Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
1.
Int J Mol Sci ; 25(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273497

ABSTRACT

The hormone renin is produced in the kidney by the juxtaglomerular cells. It is the rate-limiting factor in the circulating renin-angiotensin-aldosterone system (RAAS), which contributes to electrolyte, water, and blood pressure homeostasis. In the kidneys, the distal tubule and the collecting duct are the key target segments for RAAS. The collecting duct is important for urine production and also for salt, water, and acid-base homeostasis. The critical functional role of the collecting duct is mediated by the principal and the intercalated cells and is regulated by different hormones like aldosterone and vasopressin. The collecting duct is not only a target for hormones but also a place of hormone production. It is accepted that renin is produced in the collecting duct at a low level. Several studies have described that the cells in the collecting duct exhibit plasticity properties because the ratio of principal to intercalated cells can change under specific circumstances. This narrative review focuses on two aspects of the collecting duct that remain somehow aside from mainstream research, namely the cell plasticity and the renin expression. We discuss the link between these collecting duct features, which we see as a promising area for future research given recent findings.


Subject(s)
Cell Plasticity , Kidney Tubules, Collecting , Renin-Angiotensin System , Renin , Renin/metabolism , Humans , Animals , Kidney Tubules, Collecting/metabolism , Renin-Angiotensin System/physiology , Vasopressins/metabolism
2.
Cell Signal ; 124: 111426, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306263

ABSTRACT

The intricate physiological and pathological diversity of the Renin-Angiotensin-Aldosterone System (RAAS) underpins its role in maintaining bodily equilibrium. This paper delves into the classical axis (Renin-ACE-Ang II-AT1R axis), the protective arm (ACE2-Ang (1-7)-MasR axis), the prorenin-PRR-MAP kinases ERK1/2 axis, and the Ang IV-AT4R-IRAP cascade of RAAS, examining their functions in both physiological and pathological states. The dysregulation or hyperactivation of RAAS is intricately linked to numerous diseases, including cardiovascular disease (CVD), renal damage, metabolic disease, eye disease, Gastrointestinal disease, nervous system and reproductive system diseases. This paper explores the pathological mechanisms of RAAS in detail, highlighting its significant role in disease progression. Currently, in addition to traditional drugs like ACEI, ARB, and MRA, several novel therapeutics have emerged, such as angiotensin receptor-enkephalinase inhibitors, nonsteroidal mineralocorticoid receptor antagonists, aldosterone synthase inhibitors, aminopeptidase A inhibitors, and angiotensinogen inhibitors. These have shown potential efficacy and application prospects in various clinical trials for related diseases. Through an in-depth analysis of RAAS, this paper aims to provide crucial insights into its complex physiological and pathological mechanisms and offer valuable guidance for developing new therapeutic approaches. This comprehensive discussion is expected to advance the RAAS research field and provide innovative ideas and directions for future clinical treatment strategies.

3.
Article in English | MEDLINE | ID: mdl-39323346

ABSTRACT

Iron Deficiency (ID) is common in patients with cardiovascular disease. More than 64 million patients are suffering from chronic heart failure. The prevalence of iron deficiency increases with the severity of cardiac and renal dysfunction and is probably more common amongst women. AIM: This review article discusses multifactorial pathophysiology, the relationship between clinical characteristics, functional and absolute ID, and the advantages of medicinal intervention in chronic heart failure (CHF). It also covers how iron shortage affects other body parts. APPROACH: The most recent publications that included substantial scientific data on the connection between CHF and ID, with or without anaemia, were selected. DISCUSSION: Complex physiopathological interactions, including higher hepcidin levels, systemic inflammation, and activation of the renin-angiotensin-aldosterone system, have been identified in these patients. These mechanisms exacerbate the outcomes for patients by amplifying the severity of anemia, chronic heart failure (CHF), and Chronic kidney disease (CKD). Research in this area has been limited and has shown inconsistent findings. Still, it has also examined evidence-based treatment approaches and diagnostic guidelines, especially in relation to iron supplements and erythropoietin-stimulating medications. CONCLUSION: Anemia is a frequent chronic heart failure consequence and a poor prognostic factor. We still don't completely understand the many complex causes of anemia. Iron deficiency screening is highly recommended for people with cardiac ailments because of its significance for their prognoses. Due to the paucity of research proving its effectiveness, the high incidence of unfavourable gastrointestinal side effects, and the prolonged length of time required for treatment to boost haemoglobin levels, an oral iron supplement is not advised for people with chronic heart failure. An insufficient amount of iron not only impacts the heart but also various other body components.

5.
Genes (Basel) ; 15(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39202375

ABSTRACT

Alport syndrome (AS) is a hereditary glomerulopathy due to pathogenic variants in COL4A3, COL4A4, and COL4A5. Treatment with Renin-Angiotensin-Aldosterone System (RAAS) inhibitors can delay progression to end stage renal disease (ESRD). From 2018 until today, we performed Whole Exome Sequencing (WES) in 19 patients with AS phenotype with or without positive family history. Fourteen of these patients were children. Genetic testing was extended to family members at risk. All patients received a genetic diagnosis of AS: five X-linked AS (XLAS) males, five X-linked AS (XLAS) females, six autosomal dominant AS (ADAS), and one autosomal recessive AS (ARAS). After cascade screening four XLAS males and eight XLAS females, six ADAS and three ARAS heterozygotes were added to our initial results. Fifteen patients were eligible to start treatment with RAAS inhibitors after their diagnosis. All XLAS female patients, ARAS heterozygotes, and ADAS have been advised to be followed up, so that therapeutic intervention can begin in the presence of microalbuminuria. Genetic diagnosis of AS ensures early therapeutic intervention and appropriate follow up to delay progression to chronic kidney disease, especially in thet pediatric population.


Subject(s)
Nephritis, Hereditary , Humans , Nephritis, Hereditary/genetics , Nephritis, Hereditary/diagnosis , Female , Male , Child , Child, Preschool , Adolescent , Genetic Testing/methods , Exome Sequencing , Collagen Type IV/genetics , Early Diagnosis , Infant , Mutation , Adult , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/diagnosis , Phenotype
6.
Curr Obes Rep ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141201

ABSTRACT

PURPOSE OF REVIEW: As obesity and chronic kidney disease (CKD) remain a public health issue, we aim to elaborate on their complex relationship regarding pathogenetic mechanisms and therapeutic potential as well. The purpose of this review is to enhance our understanding of the interplay between obesity and CKD in order to timely diagnose and treat obesity-related CKD. RECENT FINDINGS: Obesity and CKD pose significant intertwined challenges to global health, affecting a substantial portion of the population worldwide. Obesity is recognized as an independent risk factor, intricately contributing to CKD pathogenesis through mechanisms such as lipotoxicity, chronic inflammation, and insulin resistance. Recent evidence highlights additional factors including hemodynamic changes and intestinal dysbiosis that exacerbate kidney dysfunction in obese individuals, leading to histologic alterations known as obesity-related glomerulopathy (ORG). This narrative review synthesizes current knowledge on the prevalence, pathophysiology, clinical manifestations, and diagnostic strategies of obesity-related kidney disease. Furthermore, it explores mechanistic insights to delineate current therapeutic approaches, future directions for managing this condition and controversies. By elucidating the multifaceted interactions between obesity and kidney health, this review aims to inform clinical practice and stimulate further research to address this global health epidemic effectively.

7.
Bioinformation ; 20(5): 412-414, 2024.
Article in English | MEDLINE | ID: mdl-39132241

ABSTRACT

Officials have marked the end of the CoVid-19 pandemic, yet we continue to learn more about the SARS-CoV2 virus itself and its lasting multidimensional effects after acute infection. Long COVID, or the post-acute CoViD-19 syndrome (PACS), manifests as a wide range of prolonged physical, mental, and emotional symptoms over at least 1 to 12 months after SARS-CoV2 infection. Here, we describe certain pervasive clinical consequences of PACS on the cardiovascular system, and insight on the potentially improved prognoses in heart failure patients.

8.
Medicina (Kaunas) ; 60(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39202605

ABSTRACT

Postural orthostatic tachycardia syndrome (POTS) is a complex condition marked by an atypical autonomic response to standing, leading to orthostatic intolerance and significant tachycardia without accompanying hypotension. In recent studies, a considerable number of individuals recovering from COVID-19 have been reported to experience POTS within 6 to 8 months post-infection. Key symptoms of POTS include fatigue, difficulty with orthostatic tolerance, tachycardia, and cognitive challenges. The underlying causes of POTS following COVID-19 remain unknown, with various theories proposed such as renin-angiotensin-aldosterone system (RAAS) dysregulation, hyperadrenergic reaction, and direct viral infection. Healthcare professionals should be vigilant for POTS in patients who have recovered from COVID-19 and are experiencing signs of autonomic dysfunction and use diagnostic procedures such as the tilt-up table test for confirmation. COVID-19-related POTS should be approached with a holistic strategy. Although many patients show improvement with initial non-drug treatments, for subjects who do not respond and exhibit more severe symptoms, medication-based therapies may be necessary. The current understanding of COVID-19-related POTS is limited, underscoring the need for more research to increase knowledge and enhance treatment approaches.


Subject(s)
COVID-19 , Postural Orthostatic Tachycardia Syndrome , Humans , Postural Orthostatic Tachycardia Syndrome/physiopathology , Postural Orthostatic Tachycardia Syndrome/diagnosis , Postural Orthostatic Tachycardia Syndrome/therapy , COVID-19/complications , COVID-19/physiopathology , SARS-CoV-2
9.
BMC Nephrol ; 25(1): 268, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179976

ABSTRACT

BACKGROUND: Urinary Dickkopf 3 (DKK3) excretion is a recently established biomarker of renal functional development. Its excretion into the peritoneal cavity has not been reported. We here studied DKK3 in peritoneal dialysis. METHODS: DKK3 was assessed in serum, urine and dialysate in a prevalent adult peritoneal dialysis cohort and its concentration analyzed in relation to creatinine and clinical characteristics. RESULTS: Highest DKK3 concentrations were found in serum, followed by urine. Dialysate concentrations were significantly lower. Dialysate DKK3 correlated with both other compartments. Serum, dialysate and urine values were stable during three months of follow-up. Continuous ambulatory dialysis (CAPD) but not cycler-assisted peritoneal dialysis (CCPD) volume-dependently increased peritoneal DKK3 in relation to creatinine. RAAS blockade significantly decreased urinary, but not serum or peritoneal DKK3. CONCLUSION: Our data provide a detailed characterization of DKK3 in peritoneal dialysis. They support the notion that the RAAS system is essential for renal DKK3 handling.


Subject(s)
Adaptor Proteins, Signal Transducing , Peritoneal Dialysis , Humans , Male , Female , Middle Aged , Adaptor Proteins, Signal Transducing/metabolism , Chemokines/blood , Chemokines/metabolism , Aged , Adult , Intercellular Signaling Peptides and Proteins/metabolism , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/metabolism , Biomarkers/blood , Dialysis Solutions/metabolism , Kidney/metabolism , Peritoneum/metabolism , Peritoneal Dialysis, Continuous Ambulatory , Renin-Angiotensin System/physiology , Creatinine/urine , Creatinine/blood , Creatinine/metabolism
11.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000315

ABSTRACT

Aprotinin is a broad-spectrum inhibitor of human proteases that has been approved for the treatment of bleeding in single coronary artery bypass surgery because of its potent antifibrinolytic actions. Following the outbreak of the COVID-19 pandemic, there was an urgent need to find new antiviral drugs. Aprotinin is a good candidate for therapeutic repositioning as a broad-spectrum antiviral drug and for treating the symptomatic processes that characterise viral respiratory diseases, including COVID-19. This is due to its strong pharmacological ability to inhibit a plethora of host proteases used by respiratory viruses in their infective mechanisms. The proteases allow the cleavage and conformational change of proteins that make up their viral capsid, and thus enable them to anchor themselves by recognition of their target in the epithelial cell. In addition, the activation of these proteases initiates the inflammatory process that triggers the infection. The attraction of the drug is not only its pharmacodynamic characteristics but also the possibility of administration by the inhalation route, avoiding unwanted systemic effects. This, together with the low cost of treatment (≈2 Euro/dose), makes it a good candidate to reach countries with lower economic means. In this article, we will discuss the pharmacodynamic, pharmacokinetic, and toxicological characteristics of aprotinin administered by the inhalation route; analyse the main advances in our knowledge of this medication; and the future directions that should be taken in research in order to reposition this medication in therapeutics.


Subject(s)
Antiviral Agents , Aprotinin , COVID-19 Drug Treatment , SARS-CoV-2 , Aprotinin/therapeutic use , Aprotinin/pharmacology , Aprotinin/chemistry , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/administration & dosage , Administration, Inhalation , SARS-CoV-2/drug effects , COVID-19/virology , Animals , Drug Repositioning/methods , Serine Proteinase Inhibitors/therapeutic use , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/administration & dosage
12.
J Pharm Pharmacol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018169

ABSTRACT

AIMS: The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2). BACKGROUND: The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients. OBJECTIVE: To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo. METHODS: The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained. RESULTS: This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases. CONCLUSION: The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.

13.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062796

ABSTRACT

Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.


Subject(s)
Aprotinin , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Humans , Aprotinin/pharmacology , Aprotinin/therapeutic use , Aprotinin/metabolism , SARS-CoV-2/drug effects , COVID-19/virology , COVID-19/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Peptide Hydrolases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Serine Endopeptidases/metabolism
14.
J Cardiovasc Aging ; 4(2)2024 Apr.
Article in English | MEDLINE | ID: mdl-39015481

ABSTRACT

Aging represents a complex biological progression affecting the entire body, marked by a gradual decline in tissue function, rendering organs more susceptible to stress and diseases. The human heart holds significant importance in this context, as its aging process poses life-threatening risks. It entails macroscopic morphological shifts and biochemical changes that collectively contribute to diminished cardiac function. Among the numerous pivotal factors in aging, mitochondria play a critical role, intersecting with various molecular pathways and housing several aging-related agents. In this comprehensive review, we provide an updated overview of the functional role of mitochondria in cardiac aging.

15.
Ren Fail ; 46(2): 2359033, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38836372

ABSTRACT

OBJECTIVE: To determine the efficacy and safety of Astragalus combined with renin-angiotensin-aldosterone system (RAAS) blockers in treating stage III diabetic nephropathy (DN) by meta-analysis. METHODS: PubMed, Embase, Cochrane Library, Wiley, and Web of Science databases were searched for articles published between August 2007 and August 2022. Clinical studies on Astragalus combined with RAAS blockers for the treatment of stage III DN were included. Meta-analysis was performed by RevMan 5.1 and Stata 14.3 software. RESULTS: A total of 32 papers were included in this meta-analysis, containing 2462 patients from randomized controlled trials, with 1244 receiving the combination treatment and 1218 solely receiving RAAS blockers. Astragalus combined with RAAS blockers yielded a significantly higher total effective rate (TER) (mean difference [MD] 3.63, 95% confidence interval [CI] 2.59-5.09) and significantly reduced urinary protein excretion rate (UPER), serum creatinine (Scr), blood urine nitrogen (BUN) and glycosylated hemoglobin (HbAlc) levels. In subgroup analysis, combining astragalus and angiotensin receptor blocker significantly lowered fasting plasma glucose (FPG) and 24 h urinary protein (24hUTP) levels, compared with the combined astragalus and angiotensin-converting enzyme inhibitor treatment. Meanwhile, the latter significantly decreased the urinary microprotein (ß2-MG). Importantly, the sensitivity analysis confirmed the study's stability, and publication bias was not detected for UPER, BUN, HbAlc, FPG, or ß2-MG. However, the TER, SCr, and 24hUTP results suggested possible publication bias. CONCLUSIONS: The astragalus-RAAS blocker combination treatment is safe and improves outcomes; however, rigorous randomized, large-scale, multi-center, double-blind trials are needed to evaluate its efficacy and safety in stage III DN.


Renin-angiotensin-aldosterone system (RAAS) inhibitors are commonly used to treat diabetic neuropathy (DN) and Astragalus membranaceus components are known to improve DN symptoms.We aimed to establish the efficacy and safety of using Astragalus combined with RAAS inhibitors.Astragalus combined with RAAS inhibitors enhances the total effective rate of diabetic neuropathy response to treatment and reduces urinary protein excretion rate, serum creatinine, blood urea nitrogen and HbAlc.Sensitivity analysis affirms study stability, while publication bias was detected for total effective rate, serum creatinine, and 24 h urinary protein levels.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Diabetic Nephropathies , Drug Therapy, Combination , Renin-Angiotensin System , Humans , Diabetic Nephropathies/drug therapy , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Renin-Angiotensin System/drug effects , Angiotensin Receptor Antagonists/therapeutic use , Astragalus Plant , Randomized Controlled Trials as Topic , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/administration & dosage , Treatment Outcome , Creatinine/blood , Glycated Hemoglobin , Proteinuria/drug therapy
17.
Int J Infect Dis ; 144: 107067, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697603

