Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.982
Filter
1.
Article in English | MEDLINE | ID: mdl-39092459

ABSTRACT

A Pt skin effect, i.e., an enrichment of Pt within the first 1-2 nm from the surface, is observed in as-prepared electrodeposited Ni-rich Ni-Pt thin films. This effect, revealed by Rutherford backscattering (RBS), is present for both dense thin films and mesoporous thin films synthesized by micelle-assisted electrodeposition from a chloride-based electrolyte. Due to the Pt skin effect, the Ni-rich thin films show excellent stability at the hydrogen evolution reaction (HER) in acidic media, during which a gradient in the Pt/Ni ratio is established along the thickness of the thin films, while the activity at the HER remains unaffected by this structural change. Further characterization by elastic recoil detection with He ions analysis shows that hydrogen profiles are similar to those of Pt: a surface hydrogen peak coincides with the Pt skin, and a gradient in hydrogen concentration is established during HER in acidic media, together with a considerable uptake in hydrogen. A comparative study shows that in alkaline media, hydrogen evolution has little to no effect on the structural properties of the thin films, even for much longer times of exposure. The mesoporous thin films, in addition to their higher efficiency at HER compared to dense thin films, also show lower internal stress, as determined by Rietveld refinement of grazing incidence X-ray diffraction patterns. The latter also reveal a fully single-phase and nanocrystalline structure for all thin films with varying Ni contents.

2.
Front Immunol ; 15: 1392259, 2024.
Article in English | MEDLINE | ID: mdl-39086491

ABSTRACT

The treatment of wound inflammation is intricately linked to the concentration of reactive oxygen species (ROS) in the wound microenvironment. Among these ROS, H2O2 serves as a critical signaling molecule and second messenger, necessitating the urgent need for its rapid real-time quantitative detection, as well as effective clearance, in the pursuit of effective wound inflammation treatment. Here, we exploited a sophisticated 3D Cu2- x Se/GO nanostructure-based nanonzymatic H2O2 electrochemical sensor, which is further decorated with evenly distributed Pt nanoparticles (Pt NPs) through electrodeposition. The obtained Cu2- x Se/GO@Pt/SPCE sensing electrode possesses a remarkable increase in specific surface derived from the three-dimensional surface constructed by GO nanosheets. Moreover, the localized surface plasma effect of the Cu2- x Se nanospheres enhances the separation of photogenerated electron-hole pairs between the interface of the Cu2- x Se NPs and the Pt NPs. This innovation enables near-infrared light-enhanced catalysis, significantly reducing the detection limit of the Cu2- x Se/GO@Pt/SPCE sensing electrode for H2O2 (from 1.45 µM to 0.53µM) under NIR light. Furthermore, this biosensor electrode enables in-situ real-time monitoring of H2O2 released by cells. The NIR-enhanced Cu2- x Se/GO@Pt/SPCE sensing electrode provide a simple-yet-effective method to achieve a detection of ROS (H2O2、-OH) with high sensitivity and efficiency. This innovation promises to revolutionize the field of wound inflammation treatment by providing clinicians with a powerful tool for accurate and rapid assessment of ROS levels, ultimately leading to improved patient outcomes.


Subject(s)
Copper , Hydrogen Peroxide , Inflammation , Metal Nanoparticles , Platinum , Hydrogen Peroxide/metabolism , Platinum/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Inflammation/metabolism , Animals , Mice , Nanostructures/chemistry , Biosensing Techniques/methods , Selenium/chemistry , Humans , Infrared Rays , Reactive Oxygen Species/metabolism , RAW 264.7 Cells
3.
ACS Appl Mater Interfaces ; 16(29): 37555-37568, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39007297

ABSTRACT

The chemokine (C-X-C) motif ligand 9 (CXCL9) is one of the lymphocyte-traffic-involved chemokines. Despite the immunotherapeutic potential of CXCL9 for recruiting effector T cells (cluster of differentiation 4+ (CD4+) and CD8+ T cells) and natural killer cells (NK cells) around the tumors, practical applications of CXCL9 have been limited because of its immune toxicity and lack of stability in vivo. To overcome these limitations, we designed and synthesized Pt-Te nanorods (PtTeNRs), which exhibited excellent photothermal conversion efficiency with stable CXCL9 payload characteristics under the physiological conditions of in vivo environments. We developed a CXCL9-based immunotherapy strategy by utilizing the unique physicochemical properties of developed PtTeNRs. The investigation revealed that the PtTeNR-loaded CXCL9 was effectively accumulated in the tumor, subsequently released in a sustained manner, and successfully recruited effector T cells for immunotherapy of the designated tumor tissue. In addition, a synergistic effect was observed between the photothermal (PT) therapy and antiprogrammed cell death protein 1 (aPD-1) antibody. In this study, we demonstrated that PtTeNR-based CXCL9, PT, and aPD-1 antibody trimodal therapy delivers an outstanding tumor suppression effect in all stages of cancer, including phases 1-4 and tumor recurrence.


Subject(s)
Adaptive Immunity , Immunity, Innate , Immunotherapy , Nanotubes , Animals , Mice , Immunity, Innate/drug effects , Nanotubes/chemistry , Adaptive Immunity/drug effects , Humans , Photothermal Therapy , Chemokine CXCL9/chemistry , Platinum/chemistry , Platinum/pharmacology , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/immunology , Mice, Inbred BALB C , Female
4.
ACS Appl Mater Interfaces ; 16(29): 37829-37839, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39011930

ABSTRACT

Platinum (Pt) has been widely used as cathodic electrocatalysts for the hydrogen evolution reaction (HER) but unfortunately neglected as an anodic electrocatalyst for the oxygen evolution reaction (OER) due to excessively strong bonding with oxygen species in water splitting electrolyzers. Herein we report that fine control over the electronic-structure and local-coordination environment of Pt-rich PtPbCu nanowires (NWs) by doping of iridium (Ir) lowers the overpotential of the OER and simultaneously suppresses the overoxidation of Pt in IrPtPbCu NWs during water electrolysis. In light of the one-dimensional morphology featured with atomically dispersed IrOx species and electronically modulated Pt-sites, the IrPtPbCu NWs exhibit an enhanced OER (175 mV at 10 mA cm-2) and HER (25 mV at 10 mA cm-2) electrocatalytic performance in acidic media and yield a high turnover frequency. For OER at the overpotential of 250 mV, the IrPtPbCu NWs show an enhanced mass activity of 1.51 A mg-1Pt+Ir (about 19 times higher) than Ir/C. For HER at the overpotential of 50 mV, NWs exhibit a remarkable mass activity of 1.35 A mg-1Pt+Ir, which is 2.6-fold relative to Pt/C. Experimental results and theoretical calculations corroborate that the doping of Ir in NWs has the capacity to suppress the formation of Ptx>4 derivates and ameliorate the adsorption free energy of reaction intermediates during the water electrolysis. This approach enabled the realization of a previously unobserved mechanism for anodic electrocatalysts.

5.
ACS Sens ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046797

ABSTRACT

A Pt nanoparticle-immobilized WO3 material is a promising candidate for catalytic reactions, and the surface and electronic structure can strongly affect the performance. However, the effect of the intrinsic oxygen vacancy of WO3 on the d-band structure of Pt and the synergistic effect of Pt and the WO3 matrix on reaction performance are still ambiguous, which greatly hinders the design of advanced materials. Herein, Pt-decorated WO3 nanosheets with different electronic metal-support interactions are successfully prepared by finely tuning the oxygen vacancy structure of WO3 nanosheets. Notably, Pt-modified WO3 nanosheets annealed at 400 °C exhibit excellent benzene series (BTEX) sensing performance (S = 377.33, 365.21, 348.45, and 319.23 for 50 ppm ethylbenzene, benzene, toluene, and xylene, respectively, at 140 °C), fast response and recovery dynamics (10/7 s), excellent reliability (σ = 0.14), and sensing stability (φ = 0.08%). Detailed structural characterization and DFT results reveal that interfacial Ptδ+-Ov-W5+ sites are recognized as the active sites, and the oxygen vacancies of the WO3 matrix can significantly affect the d-band structure of Pt nanoparticles. Notably, Pt/WO3-400 with improved surface oxygen mobility and medium electronic metal-support interaction facilitates the activation and desorption of BTEX, which contributes to the highly efficient BTEX sensing performance. Our work provides a new insight for the design of high-performance surface reaction materials for advanced applications.

6.
BMC Ophthalmol ; 24(1): 309, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048946

ABSTRACT

BACKGROUND: Retinoblastoma (RB) is an intraocular malignant tumor detected in early childhood with variable global impact. Histopathological classification of the tumor in enucleated globes with RB is the key for the decision of adjuvant chemotherapy use. We aim to validate the use of adjuvant chemotherapy in cases with combined pre-laminar/intralaminar optic nerve (ON) invasion and focal choroidal invasion according to the American Joint Committee on Cancer (AJCC) 8th classification. METHODS: This is a retrospective study conducted at King Abdulaziz University Hospital (KAUH) and King Khalid Eye Specialist Hospital (KKESH) in Riyadh, Saudi Arabia of all RB cases who underwent enucleation over 22 years (2000 to 2021). The histopathological findings were reviewed to identify the enucleated globes classified as pT2a tumors, as an inclusion criterion. Basic demographic and clinical data were collected via chart review Simple descriptive and basic statistical analysis of the data was used where applicable. RESULTS: Thirty-one patients who had an enucleated globe with RB that fit into the above classification were included. Sixteen were males and 15 were females. The median age was 14 months (IQR = 14 months). Most of the patients (93.5%) had no family history of RB. The commonest presentation was leukocoria in 87.1% followed by squint in 32.3%. Fourteen patients (45.2%) were treated by enucleation alone while 17 patients (54.8%) received adjuvant chemotherapy. Out of these, 7 patients had unilateral RB and the remaining 10 patients had bilateral RB. None of our patients developed recurrence or metastatic disease irrespective of the indication for adjuvant chemotherapy use after a maximum period of follow up reaching 17.84 years and a median of 10.6 years (IQR = 5.92). CONCLUSIONS: In patients with 8th AJCC histopathological classification of pT2a, chemotherapy following enucleation might not be justified. The outcome in our untreated group of patients did not differ from the treated group with the absence of metastasis after a relatively long period of follow up with a median exceeding 10 years in both groups. Therefore, the risk and benefit of post enucleation adjuvant chemotherapy in the treatment of unilateral RB should be carefully decided and discussed with the primary caregivers taking into consideration the most recent evidence and recommendations in the literature.


Subject(s)
Eye Enucleation , Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/drug therapy , Retinoblastoma/pathology , Retinoblastoma/surgery , Retrospective Studies , Retinal Neoplasms/drug therapy , Retinal Neoplasms/pathology , Retinal Neoplasms/surgery , Female , Male , Infant , Chemotherapy, Adjuvant , Neoplasm Staging , Child, Preschool , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Invasiveness
7.
Article in English | MEDLINE | ID: mdl-39054662

ABSTRACT

BACKGROUND/PURPOSE: The eighth edition of the AJCC staging system introduced a shift in the staging of distal bile duct cancer (DBC), emphasizing the depth of invasion over adjacent organ invasion. This study aimed to evaluate the clinical impact of pancreatic invasion in pT1-stage DBC and identify prognostic factors for long-term survival. METHODS: This multicenter retrospective analysis encompassed DBC patients who underwent pancreaticoduodenectomy between 2009 and 2019 in six Korean tertiary centers, specifically those with final pathology confirming AJCC eighth edition T1 stage and intrapancreatic bile duct tumor origin. Primary endpoints were five-year recurrence-free survival (RFS) and overall survival (OS). Secondary objectives included the identification of prognostic determinants. RESULTS: This study involved 287 patients, comprising 190 without and 97 with pancreatic invasion. Pancreatic invasion did not significantly influence five-year OS and RFS rates (OS: without pancreatic invasion 69.9% vs. with pancreatic invasion 54.1%, p = .25; RFS: 56.3% vs. 55.4%, p = .97). Multivariate analysis highlighted male gender, age, lymphovascular invasion, and N stage as significant OS determinants. Notably, male gender, ampulla of Vater invasion, lymphovascular invasion, and N1 stage were also associated with RFS. CONCLUSIONS: In pT1 DBC, pancreatic invasion demonstrates no substantial impact on long-term prognosis, in accordance with the depth-based paradigm of the eighth edition AJCC staging system. The prognostic factors influencing OS were identified as male gender, age, lymphovascular invasion, and nodal metastasis.

8.
ChemSusChem ; : e202401108, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022814

ABSTRACT

The development of advanced electrocatalysts for the abiotic direct glucose fuel cells (ADGFCs) is critical in the implantable devices in living organisms. The ligand effect in the Pt shell-alloy core nanocatalysts is known to influence the electrocatalytic reaction in interfacial structure. Herein, we reported the synthesis of ternary Pt@PdRu nanoalloy aerogels with ligand effect of PdRu on Pt-enriched surface through electrochemical cycling. Pt@PdRu aerogels with optimized Pt surface electronic structure exhibited high mass activity and specific activity of Pt@PdRu about 450 mA·mgPt-1 and 1.09 mA·cm-2, which were 1.4 and 1.6 times than that of commercial Pt/C. Meanwhile, Pt@PdRu aerogels have higher electrochemical stability comparable to commercial Pt/C. In-situ FTIR spectra results proved that the glucose oxidation reaction on Pt@PdRu aerogels followed the CO-free direct pathway reaction mechanism and part of the products are CO2 by completed oxidation. Furthermore, the ADGFC with Pt@PdRu ultrathin anode catalyst layer showed a much higher power density of 6.2 mW·cm-2 than commercial Pt/C (3.8 mW·cm-2). To simulate the blood fuel cell, the Pt@PdRu integrated membrane electrode assembly was exposed to glucose solution and a steady-state open circuit of approximately 0.6 V was achieved by optimizing the glucose concentration in cell system.

9.
Mikrochim Acta ; 191(8): 464, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39007936

ABSTRACT

Rapid and high-sensitive Salmonella detection in milk is important for preventing foodborne disease eruption. To overcome the influence of the complex ingredients in milk on the sensitive detection of Salmonella, a dual-signal reporter red fluorescence nanosphere (RNs)-Pt was designed by combining RNs and Pt nanoparticles. After being equipped with antibodies, the immune RNs-Pt (IRNs-Pt) provide an ultra-strong fluorescence signal when excited by UV light. With the assistance of the H2O2/TMB system, a visible color change appeared that was attributed to the strong peroxidase-like catalytic activity derived from Pt nanoparticles. The IRNs-Pt in conjunction with immune magnetic beads can realize that Salmonella typhimurium (S. typhi) was captured, labeled, and separated effectively from untreated reduced-fat pure milk samples. Under the optimal experimental conditions, with the assay, as low as 50 CFU S. typhi can be converted to detectable fluorescence and absorbance signals within 2 h, suggesting the feasibility of practical application of the assay. Meanwhile, dual-signal modes of quantitative detection were realized. For fluorescence signal detection (emission at 615 nm), the linear correlation between signal intensity and the concentration of S. typhi was Y = 83C-3321 (R2 = 0.9941), ranging from 103 to 105 CFU/mL, while for colorimetric detection (absorbamce at 450 nm), the relationship between signal intensity and the concentration of S. typhi was Y = 2.9logC-10.2 (R2 = 0.9875), ranging from 5 × 103 to 105 CFU/mL. For suspect food contamination by foodborne pathogens, this dual-mode signal readout assay is promising for achieving the aim of convenient preliminary screening and accurate quantification simultaneously.


