Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Toxicol Sci ; 154(1): 153-161, 2016 11.
Article in English | MEDLINE | ID: mdl-27503386

ABSTRACT

Arsenic and polycyclic aromatic hydrocarbon (PAH) exposures affect many people worldwide leading to cancer and other diseases. Arsenite (As+3) and certain PAHs are known to cause genotoxicity. However, there is limited information on the interactions between As+3 and PAHs at environmentally relevant concentrations. The thymus is the primary immune organ for T cell development in mammals. Our previous studies showed that environmentally relevant concentrations of As+3 induce genotoxicity in mouse thymus cells through Poly(ADP-ribose) polymerase (PARP) inhibition. Certain PAHs, such as the metabolites of benzo(a)pyrene (BaP), are known to cause DNA damage by forming DNA adducts. In the present study, primary mouse thymus cells were examined for DNA damage following 18 hr in vitro treatments with 5 or 50 nM As+3 and 100 nM BaP, benzo[a]pyrene-7,8-dihydrodiol (BP-Diol), or benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). An interactive increase in genotoxicity and apoptosis were observed following treatments with 5 nM As + 3 + 100 nM BP-diol and 50 nM As + 3 + 100 nM BPDE. We attribute the increase in DNA damage to inhibition of PARP inhibition leading to decreased DNA repair. To further support this hypothesis, we found that a PARP inhibitor, 3,4-dihydro-5[4-(1-piperindinyl) butoxyl]-1(2H)-isoquinoline (DPQ), also interacted with BP-diol to produce an increase in DNA damage. Interestingly, we also found that As+3 and BP-diol increased CYP1A1 and CYP1B1 expression, suggesting that increased PAH metabolism may also contribute to genotoxicity. In summary, these results show that the suppression of PARP activity and induction of CYP1A1/CYP1B1 may act together to increase DNA damage produced by As+3 and PAHs.


Subject(s)
Arsenites/toxicity , Benzo(a)pyrene/toxicity , Mutagenicity Tests , Thymocytes/drug effects , Animals , Cells, Cultured , DNA Adducts , DNA Damage , Mice , Poly(ADP-ribose) Polymerase Inhibitors/toxicity , Poly(ADP-ribose) Polymerases , Primary Cell Culture
2.
Int Arch Occup Environ Health ; 89(8): 1251-1267, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27510526

ABSTRACT

PURPOSE: This study investigates the diol epoxide pathway of phenanthrene (PHE) together with phenolic metabolites of PHE and pyrene (PYR) in workers with and without exposure to bitumen fumes. METHODS: The metabolite concentrations were determined in urine samples collected from 91 mastic asphalt workers and 42 construction workers as reference group before and after shift. During shift, vapours and aerosols of bitumen were measured according to a German protocol in the workers' breathing zone. RESULTS: The median concentration of vapours and aerosols of bitumen in mastic asphalt workers was 6.3 mg/m3. Metabolite concentrations were highest in post-shift urines of smokers with bitumen exposure and showed an increase during shift. The Spearman correlations between the creatinine-adjusted concentrations of metabolites and vapours and aerosols of bitumen in non-smokers were weak (e.g. sum of Di-OH-PYR: 0.28) or negligible (e.g. 1,2-PHE-diol: 0.08; PHE-tetrol: 0.12). Metabolites from the diol epoxide pathway of PHE were excreted in higher concentrations than phenolic metabolites (post-shift, non-smoking asphalt workers: 1,2-PHE-diol 2.59 µg/g crea vs. sum of all OH-PHE 1.87 µg/g crea). 1,2-PHE-diol was weakly correlated with PHE-tetrol (Spearman coefficient 0.30), an endpoint of the diol epoxide pathway. By contrast, we found a close correlation between the sum of 1,6-DiOH-PYR and 1,8-DiOH-PYR with 1-OH-PYR (Spearman coefficient 0.76). CONCLUSIONS: Most urinary PAH metabolites were higher after shift in bitumen-exposed workers, although the association with bitumen was weak or negligible likely due to the small PAH content. The additional metabolites of PHE and PYR complete the picture of the complex metabolic pathways. Nevertheless, none of the PAH metabolites can be considered to be a specific biomarker for bitumen exposure.


Subject(s)
Air Pollutants, Occupational/analysis , Hydrocarbons/analysis , Inhalation Exposure/analysis , Occupational Exposure/analysis , Phenanthrenes/urine , Pyrenes/urine , Adult , Aerosols/analysis , Air Pollutants, Occupational/urine , Biomarkers/urine , Construction Industry , Cross-Sectional Studies , Environmental Monitoring/methods , Germany , Humans , Middle Aged , Risk Assessment , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL