Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 688
Filter
1.
Drug Dev Ind Pharm ; : 1-13, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980706

ABSTRACT

ObjectiveTo develop a Raman spectroscopy-based analytical model for quantification of solid dosage forms of active pharmaceutical ingredient (API) of Atenolol.Significance:For the quantitative analysis of pharmaceutical drugs, Raman Spectroscopy is a reliable and fast detection method. As part of this study, Raman Spectroscopy is explored for the quantitative analysis of different concentrations of Atenolol.MethodsVarious solid-dosage forms of Atenolol were prepared by mixing API with excipients to form different solid-dosage formulations of Atenolol. Multivariate data analysis techniques such as Principal Component Analysis (PCA) and Partial least square regression (PLSR) were used for the qualitative and quantitative analysis, respectively.ResultsAs the concentration of the drug increased in formulation, the peak intensities of the distinctive Raman spectral characteristics associated with the API (Atenolol) gradually increased. Raman spectral data sets were classified using PCA due to their distinctive spectral characteristics. Additionally, a prediction model was built using PLSR analysis to assess the quantitative relationship between various API (Atenolol) concentrations and spectral features. With a goodness of fit value of 0.99, the root mean square errors of calibration (RMSEC) and prediction (RMSEP) were determined to be 1.0036 mg and 2.83 mg, respectively. The API content in the blind/unknown Atenolol formulation was determined as well using the PLSR model.ConclusionBased on these results, Raman spectroscopy may be used to quickly and accurately analyze pharmaceutical samples and for their quantitative determination.

2.
Data Brief ; 55: 110575, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948404

ABSTRACT

The dataset extensively examines the factors considered when choosing sweet potato genotypes, considering various characteristics. Notably, Moz1.15 demonstrated the highest marketable root yield at 46.46 t/ha, H5.ej.10 exhibited the highest beta-carotene level at 48.94 mg/100 g, and Moz1.9 recorded the highest vitamin C content at 23.89 mg/100 g. Moreover, there were significant correlations (ranging from 0.21 to 0.84) among the yield and quality traits studied in sweet potatoes. Principal component analysis (PCA) confirmed the connections among these traits, identifying four distinct clusters of genotypes, each characterized by specific significant combinations of traits. Factor analysis using the multi-trait genotype-ideotype index (MGIDI) highlighted the considerable impact of sweet potato traits across two growing seasons (2020-21 and 2021-22), facilitating the selection of genotypes with potential genetic gains ranging from 1.86 % to 75.4 %. Broad-sense heritability (h2) varied from 64.9 % to 99.8 %. The use of the MGIDI index pinpointed several promising genotypes, with BARI Mistialu-12 and H9.7.12 consistently performing well over both years. These genotypes exhibited both strengths and weaknesses.

3.
Sci Rep ; 14(1): 15132, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956274

ABSTRACT

Exploring the factors influencing Food Security and Nutrition (FSN) and understanding its dynamics is crucial for planning and management. This understanding plays a pivotal role in supporting Africa's food security efforts to achieve various Sustainable Development Goals (SDGs). Utilizing Principal Component Analysis (PCA) on data from the FAO website, spanning from 2000 to 2019, informative components are derived for dynamic spatio-temporal modeling of Africa's FSN Given the dynamic and evolving nature of the factors impacting FSN, despite numerous efforts to understand and mitigate food insecurity, existing models often fail to capture this dynamic nature. This study employs a Bayesian dynamic spatio-temporal approach to explore the interconnected dynamics of food security and its components in Africa. The results reveal a consistent pattern of elevated FSN levels, showcasing notable stability in the initial and middle-to-late stages, followed by a significant acceleration in the late stage of the study period. The Democratic Republic of Congo and Ethiopia exhibited particularly noteworthy high levels of FSN dynamicity. In particular, child care factors and undernourishment factors showed significant dynamicity on FSN. This insight suggests establishing regional task forces or forums for coordinated responses to FSN challenges based on dynamicity patterns to prevent or mitigate the impact of potential food security crises.


Subject(s)
Bayes Theorem , Food Security , Spatio-Temporal Analysis , Humans , Africa , Food Supply , Principal Component Analysis , Nutritional Status
4.
Sensors (Basel) ; 24(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000902

ABSTRACT

The potential for rotor component shedding in rotating machinery poses significant risks, necessitating the development of an early and precise fault diagnosis technique to prevent catastrophic failures and reduce maintenance costs. This study introduces a data-driven approach to detect rotor component shedding at its inception, thereby enhancing operational safety and minimizing downtime. Utilizing frequency analysis, this research identifies harmonic amplitudes within rotor vibration data as key indicators of impending faults. The methodology employs principal component analysis (PCA) to orthogonalize and reduce the dimensionality of vibration data from rotor sensors, followed by k-fold cross-validation to select a subset of significant features, ensuring the detection algorithm's robustness and generalizability. These features are then integrated into a linear discriminant analysis (LDA) model, which serves as the diagnostic engine to predict the probability of rotor component shedding. The efficacy of the approach is demonstrated through its application to 16 industrial compressors and turbines, proving its value in providing timely fault warnings and enhancing operational reliability.

5.
Food Sci Anim Resour ; 44(4): 934-950, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974721

ABSTRACT

This study addresses the prevalent issue of meat species authentication and adulteration through a chemometrics-based approach, crucial for upholding public health and ensuring a fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-phase-microextraction-gas chromatography-mass spectrometry. Adulterated meat samples were effectively identified through principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance in projection scores and a Random Forest test, 11 key compounds, including nonanal, octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with the first two components capturing 80% and 72.1% of total variance, respectively. This technique could be a reliable method for detecting meat adulteration in cooked meat.

6.
J Biophotonics ; : e202400162, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978265

ABSTRACT

The study utilized Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics to investigate protein composition and structural changes in the blood serum of patients with polycythemia vera (PV). Principal component analysis (PCA) revealed distinct biochemical properties, highlighting elevated absorbance of phospholipids, amides, and lipids in PV patients compared to healthy controls. Ratios of amide I/amide II and amide I/amide III indicated alterations in protein structures. Support vector machine analysis and receiver operating characteristic curves identified amide I as a crucial predictor of PV, achieving 100% accuracy, sensitivity, and specificity, while amide III showed a lower predictive value (70%). PCA analysis demonstrated effective differentiation between PV patients and controls, with key wavenumbers including amide II, amide I, and CH lipid vibrations. These findings underscore the potential of FTIR spectroscopy for diagnosing and monitoring PV.

7.
Sci Rep ; 14(1): 14980, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951137

ABSTRACT

Polyethylene glycols (PEGs) are used in industrial, medical, health care, and personal care applications. The cycling and disposal of synthetic polymers like PEGs pose significant environmental concerns. Detecting and monitoring PEGs in the real world calls for immediate attention. This study unveils the efficacy of time-of-flight secondary ion mass spectrometry (ToF-SIMS) as a reliable approach for precise analysis and identification of reference PEGs and PEGs used in cosmetic products. By comparing SIMS spectra, we show remarkable sensitivity in pinpointing distinctive ion peaks inherent to various PEG compounds. Moreover, the employment of principal component analysis effectively discriminates compositions among different samples. Notably, the application of SIMS two-dimensional image analysis visually portrays the spatial distribution of various PEGs as reference materials. The same is observed in authentic cosmetic products. The application of ToF-SIMS underscores its potential in distinguishing PEGs within intricate environmental context. ToF-SIMS provides an effective solution to studying emerging environmental challenges, offering straightforward sample preparation and superior detection of synthetic organics in mass spectral analysis. These features show that SIMS can serve as a promising alternative for evaluation and assessment of PEGs in terms of the source, emission, and transport of anthropogenic organics.


Subject(s)
Cosmetics , Polyethylene Glycols , Spectrometry, Mass, Secondary Ion , Cosmetics/analysis , Cosmetics/chemistry , Spectrometry, Mass, Secondary Ion/methods , Polyethylene Glycols/chemistry , Polyethylene Glycols/analysis , Principal Component Analysis
8.
Scand J Med Sci Sports ; 34(7): e14691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970442

ABSTRACT

Quantifying movement coordination in cross-country (XC) skiing, specifically the technique with its elemental forms, is challenging. Particularly, this applies when trying to establish a bidirectional transfer between scientific theory and practical experts' knowledge as expressed, for example, in ski instruction curricula. The objective of this study was to translate 14 curricula-informed distinct elements of the V2 ski-skating technique (horizontal and vertical posture, lateral tilt, head position, upper body rotation, arm swing, shoulder abduction, elbow flexion, hand and leg distance, plantar flexion, ski set-down, leg push-off, and gliding phase) into plausible, valid and applicable measures to make the technique training process more quantifiable and scientifically grounded. Inertial measurement unit (IMU) data of 10 highly experienced XC skiers who demonstrated the technique elements by two extreme forms each (e.g., anterior versus posterior positioning for the horizontal posture) were recorded. Element-specific principal component analyses (PCAs)-driven by the variance produced by the technique extremes-resulted in movement components that express quantifiable measures of the underlying technique elements. Ten measures were found to be sensitive in distinguishing between the inputted extreme variations using statistical parametric mapping (SPM), whereas for four elements the SPM did not detect differences (lateral tilt, plantar flexion, ski set-down, and leg push-off). Applicability of the established technique measures was determined based on quantifying individual techniques through them. The study introduces a novel approach to quantitatively assess V2 ski-skating technique, which might help to enhance technique feedback and bridge the communication gap that often exists between practitioners and scientists.


Subject(s)
Posture , Principal Component Analysis , Skiing , Skiing/physiology , Humans , Male , Posture/physiology , Biomechanical Phenomena , Adult , Movement/physiology , Female , Young Adult , Arm/physiology , Shoulder/physiology , Rotation
9.
Nutrients ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38892538

ABSTRACT

Diet is one of the most important ways to intervene and promote the health of older adults and reduce all-cause mortality. This study aimed to investigate the association between dietary patterns and all-cause mortality in the Chinese old. This study involved 11,958 subjects aged 65-116 years in the Chinese Longitudinal Healthy Longevity Survey (CLHLS) from 2008 to 2018. Dietary patterns were derived from principal component analysis (PCA) with varimax rotation. Four dietary patterns were derived: the 'milk-egg-sugar pattern', 'carnivorous pattern', 'healthy pattern', and 'northeastern pattern'. Cox proportional hazard models were built for males and females separately to estimate the relationship between different dietary patterns and all-cause mortality. After adjusting for all covariates, the milk-egg-sugar pattern played a reverse role in mortality risk in males and females in different quartiles. In the carnivorous pattern, only males in the fourth quartile were observed to have a significantly reduced mortality risk (HR = 0.84 (95% CI: 0.77-0.93)). Both genders benefited from the healthy pattern, which consistently lowered mortality risk across all quartiles (males: HR = 0.87 (95% CI: 0.84-0.89); females: HR = 0.95 (95% CI: 0.92-0.97)). The northeastern pattern also showed an inverse association with all-cause mortality in males (HR = 0.94 (95% CI: 0.92-0.97)) and females (HR = 0.96 (95% CI: 0.93-0.98)). This study showed the association between dietary patterns and all-cause mortality in the Chinese old, which is significant for further quantitative studies.


Subject(s)
Diet , Longevity , Humans , Male , Female , Aged , Longitudinal Studies , China/epidemiology , Aged, 80 and over , Diet/statistics & numerical data , Mortality , Proportional Hazards Models , Feeding Behavior , Cause of Death , Dietary Patterns , East Asian People
10.
Materials (Basel) ; 17(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930267

ABSTRACT

The literature shows that a circular economy can benefit some sectors such as the construction industry. This sector demands huge amounts of raw materials and produces waste when buildings and structures are demolished. This paper explores the possibility of manufacturing at industrial scale paving blocks using different types of construction and demolition wastes as aggregates, without modifying the commonly used industrial conditions. A total of four different recycled aggregates were used in this research. Both natural and recycled aggregates have been characterized. The dosages were optimized (three different formulations). Prefabricated tests have been carried out on the products manufactured in industrial plants and the evolution of mechanical properties over time has been analysed. The results obtained were analysed statistically by applying the principal component analysis (PCA) method. To ensure the security of the elements manufactured, the ionic leaching of the materials used as recycled aggregate and of the elements produced has been tested. The main implications of this research on the construction industry show that the majority of recycled aggregates used could replace 25% of the natural aggregate in manufactured precast concrete, that the properties of the aggregates should be taken into account in the different standards and that all paving blocks manufactured in this study can be considered environmentally safe (no risk of leaching) according to the Netherland Soil Quality Decree. Therefore, it is evident that it is possible to manufacture on an industrial scale paving blocks with mixed recycled aggregates, concrete and ceramic in nature, both with the fine and coarse fractions that meet the requirements of its reference standard UNE-EN 1338 and the Netherland Soil Quality Decree that evaluates environmental risks due to leaching.

11.
Mar Environ Res ; 199: 106581, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38878345

ABSTRACT

Anadara granosa or blood cockles have been reported to be a candidate for biomonitoring agents due to their sedimentary nature and their nutrient uptake mechanisms. Yet, this bivalve is still regarded as a delicacy in Asian cuisine. Malaysia is the largest exporter of this sea product that contaminated cockles may also be experienced by the importing countries. However, the bioaccumulation of microplastics in A. granosa cultivated in Malaysia has not been extensively studied. It is crucial to comprehend the risk posed to humans by consuming A. granosa in their diet. Therefore, the purpose of this research is to investigate the levels of microplastic accumulation in A. granosa from major exporters in Peninsular Malaysia, to evaluate the associated risk of microplastics on the species, and to estimate daily human consumption of microplastics through the consumption of A. granosa. The abundance of microplastics was quantified through the use of a stereo microscope, and the polymer type was determined using FTIR and micro-FTIR. Findings from this investigation revealed that all samples of A. granosa were contaminated with microplastics, with the highest levels of accumulation found in bivalves collected from the west coast (0.26 ± 0.15 particles/g) of Peninsular Malaysia. Fragment and fiber microplastics, measuring between 0.05 and 0.1 mm in size, were found to be the most prevalent in A. granosa, with blue being the dominant identified colour and rayon being the most common polymer type. Microplastic risk assessment due to the presence of polyacrylate, polycarbonate (PC), and polymethyl methacrylate (PMMA) resulted in a high risk of contamination for A. granosa. It was further determined that the current estimated dietary intake (EDI) suggests that consumers of A. granosa uptake approximately 21.8-93.5 particles/person/year of microplastics. This study highlights that A. granosa accumulates microplastics, which could potentially result in bioaccumulation and biomagnification in humans through consumption.

12.
BMC Complement Med Ther ; 24(1): 220, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849805

ABSTRACT

BACKGROUND: The chemical composition and biological activities of Eucalyptus essential oils (EOs) have been documented in numerous studies against multiple infectious diseases. The antibacterial activity of individual Eucalyptus EOs against strains that cause ear infections was investigated in our previous study. The study's antibacterial activity was promising, which prompted us to explore this activity further with EO blends. METHODS: We tested 15 combinations (9 binary combinations and 6 combinations of binary combinations) of Eucalyptus EOs extracted by hydrodistillation from eight Tunisian Eucalyptus species dried leaves against six bacterial strains responsible for ear infections: three bacterial isolates (Haemophilus influenzae, Haemophilus parainfluenzae, and Klebsiella pneumoniae) and three reference bacteria strains (Pseudomonas aeruginosa, ATTC 9027; Staphylococcus aureus, ATCC 6538; and Escherichia coli, ATCC 8739). The EOs were analyzed using GC/FID and GC/MS. The major compounds, as well as all values obtained from the bacterial growth inhibition assay, were utilized for statistical analysis. RESULTS: The antibacterial activity of the EO blends exhibited significant variation within Eucalyptus species, bacterial strains, and the applied methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA), based on the diameters of the inhibition zone, facilitated the identification of two major groups and ten subgroups based on the level of antibacterial activity. The highest antibacterial activity was observed for the mixture of EOs extracted from E. panctata, E. accedens, and E. cladoclayx (paac) as well as E. panctata, E. wandoo, E. accedens, and E. cladoclayx (pwac) using the disc diffusion method. Additionally, significant activity was noted with EOs extracted from E. panctata, E. wandoo (pw) and E. panctata, E. accedens (pa) using the broth microdilution method. CONCLUSION: Our findings suggest that certain EO combinations (paac, pwac, pw, and pa) could be considered as potential alternative treatment for ear infections due to their demonstrated highly promising antibacterial activities.


Subject(s)
Anti-Bacterial Agents , Eucalyptus , Microbial Sensitivity Tests , Oils, Volatile , Eucalyptus/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Bacterial Infections/drug therapy , Bacteria/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry
13.
Front Psychiatry ; 15: 1381133, 2024.
Article in English | MEDLINE | ID: mdl-38855646

ABSTRACT

Objectives: The aim of the current study was 3-fold: 1) to examine the factorial structure of the Comprehensive Assessment of At-Risk Mental States (CAARMS) in help-seeking individuals undergoing an assessment on suspicion of psychosis risk; 2) to investigate the association of CAARMS factors with functioning; 3) and to test the association of any derived factors with the longitudinal outcome of transition to psychosis. Methods: The study included 101 patients. First, a principal component analysis (PCA) was conducted using the Varimax rotation method. A minimum initial eigenvalues of greater than or equal to 1.0, analysis of Scree plots, percentage of variance explained by each component, reliability (Cronbach's alpha) of factors above 0.7 and Parallel Analysis were the criteria used to determine the appropriate number of factors Second, Spearman correlations were run to analyze the relationship between CAARMS factors and sociodemographic and functional variables (i.e. age, schooling, Social and Occupational Functioning Assessment Scale-SOFAS- and Health of the Nation Outcome Scales-HoNOS- scores). Third, we performed a Logistic regression analysis to evaluate the association between baseline CAARMS factors and the risk of transition to psychosis at the 6-month follow-up. Results: A total of 101 consecutive patiens were recruited. We found that: 1) a 6 factor model solution as the most appropriate, jointly accounting for 65% of the variance; 2) factors 1 ("negative-interpersonal"), 2 ("cognitive-disorganization"), 3 ("positive"), and 4 ("motor-physical changes") were negatively correlated with SOFAS total score; factors 1, 2, and 3 showed positive correlations with HoNOS total score; factors 2 and 3 present similar patterns of correlations, factor 3 manifesting the strongest association with HoNOS symptoms, HONOS and SOFAS total score. Both factors 5 and 6 show significant associations with HoNOS behavioral impairment; 3) after 6 months 28 participants (30.1%) converted to psychosis. Factors 2 and 3 were positively associated with the risk of transition to psychosis; whereas, the factor 5 ("affective factor") was negatively associated with the outcome variable. Conclusions: It is thus crucial to recognize the type and severity of psychopathology in help-seeking individuals in order to intensive clinical monitoring of subclinical psychopathology risk profiles, and design specific care pathways.

14.
J Neural Eng ; 21(4)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38914073

ABSTRACT

Objective.Can we classify movement execution and inhibition from hippocampal oscillations during arm-reaching tasks? Traditionally associated with memory encoding, spatial navigation, and motor sequence consolidation, the hippocampus has come under scrutiny for its potential role in movement processing. Stereotactic electroencephalography (SEEG) has provided a unique opportunity to study the neurophysiology of the human hippocampus during motor tasks. In this study, we assess the accuracy of discriminant functions, in combination with principal component analysis (PCA), in classifying between 'Go' and 'No-go' trials in a Go/No-go arm-reaching task.Approach.Our approach centers on capturing the modulation of beta-band (13-30 Hz) power from multiple SEEG contacts in the hippocampus and minimizing the dimensional complexity of channels and frequency bins. This study utilizes SEEG data from the human hippocampus of 10 participants diagnosed with epilepsy. Spectral power was computed during a 'center-out' Go/No-go arm-reaching task, where participants reached or withheld their hand based on a colored cue. PCA was used to reduce data dimension and isolate the highest-variance components within the beta band. The Silhouette score was employed to measure the quality of clustering between 'Go' and 'No-go' trials. The accuracy of five different discriminant functions was evaluated using cross-validation.Main results.The Diagonal-Quadratic model performed best of the 5 classification models, exhibiting the lowest error rate in all participants (median: 9.91%, average: 14.67%). PCA showed that the first two principal components collectively accounted for 54.83% of the total variance explained on average across all participants, ranging from 36.92% to 81.25% among participants.Significance.This study shows that PCA paired with a Diagonal-Quadratic model can be an effective method for classifying between Go/No-go trials from beta-band power in the hippocampus during arm-reaching responses. This emphasizes the significance of hippocampal beta-power modulation in motor control, unveiling its potential implications for brain-computer interface applications.


Subject(s)
Arm , Beta Rhythm , Hippocampus , Humans , Hippocampus/physiology , Female , Beta Rhythm/physiology , Male , Adult , Arm/physiology , Psychomotor Performance/physiology , Movement/physiology , Electroencephalography/methods , Electroencephalography/classification , Principal Component Analysis , Young Adult , Reproducibility of Results , Middle Aged
15.
Food Chem X ; 22: 101475, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38827020

ABSTRACT

In this study, the volatile components in 40 samples of Tartary buckwheat and common buckwheat from 6 major producing areas in China were analyzed. A total of 77 volatile substances were identified, among which aldehydes and hydrocarbons were the main volatile components. Odor activity value analysis revealed 26 aromatic compounds, with aldehydes making a significant contribution to the aroma of buckwheat. Seven key compounds that could be used to distinguish Tartary buckwheat from common buckwheat were identified. The orthogonal partial least squares-discriminant analysis was effectively used to classify Tartary buckwheat and common buckwheat from different producing areas. This study provides valuable information for evaluating buckwheat quality, breeding high-quality varieties, and enhancing rational resource development.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124702, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38917751

ABSTRACT

Sleep is a basic, physiological requirement for living things to survive and is a process that covers one third of our lives. Melatonin is a hormone that plays an important role in the regulation of sleep. Sleep deprivation affect brain structures and functions. Sleep deprivation causes a decrease in brain activity, with particularly negative effects on the hippocampus and prefrontal cortex. Despite the essential role of protein and lipids vibrations, polysaccharides, fatty acid side chains functional groups, and ratios between amides in brain structures and functions, the brain chemical profile exposed to gentle handling sleep deprivation model versus Melatonin exposure remains unexplored. Therefore, the present study, aims to investigate a molecular profile of these regions using FTIR spectroscopy measurement's analysis based on lipidomic approach with chemometrics and multivariate analysis to evaluate changes in lipid composition in the hippocampus, prefrontal regions of the brain. In this study, C57BL/6J mice were randomly assigned to either the control or sleep deprivation group, resulting in four experimental groups: Control (C) (n = 6), Control + Melatonin (C + M) (n = 6), Sleep Deprivation (S) (n = 6), and Sleep Deprivation + Melatonin (S + M) (n = 6). Interventions were administered each morning via intraperitoneal injections of melatonin (10 mg/kg) or vehicle solution (%1 ethanol + saline), while the S and S + M groups underwent 6 h of daily sleep deprivation from using the Gentle Handling method. All mice were individually housed in cages with ad libitum access to food and water within a 12-hour light-dark cycle. Results presented that the brain regions affected by insomnia. The structure of phospholipids, changed. Yet, not only changes in lipids but also in amides were noticed in hippocampus and prefrontal cortex tissues. Additionally, FTIR results showed that melatonin affected the lipids as well as the amides fraction in cortex and hippocampus collected from both control and sleep deprivation groups.

17.
BMC Bioinformatics ; 25(1): 173, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693489

ABSTRACT

Principal component analysis (PCA) is an important and widely used unsupervised learning method that determines population structure based on genetic variation. Genome sequencing of thousands of individuals usually generate tens of millions of SNPs, making it challenging for PCA analysis and interpretation. Here we present VCF2PCACluster, a simple, fast and memory-efficient tool for Kinship estimation, PCA and clustering analysis, and visualization based on VCF formatted SNPs. We implemented five Kinship estimation methods and three clustering methods for its users to choose from. Moreover, unlike other PCA tools, VCF2PCACluster possesses a clustering function based on PCA result, which enabling users to automatically and clearly know about population structure. We demonstrated the same accuracy but a higher performance of this tool in performing PCA analysis on tens of millions of SNPs compared to another popular PLINK2 software, especially in peak memory usage that is independent of the number of SNPs in VCF2PCACluster.


Subject(s)
Polymorphism, Single Nucleotide , Principal Component Analysis , Software , Cluster Analysis , Humans
18.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731461

ABSTRACT

This present study aims to characterize the essential oil compositions of the aerial parts of M. spicata L. and endemic M. longifolia ssp. cyprica (Heinr. Braun) Harley by using GC-FID and GC/MS analyses simultaneously. In addition, it aims to perform multivariate statistical analysis by comparing with the existing literature, emphasizing the literature published within the last two decades, conducted on both species growing within the Mediterranean Basin. The major essential oil components of M. spicata were determined as carvone (67.8%) and limonene (10.6%), while the major compounds of M. longifolia ssp. cyprica essential oil were pulegone (64.8%) and 1,8-cineole (10.0%). As a result of statistical analysis, three clades were determined for M. spicata: a carvone-rich chemotype, a carvone/trans-carveol chemotype, and a pulegone/menthone chemotype, with the present study result belonging to the carvone-rich chemotype. Carvone was a primary determinant of chemotype, along with menthone, pulegone, and trans-carveol. In M. longifolia, the primary determinants of chemotype were identified as pulegone and menthone, with three chemotype clades being pulegone-rich, combined menthone/pulegone, and combined menthone/pulegone with caryophyllene enrichment. The primary determinants of chemotype were menthone, pulegone, and caryophyllene. The present study result belongs to pulegone-rich chemotype.


Subject(s)
Gas Chromatography-Mass Spectrometry , Mentha spicata , Mentha , Oils, Volatile , Oils, Volatile/chemistry , Mentha/chemistry , Mentha spicata/chemistry , Multivariate Analysis , Mediterranean Region , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/analysis , Monoterpenes/chemistry , Monoterpenes/analysis , Limonene/chemistry , Terpenes/chemistry , Terpenes/analysis , Menthol
19.
Med Biol Eng Comput ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735986

ABSTRACT

Alzheimer's disease (AD) is often mixed with cerebrovascular disease (AD-CVD). Heterogeneity of dementia etiology and the overlapping of neuropathological features of AD and AD-CVD make feature identification of the two challenging. Separation of AD from AD-CVD is important as the optimized treatment for each group may differ. Recent studies using vestibular responses recorded from electrovestibulography (EVestG™) have offered promising results for separating these two pathologies. An EVestG measurement records responses to several different physical stimuli (called tilts). In previous research, the number of EVestG features from different tilts was selected based on physiological intuition to classify AD from AD-CVD. As the number of potential characteristic features from all tilts can be very large, in this study, we used an algorithm based on principal component analysis (PCA) to rank the most effective vestibular stimuli for differentiating AD from AD-CVD. Analyses were performed on the EVestG signals of 28 individuals with AD and 24 with AD-CVD. The results of this study showed that tilts simulating the otolithic organs (utricle and saccule) generated the most characteristic features for separating AD from AD-CVD.

20.
J Xenobiot ; 14(2): 634-650, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38804290

ABSTRACT

Soil pollution caused by heavy metal(oid)s has generated great concern worldwide due to their toxicity, persistence, and bio-accumulation properties. To assess the baseline data, the heavy metal(oid)s, including manganese (Mn), iron (Fe), Cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), lead (Pb), mercury (Hg), chromium (Cr), and cadmium (Cd), were evaluated in surface soil samples collected from the farmlands of Grand Forks County, North Dakota. Samples were digested via acid mixture and analyzed via inductively coupled plasma mass spectrometry (ICP MS) analysis to assess the levels, ecological risks, and possible sources. The heavy metal(oid) median levels exhibited the following decreasing trend: Fe > Mn > Zn > Ni > Cr > Cu > Pb > Co > As > Cd > Hg. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggested the main lithogenic source for the studied metal(oid)s. Metal(oid) levels in the current investigation, except Mn, are lower than most of the guideline values set by international agencies. The contamination factor (Cf), geo accumulation index (Igeo) and enrichment factor (EF) showed considerable contamination, moderate contamination, and significant enrichment, respectively, for As and Cd on median value basis. Ecological risk factor (Er) results exhibited low ecological risk for all studied metal(oid)s except Cd, which showed considerable ecological risk. The potential ecological risk index (PERI) levels indicated low ecological risk to considerable risk. Overall, the results indicate the accumulation of As and Cd in the study area. The high nutrients of the soils potentially affect their accumulation in crops and impact on consumers' health. This drives the impetus for continued environmental monitoring programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...