Subject(s)
Colorimetry , Milk , Salmonella typhimurium , Milk/microbiology , Milk/chemistry , Salmonella typhimurium/isolation & purification , Colorimetry/methods , Animals , Metal Nanoparticles/chemistry , Limit of Detection , Platinum/chemistry , Hydrogen Peroxide/chemistry , Fluorescence , Nanospheres/chemistry , Food Microbiology/methods , Food Contamination/analysis , Spectrometry, Fluorescence/methods
10.
Nanomaterials (Basel) ; 14(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38998771

ABSTRACT

Bimetallic nanomaterials have generated significant interest across diverse scientific disciplines, due to their unique and tunable properties arising from the synergistic combination of two distinct metallic elements. This study presents a novel approach for synthesizing branched gold-platinum nanoparticles by utilizing poly(allylamine hydrochloride) (PAH)-stabilized branched gold nanoparticles, with a localized surface plasmon resonance (LSPR) response of around 1000 nm, as a template for platinum deposition. This approach allows precise control over nanoparticle size, the LSPR band, and the branching degree at an ambient temperature, without the need for high temperatures or organic solvents. The resulting AuPt branched nanoparticles not only demonstrate optical activity but also enhanced catalytic properties. To evaluate their catalytic potential, we compared the enzymatic capabilities of gold and gold-platinum nanoparticles by examining their peroxidase-like activity in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Our findings revealed that the incorporation of platinum onto the gold surface substantially enhanced the catalytic efficiency, highlighting the potential of these bimetallic nanoparticles in catalytic applications.

11.
Molecules ; 29(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999114

ABSTRACT

Molecular beam epitaxy (MBE) is a powerful tool in modern technologies, including electronic, optoelectronic, spintronic, and sensoric applications. The primary factor determining epitaxial heterostructure properties is the growth mode and the resulting atomic structure and microstructure. In this paper, we present a novel method for growing epitaxial layers and nanostructures with specific and optimized structural and magnetic properties by assisting the MBE process using electromagnetic and mechanical external stimuli: an electric field (EF), a magnetic field (MF), and a strain field (SF). The transmission of the external fields to the sample is realized using a system of specialized sample holders, advanced transfers, and dedicated manipulators. Examples of applications include the influence of MFs on the growth and anisotropy of epitaxial magnetite and iron films, the use of EFs for in situ resistivity measurements, the realization of in situ magneto-optic measurements, and the application of SFs to the structural modification of metal films on mica.

12.
Molecules ; 29(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38999172

ABSTRACT

This article presents cyclic voltammetry, Tafel polarization, and ac. impedance spectroscopy examinations of resorcinol (RC) ion reactivity on Pt(511) single-crystal plane and the effect of surface-electrosorbed RC ions on the kinetics of UPD H (underpotentially deposited hydrogen) and HER (hydrogen evolution reaction) processes in 0.1 M NaOH solution. Obtained data delivered a proof for the RC ion surface adsorption and its later electroreduction over the potential range characteristic for the UPD H. A favourable role of platinum-adsorbed resorcinol anions on the kinetics of the UPD H and HER processes is also discussed. The above was explained via the recorded capacitance and charge-transfer resistance parameters (the presence of resorcinol at 1.5 × 10-3 M in 0.1 M NaOH caused significant reduction in the resistance parameter values by 3.9 and 2.6 times, correspondingly, for the UPD of H at 50 mV and the HER process, examined at -50 mV vs. RHE) along with the charge transients, produced by injecting small amounts of RC-based 0.1 M NaOH solution to initially RC-free base electrolyte on the Pt(511) electrode plane (a large cathodic charge-transient density of -90 µC cm-2 was recorded at the electrode potential of 50 mV).

13.
Int J Lab Hematol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009028

ABSTRACT

This guidance document has been prepared on behalf of the International Council for Standardization in Haematology (ICSH). The aim of the document is to provide guidance and recommendations for the performance and interpretation of activated partial thromboplastin time (APTT) and prothrombin time (PT) plasma mixing tests in clinical laboratories in all regions of the world. The following areas are included in this document: preanalytical, analytical, postanalytical, and quality assurance considerations as they relate to the proper performance and interpretation of plasma mixing tests. The recommendations are based on good laboratory practice, published data in peer-reviewed literature, and expert opinion.

14.
ChemistryOpen ; : e202400146, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041679

ABSTRACT

The hydrogen evolution reaction (HER) in alkaline electrolytes using transition metal dichalcogenides is a research area that is not tapped into. Alkaline HER ( 2 H 2 O + 2 e - → H 2 + O H - ${{2H}_{2}O+2{e\ }^{-}\to {H}_{2}+{OH}^{-}{\rm \ }}$ ) is harder to achieve relative to acidic HER ( H + + 2 e - → H 2 ${{H}^{+}+2{e\ }^{-}\to \ {H}_{2}}$ ), this is attributed to the additional water dissociation step that occurs in basic HER to generate H+ ions. In fact, for most catalysts, their HER activity decreases tremendously when the electrolyte is changed from acidic to basic conditions. Platinum dichalcogenides, PtX2 (X=S, Se, Te), are an interesting member of transition metal dichalcogenides (TMDs) as these show an immense hybridization of the Pt d orbitals and chalcogen p orbitals because of closely correlated orbital energies. The trend in electronic properties of these materials changes drastically as the chalcogen is changed, with PtS2 reported to exhibit semi-conductor properties, PtSe2 is semi-metallic or semi-conductive, depending on the number of layers, while PtTe2 is metallic. The effect of varying the chalcogen atom on the HER activity of Pt dichalcogenides will be studied. Pt dichalcogenides have previously been prepared by direct high-temperature chalcogen deposition of Pt substrate and evaluated as electrocatalysts for HER in H2SO4. The previously employed synthesis procedures for PtX2 limit these compounds' mass production and post-synthesis treatment. In this study, we demonstrated, for the first time the preparation of PtSe2 and PtTe2 by colloidal synthesis. Colloidal synthesis offers the possibility of large-scale synthesis of materials and affords the employment of the colloids at various concentrations in ink formulation. The electrochemical HER results acquired in 1 M KOH indicate that PtTe2 has a superior HER catalytic activity to PtSe2. A potential of 108 mV for PtTe2 and 161 mV for PtSe2 is required to produce a current density of -10 mA cm-2 from these catalysts. PtTe2 has a low Tafel slope of 79 mVdec-1, indicating faster HER kinetics on PtTe2. Nonetheless, the stability of these catalysts in an alkaline medium needs to be improved to render them excellent HER electrocatalysts.

15.
Sci Rep ; 14(1): 15708, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977755

ABSTRACT

This study investigates the potential of platinum (Pt) decorated single-layer WSe2 (Pt-WSe2) monolayers as high-performance gas sensors for NO2, CO2, SO2, and H2 using first-principles calculations. We quantify the impact of Pt placement (basal plane vs. vertical edge) on WSe2's electronic properties, focusing on changes in bandgap (ΔEg). Pt decoration significantly alters the bandgap, with vertical edge sites (TV-WSe2) exhibiting a drastic reduction (0.062 eV) compared to pristine WSe2 and basal plane decorated structures (TBH: 0.720 eV, TBM: 1.237 eV). This substantial ΔEg reduction in TV-WSe2 suggests a potential enhancement in sensor response. Furthermore, TV-WSe2 displays the strongest binding capacity for all target gases due to a Pt-induced "spillover effect" that elongates adsorbed molecules. Specifically, TV-WSe2 exhibits adsorption energies of - 0.5243 eV (NO2), - 0.5777 eV (CO2), - 0.8391 eV (SO2), and - 0.1261 eV (H2), indicating its enhanced sensitivity. Notably, H2 adsorption on TV-WSe2 shows the highest conductivity modulation, suggesting exceptional H2 sensing capabilities. These findings demonstrate that Pt decoration, particularly along WSe2 vertical edges, significantly enhances gas sensing performance. This paves the way for Pt-WSe2 monolayers as highly selective and sensitive gas sensors for various applications, including environmental monitoring, leak detection, and breath analysis.

16.
J Control Release ; 373: 216-223, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39002797

ABSTRACT

Platinum(II)-based drugs (PtII), which hinder DNA replication, are the most widely used chemotherapeutics. However, current PtII drugs often miss their DNA targets, leading to severe side effects and drug resistance. To overcome this challenge, we developed a oxaliplatin-based platinum(IV) (PtIV) prodrug amphiphile (C16-OPtIV-R8K), integrating a long-chain hydrophobic lipid and a nucleus-targeting hydrophilic peptide (R8K). This design allows the prodrug to self-assemble into highly uniform lipid nanoparticles (NTPtIV) for enhanced targeting chemotherapy and immunotherapy. Subsequently, NTPtIV's bioactivity and effects were examined at diverse levels, encompassing cancer cells, 3D tumor spheres, and in vivo. Our in vitro studies show a 74% cancer cell nucleus localization of platinum drugs-3.6 times higher than that of oxaliplatin, achieving more than a ten-fold increase in eliminating drug-resistant cancer cells. In vivo, NTPtIV shows efficient tumor accumulation, leading to suppressed tumor growth of murine breast cancer. Moreover, NTPtIV recruited more CD4+ and CD8+ T cells and reduced CD4+ Foxp3+ Tregs to synergistically enhance targeted chemotherapy and immunotherapy. Overall, this strategy presents a promising advancement in nucleus-targeted cancer therapy, synergistically boosting the efficacy of chemotherapy and immunotherapy.

17.
Appl Microbiol Biotechnol ; 108(1): 421, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023782

ABSTRACT

Dimethylallyl tryptophan synthases (DMATSs) are aromatic prenyltransferases that catalyze the transfer of a prenyl moiety from a donor to an aromatic acceptor during the biosynthesis of microbial secondary metabolites. Due to their broad substrate scope, DMATSs are anticipated as biotechnological tools for producing bioactive prenylated aromatic compounds. Our study explored the substrate scope and product profile of a recombinant RePT, a novel DMATS from the thermophilic fungus Rasamsonia emersonii. Among a variety of aromatic substrates, RePT showed the highest substrate conversion for L-tryptophan and L-tyrosine (> 90%), yielding two mono-prenylated products in both cases. Nine phenolics from diverse phenolic subclasses were notably converted (> 10%), of which the stilbenes oxyresveratrol, piceatannol, pinostilbene, and resveratrol were the best acceptors (37-55% conversion). The position of prenylation was determined using NMR spectroscopy or annotated using MS2 fragmentation patterns, demonstrating that RePT mainly catalyzed mono-O-prenylation on the hydroxylated aromatic substrates. On L-tryptophan, a non-hydroxylated substrate, it preferentially catalyzed C7 prenylation with reverse N1 prenylation as a secondary reaction. Moreover, RePT also possessed substrate-dependent organic solvent tolerance in the presence of 20% (v/v) methanol or DMSO, where a significant conversion (> 90%) was maintained. Our study demonstrates the potential of RePT as a biocatalyst for the production of bioactive prenylated aromatic amino acids, stilbenes, and various phenolic compounds. KEY POINTS: • RePT catalyzes prenylation of diverse aromatic substrates. • RePT enables O-prenylation of phenolics, especially stilbenes. • The novel RePT remains active in 20% methanol or DMSO.


Subject(s)
Amino Acids, Aromatic , Dimethylallyltranstransferase , Phenols , Prenylation , Amino Acids, Aromatic/metabolism , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/genetics , Phenols/metabolism , Substrate Specificity , Stilbenes/metabolism , Tryptophan/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
18.
Environ Sci Technol ; 58(28): 12731-12741, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958431

ABSTRACT

Effective synthesis and application of single-atom catalysts on supports lacking enough defects remain a significant challenge in environmental catalysis. Herein, we present a universal defect-enrichment strategy to increase the surface defects of CeO2-based supports through H2 reduction pretreatment. The Pt catalysts supported by defective CeO2-based supports, including CeO2, CeZrOx, and CeO2/Al2O3 (CA), exhibit much higher Pt dispersion and CO oxidation activity upon reduction activation compared to their counterpart catalysts without defect enrichment. Specifically, Pt is present as embedded single atoms on the CA support with enriched surface defects (CA-HD) based on which the highly active catalyst showing embedded Pt clusters (PtC) with the bottom layer of Pt atoms substituting the Ce cations in the CeO2 surface lattice can be obtained through reduction activation. Embedded PtC can better facilitate CO adsorption and promote O2 activation at PtC-CeO2 interfaces, thereby contributing to the superior low-temperature CO oxidation activity of the Pt/CA-HD catalyst after activation.


Subject(s)
Carbon Monoxide , Oxidation-Reduction , Platinum , Carbon Monoxide/chemistry , Platinum/chemistry , Catalysis , Cerium/chemistry , Adsorption , Surface Properties
19.
Environ Sci Technol ; 58(28): 12685-12696, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959026

ABSTRACT

Fabrication of robust isolated atom catalysts has been a research hotspot in the environment catalysis field for the removal of various contaminants, but there are still challenges in improving the reactivity and stability. Herein, through facile doping alkali metals in Pt catalyst on zirconia (Pt-Na/ZrO2), the atomically dispersed Ptδ+-O(OH)x- associated with alkali metal via oxygen bridge was successfully fabricated. This novel catalyst presented remarkably higher CO and hydrocarbon (HCs: C3H8, C7H8, C3H6, and CH4) oxidation activity than its counterpart (Pt/ZrO2). Systematically direct and solid evidence from experiments and density functional theory calculations demonstrated that the fabricated electron-rich Ptδ+-O(OH)x- related to Na species rather than the original Ptδ+-O(OH)x-, serving as the catalytically active species, can readily react with CO adsorbed on Ptδ+ to produce CO2 with significantly decreasing energy barrier in the rate-determining step from 1.97 to 0.93 eV. Additionally, owing to the strongly adsorbed and activated water by Na species, those fabricated single-site Ptδ+-O(OH)x- linked by Na species could be easily regenerated during the oxidation reaction, thus considerably boosting its oxidation reactivity and durability. Such facile construction of the alkali ion-linked active hydroxyl group was also realized by Li and K modification which could guide to the design of efficient catalysts for the removal of CO and HCs from industrial exhaust.


Subject(s)
Oxidation-Reduction , Zirconium , Catalysis , Zirconium/chemistry , Alkalies/chemistry , Platinum/chemistry
20.
J Colloid Interface Sci ; 675: 24-35, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964122

ABSTRACT

To improve the efficiency of the methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs), it is essential to develop catalysts with high catalytic activity. However, constructing polyatomic doped carbon nanomaterials and understanding the interaction mechanisms between dopant elements remain significant challenges. In this study, we propose nitrogen-doped carbon nanobox (CNB) derived from Zeolitic Imidazolate Framework-67 (ZIF-67) crystals as precursors to serve as carriers for highly efficient platinum nanoparticles (Pt NPs). We synthesized platinum/poly(3,4-propylenedioxythiophene)/carbon nanobox (Pt/PProDOT/CNB) composites by wrapping CNB around PProDOT films via in situ oxidative polymerization. This unique structural design provides several advantages to the catalyst, including a large active surface area, numerous accessible electrocatalytic active centers, an optimized electronic structure, and good electronic conductivity. The Pt/PProDOT/CNB composites demonstrated excellent methanol oxidation performance, with a remarkable mass activity (MA) of 1639.9 mA mg-1Pt and a high electrochemical active surface area (ECSA) of 160.8 m2/g. Furthermore, the catalyst exhibited good CO resistance and outstanding durability.

SELECTION OF CITATIONS
SEARCH DETAIL