Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Purinergic Signal ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975950

ABSTRACT

Trypanosoma cruzi is the pathogen of Chagas disease, a neglected tropical disease that affects more than 6 million people worldwide. There are no vaccines to prevent infection, and the therapeutic arsenal is very minimal and toxic. The unique E-NTPDase of T. cruzi (TcNTPDase1) plays essential roles in adhesion and infection and is a virulence factor. Quercetin is a flavonoid with antimicrobial, antiviral, and antitumor activities. Its potential as a partial inhibitor of NTPDases has also been demonstrated. In this work, we synthesized the non-natural L-glycoside derivatives of quercetin and evaluated them as inhibitors of recombinant TcNTPDase1 (rTcNTPDase1). These compounds, and quercetin and miquelianin, a natural quercetin derivative, were also tested. Compound 16 showed the most significant inhibitory effect (94%). Quercetin, miquelianin, and compound 14 showed inhibition close to 50%. We thoroughly investigated the inhibitory effect of 16. Our data suggested a competitive inhibition with a Ki of 8.39 µM (± 0.90). To better understand the interaction of compound 16 and rTcNTPDase1, we performed molecular dynamics simulations of the enzyme and docking analyses with the compounds. Our predictions show that compound 16 binds to the enzyme's catalytic site and interacts with important residues for NTPDase activity. As an inhibitor of a critical T. cruzi enzyme, (16) could be helpful as a starting point in the developing of a future treatment for Chagas disease. Furthermore, the discovery of (16) as an inhibitor of TcNTPDase1 may open new avenues in the study and development of new inhibitors of E-NTPDases.

2.
Chem Biodivers ; 19(3): e202100853, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34990049

ABSTRACT

The ethanolic extract from Croton blanchetianus leaves has been shown to have antinociceptive activity in mice. Here, we investigated the antinociceptive activity of an ethyl acetate fraction (EAF) from this extract in mice and the possible pathways involved in the analgesic effect. Adverse effects on behavior and motor coordination were also evaluated. The EAF was characterized by liquid chromatography coupled with mass spectrometry and evaluated (12.5, 25, and 50 mg/kg per os) in the acetic acid-induced abdominal writhing, formalin, hot plate, and tail immersion assays. Naloxone, atropine, glibenclamide, prazosin, or yohimbine was pre-administered to mice to investigate the involved pathways in the formalin test. The open-field, rotarod, and elevated plus-maze tests were used to assess behavior and locomotion. The main components of the EAF were quercetin-3-O-(2-rhamnosyl) rutinoside, hyperoside, quercetin rutinoside pentoside, and quercetin hexoside deoxyhexoside. EAF showed antinociceptive effects in all models and was effective against both neurogenic and inflammatory pain. The reversion of the effects in the formalin test by naloxone and atropine revealed that the EAF acted via the opioid and cholinergic systems. In the open-field test, the behavior of the animals treated with the EAF was like that of control, except at the highest dose, when hypnosis, eyelid ptosis, decreased walking, hygiene, and rearing behaviors were observed. No muscle relaxant effect was observed, but an anxiogenic effect was observed at all doses. This study provides new scientific evidence on the pharmacological properties of C. blanchetianus leaves and their potential for the development of phytomedicines with analgesic properties.


Subject(s)
Croton , Euphorbiaceae , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics, Opioid/pharmacology , Animals , Cholinergic Agents , Flavonoids , Mice , Plant Extracts/therapeutic use , Plant Leaves
3.
Int J Biol Macromol ; 111: 33-38, 2018 May.
Article in English | MEDLINE | ID: mdl-29292149

ABSTRACT

The human Respiratory Syncytial Virus (hRSV) is the main responsible for occurrences of respiratory diseases as pneumonia and bronchiolitis in children and elderly. M2-1 protein from hRSV is an important antitermination factor for transcription process that prevents the premature dissociation of the polymerase complex, making it a potential target for developing of inhibitors of the viral replication. The present study reports the interaction of the M2-1 tetramer with pera (Q1) and tetracetylated (Q2) quercetin derivatives, which were synthesized with the objective of generating stronger bioactive compounds against oxidation process. Fluorescence experiments showed binding constants of the M2-1/compounds complexes on order of 104M-1 with one ligand per monomeric unit, being the affinity of Q2 stronger than Q1. The thermodynamic analysis revealed values of ΔH>0 and ΔS>0, suggesting that hydrophobic interactions play a key role in the formation of the complexes. Molecular docking calculations indicated that binding sites for the compounds are in contact interfaces between globular and zinc finger domains of the monomers and that hydrogen bonds and stacking interactions are important contributions for stabilization of the complexes. Thus, the interaction of the acetylated quercetin derivatives in the RNA-binding sites of M2-1 makes these potential candidates for viral replication inhibitors.


Subject(s)
Quercetin/chemistry , Respiratory Syncytial Virus, Human/chemistry , Viral Proteins/chemistry , Acetylation , Binding Sites , Humans , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Proton Magnetic Resonance Spectroscopy , Respiratory Syncytial Virus, Human/genetics , Thermodynamics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL