. The LDA produced a total correct classification rate of 95.8% and 100% for US and West Pacific Region samples, respectively. The results of the present study indicate that the estimated non-carcinogenic risk associated with toxic element intakes across the four life stages were far lower than the threshold value (Target Hazard Quotient (THQ) > 1). However, the probability of exceeding the threshold value for Mn is approximately 32% in children aged between 5 and 8 years. The findings of this study can aid in understanding dietary Mn exposure in children in Las Vegas.

8.
J Hazard Mater ; 476: 135184, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39024766

ABSTRACT

Determining sources and spatial distributions of potentially toxic elements (PTEs) is a crucial issue of soil pollution survey. However, uncertainty estimation for source contributions remains lack, and accurate spatial prediction is still challenging. Robust Bayesian multivariate receptor model (RBMRM) was applied to the soil dataset of Qingzhou City (8 PTEs in 429 samples), to calculate source contributions with uncertainties. Multi-task convolutional neural network (MTCNN) was proposed to predict spatial distributions of soil PTEs. RBMRM afforded three sources, consistent with US-EPA positive matrix factorization. Natural source dominated As, Cr, Cu, and Ni contents (78.5 %∼86.1 %), and contributed 37.1 %, 61.0 %, and 65.9 % of Cd, Pb, and Zn, exhibiting low uncertainties with uncertainty index (UI) < 26.7 %. Industrial, traffic, and agricultural sources had significant influences on Cd, Pb, and Zn (30.2 %∼61.9 %), with UI < 39.3 %. Hg originated dominantly from atmosphere deposition (99.1 %), with relatively high uncertainties (UI=87.7 %). MTCNN acquired satisfactory accuracies, with R2 of 0.357-0.896 and nRMSE of 0.092-0.366. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb, and Zn were influenced by parent materials. Cd, Hg, Pb, and Zn showed significant hotspot in urban area. This work conducted a new approach exploration, and practical implications for soil pollution regulation were proposed.

9.
Sci Total Environ ; : 174760, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025144

ABSTRACT

In recent decades, extensive monitoring programmes have been conducted at the national, international, and project levels with the objective of expanding our understanding of the contamination of surface waters with micropollutants, which are often referred to as hazardous substances (HS). It has been demonstrated that HS enter surface waters via a number of pathways, including groundwater, atmospheric deposition, soil erosion, and urban systems. Given the ever-growing list of substances and the high resource demand associated with laboratory analysis, it is common practice to quantify the listed pathways based on emission factors derived from temporally and spatially constrained monitoring programmes. The derivation calculations are subject to high uncertainties, and substantial knowledge gaps remain regarding the relative importance of the unique pathways, territories, and periods. This publication presents a monitoring method designed to quantify the unique emission pathways of HS in large geographical areas characterized by differences in land use, population, and economic development. The method will be tested for a wide range of HS (ubiquitous organic and inorganic pollutants, pesticides, pharmaceuticals) throughout small sub-catchments located on tributaries. The results of the test application demonstrate a high diversity of both emission loads and instream concentrations throughout different regions for numerous substances. Riverine concentrations are found to be highly dependent on the flow status. Soil concentration levels of polycyclic aromatic hydrocarbons (PAH) and perfluoroalkyl substances (PFAS) are found to be in proportion, whereas that of potentially toxic elements (PTE) in a reverse relationship with economic development. In many instances, concentration levels are also contingent upon land use. The findings of this study reinforce the necessity for the implementation of harmonised and concerted HS monitoring programmes, which should encompass a diverse range of substances, emission sources, pathways and geographical areas. This is essential for the reliable development of emission factors.

11.
Environ Geochem Health ; 46(7): 258, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886307

ABSTRACT

Road deposited sediments (RDS) are important sinks of potentially toxic elements (PTEs), which may have a significant impact on human health. A systematic review of published papers on the PTEs occurrence in RDS was carried out. The main goal was to assess the global RDS contamination by PTEs and human health risks linked with anthropogenic activities. A systematic search was made to collect information about the most cited PTEs in the published literature and perform a statistical analysis. Subsequently, health risks were assessed for 35 different areas worldwide. PTE concentrations showed high variability, and means were multiple times higher than the corresponding consensus-based threshold effect concentrations (5.2-, 10.3-, 5.3-, 3-, 7.3-, and 3.6-fold higher for Zn, Pb, Ni, Cr, Cu, and Cd, respectively). PTEs concentrations were ranked as Zn > Pb > Cu > Mn > Cr > Ni > Cd. Non carcinogenic risks followed the trend Pb > Cu > Zn > Cd. Lead is responsible for the highest significant non carcinogenic risk to human health. Unacceptable exposition to carcinogenic risks is present in most areas. The top carcinogenic risk areas were Singapore > Beijing > Yixing > Shanghai > Zhuzhou for adult male, Dresden > Singapore > Ulsan > Huludao for adult females, and Dresden > Singapore > Ulsan > Huludao for children. Highest chromium and nickel carcinogenic risks occurred in Singapore, Cd in Dresden, and Cu in Huludao. Highest RDS contamination was seen in industrial areas due to pollutants deposition. Highest Zn, Cu, Cd, and Pb concentrations occur in densely urbanized areas due to heavy-duty vehicular exhausts.


Subject(s)
Geologic Sediments , Female , Humans , Male , Environmental Exposure , Environmental Monitoring/methods , Geologic Sediments/chemistry , Metals, Heavy/analysis , Risk Assessment , Spatio-Temporal Analysis
12.
Sci Total Environ ; 942: 173567, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38848918

ABSTRACT

The increasing trend of using agricultural wastes follows the concept of "waste to wealth" and is closely related to the themes of sustainable development goals (SDGs). Carbon-neutral technologies for waste management have not been critically reviewed yet. This paper reviews the technological trend of agricultural waste utilization, including composting, thermal conversion, and anaerobic digestion. Specifically, the effects of exogenous additives on the contents, fractionation, and fate of phosphorus (P) and potentially toxic elements (PTEs) during the composting process have been comprehensively reviewed in this article. The composting process can transform biomass-P and additive-born P into plant available forms. PTEs can be passivated during the composting process. Biochar can accelerate the passivation of PTEs in the composting process through different physiochemical interactions such as surface adsorption, precipitation, and cation exchange reactions. The addition of exogenous calcium, magnesium and phosphate in the compost can reduce the mobility of PTEs such as copper, cadmium, and zinc. Based on critical analysis, this paper recommends an eco-innovative perspective for the improvement and practical application of composting technology for the utilization of agricultural biowastes to meet the circular economy approach and achieve the SDGs.


Subject(s)
Agriculture , Composting , Phosphorus , Phosphorus/analysis , Agriculture/methods , Composting/methods , Waste Management/methods
13.
Environ Sci Pollut Res Int ; 31(28): 41059-41068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842777

ABSTRACT

Lead (Pb) can be deposited in aquatic environments that are especially subject to pollution due to wastewater and sewage disposal. This study aimed to evaluate the tolerance of Echinodorus grandiflorus (Cham. & Schltr.) Micheli to Pb and changes in growth, gas exchange, and leaf anatomy. Experiments were conducted with E. grandiflorus plants exposed to the following Pb concentrations in nutrient solution: [0; 0.75; 1.5; 3.0 and 9.0 µM Pb (NO 3)2] in a greenhouse for 60 days. At the end of the experiment, the lead concentration, growth, leaf gas exchange, and changes in leaf anatomy were evaluated. There was no mortality of E. grandiflorus plants, and they accumulated higher concentrations of Pb proportional to the concentration of the pollutant in the solution. Pb did not cause significant changes in growth, stomatal conductance, transpiration, and Ci/Ca rate but reduced the photosynthesis in E. grandiflorus. The leaf anatomy showed significant changes in the presence of Pb, reducing the epidermis and chlorophyll parenchyma. E. grandiflorus demonstrated tolerance to Pb, surviving and growing under contamination; however, it negatively modified its leaf anatomy and photosynthesis in the presence of the metal.


Subject(s)
Lead , Plant Leaves , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity , Alismataceae/anatomy & histology
14.
Biol Trace Elem Res ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755494

ABSTRACT

Coffee is one of the most widely consumed beverages in the world. However, coffee plants are often exposed to potentially toxic elements (PTEs) pollution. The main aims of current study were to detect the PTEs in instant coffee and health risk assessment of consumers in Bandar Abbas city. To achieve this, 40 samples of instant coffee were randomly collected from various points in the city in 2023 and PTEs concentrations were measured using flame atomic absorption spectrometry (FAAS). The non-carcinogenic and carcinogenic risks were calculated using Monte Carlo simulation (MCS) method. The concentrations of Fe and Cu were higher than other PTEs, equaling 404.41 mg/kg and 0.0046 mg/kg, respectively. The non-carcinogenic risk assessment revealed that THQ (Fe > Pb > As > Cd > Ni > Cu) and TTHQ levels were less than 1 based on the 95% percentile in adults and children, indicating there is no possibility of a non-carcinogenic risk associated with instant coffee. The carcinogenic risk due to inorganic As in instant coffee was acceptable (2.63E-5 and 1.27E-5 based on the 95% percentile for adults and children, respectively), therefore PTEs in instant coffee do not endanger the health of consumers.

15.
Environ Int ; 187: 108708, 2024 May.
Article in English | MEDLINE | ID: mdl-38703447

ABSTRACT

Long-term exposure to urban dust containing potentially toxic elements (PTEs) poses detrimental impacts on human health. However, studies estimating human health risks in urban dusts from a global perspective are scarce. We evaluated data for twelve PTEs in urban dusts across 59 countries from 463 published articles, including their concentrations, input sources, and probabilistic risks to human health. We found that 34.1 and 60.3% of those investigated urban dusts have been heavily contaminated with As and Cd, respectively. The input of PTEs was significantly correlated with economic structure due to emissions of industrial activities and traffic emissions being the major sources. Based on the Monte Carlo simulation, we found that the mean hazard index below the safe threshold (1.0) could still cause non-negligible risks to human health. Arsenic and Cr were the major PTEs threatening human health, and relatively high risk levels were observed in cities in China, Korea, Chile, Malaysia, and Australia. Importantly, our analysis suggested that PTEs threaten the health of approximately 92 million adults and 280 million children worldwide. Overall, our study provides important foundational understanding and guidance for policy decision-making to reduce the potential risks associated with PTE exposure and to promote sustainable development of urban economies.


Subject(s)
Cities , Dust , Environmental Exposure , Dust/analysis , Humans , Risk Assessment , Environmental Exposure/statistics & numerical data , Air Pollutants/analysis , Environmental Monitoring , Arsenic/analysis , China , Hazardous Substances/analysis
16.
Sci Rep ; 14(1): 10918, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740813

ABSTRACT

The contamination and quantification of soil potentially toxic elements (PTEs) contamination sources and the determination of driving factors are the premise of soil contamination control. In our study, 788 soil samples from the National Agricultural Park in Chengdu, Sichuan Province were used to evaluate the contamination degree of soil PTEs by pollution factors and pollution load index. The source identification of soil PTEs was performed using positive matrix decomposition (PMF), edge analysis (UNMIX) and absolute principal component score-multiple line regression (APCS-MLR). The geo-detector method (GDM) was used to analysis drivers of soil PTEs pollution sources to help interpret pollution sources derived from receptor models. Result shows that soil Cu, Pb, Zn, Cr, Ni, Cd, As and Hg average content were 35.2, 32.3, 108.9, 91.9, 37.1, 0.22, 9.76 and 0.15 mg/kg in this study area. Except for As, all are higher than the corresponding soil background values in Sichuan Province. The best performance of APCS-MLR was determined by comparison, and APCS-MLR was considered as the preferred receptor model for soil PTEs source distribution in the study area. ACPS-MLR results showed that 82.70% of Cu, 61.6% of Pb, 75.3% of Zn, 91.9% of Cr and 89.4% of Ni came from traffic-industrial emission sources, 60.9% of Hg came from domestic-transportation emission sources, 57.7% of Cd came from agricultural sources, and 89.5% of As came from natural sources. The GDM results showed that distance from first grade highway, population, land utilization and total potassium (TK) content were the main driving factors affecting these four sources, with q values of 0.064, 0.048, 0.069 and 0.058, respectively. The results can provide reference for reducing PTEs contamination in farmland soil.


Subject(s)
Environmental Monitoring , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil/chemistry , Environmental Monitoring/methods , China , Metals, Heavy/analysis , Principal Component Analysis , Environmental Pollution/analysis
17.
Mar Pollut Bull ; 203: 116425, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705004

ABSTRACT

To investigate the interplay between varying anthropogenic activities and sediment dynamics in an urban river (Turag, Bangladesh), this study involved 37-sediment samples from 11 different sections of the river. Neutron activation analysis and atomic absorption spectrometry were utilized to quantify the concentrations of 14 metal(oid)s (Al, Ti, Co, Fe, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn). This study revealed significant toxic metal trends, with Principal coordinate analysis explaining 62.91 % of the variance from upstream to downstream. The largest RSDs for Zn(287 %), Mn(120 %), and Cd(323 %) implies an irregular regional distribution throughout the river. The UNMIX-model and PMF-model were utilized to identify potential sources of metal(oid)s in sediments. ∼63.65-66.7 % of metal(oid)s in sediments originated from anthropogenic sources, while remaining attributed to natural sources in both models. Strikingly, all measured metal(oid)s' concentrations surpassed the threshold effect level, with Zn and Ni exceeding probable effect levels when compared to SQGs.


Subject(s)
Environmental Monitoring , Geologic Sediments , Rivers , Water Pollutants, Chemical , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Bangladesh , Metals/analysis , Metals, Heavy/analysis
18.
Environ Res ; 255: 119146, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38754615

ABSTRACT

The geological environment determines the initial content of various elements in soil, while the late input of toxic elements produced through weathering and leaching is a persistent threat to food security and human health. In this study, we selected the Lou Shao Basin, a black rock system background, and combined geostatistical analysis and multivariate statistics to quantify the specific contribution of weathering of the black rock system, and to analyze the source traces, spatial distributions, and ecological risks of the soil toxicity of elements. The results show that the soils in the study area are acidic, which is related to the weathering of sulfides in the black rock system. The concentrations of most elements in the soil were determined to exceed the soil background values, and the Cd, Se and N contents, exceeded more than five times, especially Se, Mo nearly as high as 13 times. Strong positive correlation between Se, Cu, V and P, low correlation between N and Se, Cu, V, P, Ni and Cd.72.52%, 43%, 77.79%, 82%, 77%, and 44.1% of Cd, Se, Ni, Cu, B, and Mo came from the black rock system, respectively, which were greatly affected by geogenic weathering; V, Zn, Pb, and As are mainly from biomass burning sources; N and P are mainly from agricultural surface sources. Comparison found that the Cd and Se elements in the rocks in the study area were 16.78 times and 1.36 times higher than the world shale average, respectively, and need to pay attention to the weathering process of the two, and the spatial distribution of the 12 elements in soils showed a striped and centralized block distribution pattern, specifically around the distribution of carbonate and metamorphic rocks and other high-geology blocks. The ecological risk results showed that Cd was the main element causing high ecological risk, followed by Se and N, which were at moderate to high ecological risk levels, and Se and N showed similar ecological risk patterns, which may be related to the fact that selenium can promote the uptake and transformation of nitrogen. The present results add to the endogenous sources of toxic elements, quantify the source contributions of toxic elements in soils with high geologic backgrounds, fill this knowledge gap, and provide new insights for pollution control and ecological protection in areas with high geochemical backgrounds.


Subject(s)
Environmental Monitoring , Soil Pollutants , Risk Assessment , Soil Pollutants/analysis , China , Soil/chemistry , Geology
19.
Environ Geochem Health ; 46(6): 207, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767770

ABSTRACT

This study is on the outskirts of the rapidly growing city of Jaipur, located in the semiarid region of India and gateway to the 'Great Indian Thar' desert, and focused on potentially toxic elements (PTE) pollution in the farmlands around the city. Concentrations of PTE, along with associated soil parameters such as pH, available nitrogen, organic carbon, phosphorus, and potassium, were estimated in agricultural soil samples near an industrial region on the outskirts of the capital city of the largest state of India. The PTE concentrations in the soil were in the following order: Mn > Pb > Ni > Cr > Cu > Cd. Soil pollution indices, such as the geochemical accumulation index (Igeo), contamination factor (CF), and ecological risk index (ERI), indicated that the soil was moderately to highly polluted. The result of BCR extraction techniques showed Cd is found mainly in the exchangeable and residual fractions, Pb, Mn were found in the reducible as well as residual fractions, while other PTE were mostly bound to residual fraction. All other PTEs are primarily found in the residual fraction, tightly linked with the silicate lattice of soil minerals. Multivariate analysis and the Pearson correlation matrix indicate a common source apportionment for Pb and Cd. Cd, and Pb concentrations in agricultural soil indicate ecological harm that warrants immediate attention and policy-level intervention.


Subject(s)
Agriculture , Environmental Monitoring , Metals, Heavy , Soil Pollutants , Soil , India , Soil Pollutants/analysis , Risk Assessment , Environmental Monitoring/methods , Metals, Heavy/analysis , Soil/chemistry , Cities
20.
Sci Total Environ ; 935: 173276, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38796023

ABSTRACT

Identifying the natural background levels (NBLs), threshold values (TVs), sources and health risks of potentially toxic elements in groundwater is crucial for ensuring the water security of residents in highly urbanized areas. In this study, 96 groundwater samples were collected in urban area of Sichuan Basin, SW China. The concentrations of potentially toxic elements (Li, Fe, Cu, Zn, Al, Pb, B, Ba and Ni) were analyzed for investigating the NBLs, TVs, sources and health risks. The potentially toxic elements followed the concentration order of Fe > Ba > B > Al > Zn > Li > Cu > Ni > Pb. The NBLs and TVs indicated the contamination of potentially toxic elements mainly occurred in the northern and central parts of the study area. The Positive Matrix Factorization (PMF) model identified elevated concentrations of Fe, Al, Li, and B were found to determine groundwater quality. The primary sources of Fe, Al, Pb, and Ni were attributed to the dissolution of oxidation products, with Fe additionally affected by anthropogenic reduction environments. Li and B were determined to be originated from the weathering of tourmaline. High levels of Ni and Cu concentrations were derived from electronic waste leakage, while excessive Ba and Zn were linked to factory emissions and tire wear. The reasonable maximum exposure (RME) of hazard index (HI) was higher than safety standard and reveal the potential health risks in the southwestern study area. Sensitivity analysis demonstrated the Li concentrations possessed the highest weight contributing to health risk. This study provides a valuable information for source-specific risk assessments of potentially toxic elements in groundwater associated with urban areas.


Subject(s)
Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/analysis , China , Risk Assessment , Urbanization , Humans , Metals, Heavy/analysis , Cities
SELECTION OF CITATIONS
SEARCH DETAIL