ABSTRACT

OBJECTIVES: To analyze the gene variants of the renin-angiotensin-aldosterone system and determine their association with the severity and outcome of COVID-19. METHODS: A total of 104 patients were included in the study: 34 asymptomatic patients with COVID-19 as controls and 70 symptomatic patients as cases. The genetic variants ACE rs4343, ACE2 rs2074192, AGTR1 rs5182, and AGT rs4762 were identified using TaqMan genotyping tests. RESULTS: Patients with the T/T genotype of AGTR1 rs5182 have a higher probability of developing symptomatic COVID-19 (odds ratio [OR] 12.25, 95% confidence interval [CI] 1.34-111.9, P ≤0.001) and a higher risk of hospitalization because of disease (OR 14.00, 95% CI 1.53-128.49, P = 0.012). The haplotype CTG (AGTR1 rs5182, ACE2 rs2074192, ACE rs4343) decreased the odds of death related to COVID-19 in the study population (OR 0.03, 95% CI 0.0-0.06, P = 0.026). CONCLUSIONS: The T/T genotype of the AGTR1 rs5182 variant increased the probability of symptomatic COVID-19 and hospitalization, whereas the haplotype CTG (consisting of AGTR1 rs5182, ACE2 rs2074192, and ACE rs4343) decreased the odds of death related to COVID-19 by 97% in the hospitalized patients with COVID-19. These results support the participation of renin-angiotensin-aldosterone system gene variants as modifiers of the severity of symptoms associated with SARS-CoV-2 infection and the outcome of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Hospitalization , Peptidyl-Dipeptidase A , Receptor, Angiotensin, Type 1 , Renin-Angiotensin System , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/genetics , COVID-19/mortality , COVID-19/virology , Male , Female , Middle Aged , Receptor, Angiotensin, Type 1/genetics , Renin-Angiotensin System/genetics , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Peptidyl-Dipeptidase A/genetics , Adult , Polymorphism, Single Nucleotide , Aged , Angiotensinogen/genetics , Genotype , Genetic Predisposition to Disease , Haplotypes , Case-Control Studies
19.
Front Vet Sci ; 11: 1362379, 2024.
Article in English | MEDLINE | ID: mdl-38756510

ABSTRACT

Introduction: Angiotensin-converting enzyme 2 (ACE2) played an important role in the renin-angiotensin-aldosterone system (RAAS) and it was proved to be renoprotective in renal disease. Urinary angiotensin-converting enzyme 2 (uACE2) has been shown to reflect renal injury in human and experimental studies, but its role in feline kidney disease remains unknown. Aims: Our objectives involve comparing uACE2 concentrations and activities in cats across CKD stages with healthy controls, investigating the relationship between uACE2 concentrations, activities, and clinicopathological data in feline CKD patients, and assessing the predictive abilities of both for CKD progression. Methods: A retrospective, case-control study. The concentration and activity of uACE2 were measured by commercial ELISA and fluorometric assay kits, respectively. The concentration was adjusted to give uACE2 concentration-to-creatinine ratios (UACCRs). Results: In total, 67 cats consisting of 24 control and 43 chronic kidney disease (CKD), including 24 early-stage CKD and 19 late-stage CKD, were enrolled in this study. UACCR values were significantly higher in both early-stage (2.100 [1.142-4.242] x 10-6) and late-stage feline CKD (4.343 [2.992-5.0.71] x 10-6) compared to healthy controls (0.894 [0.610-1.076] x 10-6; p < 0.001), and there was also significant difference between-early stage group and late-stage group (p = 0.026). Urinary ACE2 activity (UAA) was significantly lower in CKD cats (1.338 [0.644-2.755] x pmol/min/ml) compared to the healthy cats (7.989 [3.711-15.903] x pmol/min/ml; p < 0.001). UACCR demonstrated an independent, positive correlation with BUN (p < 0.001), and UAA exhibited an independent, negative correlation with plasma creatinine (p < 0.001). Both UACCR and UAA did not yield significant results in predicting CKD progression based on the ROC curve analysis. Conclusion and clinical importance: uACE2 concentration and activity exhibit varying changes as renal function declines, particularly in advanced CKD cats.

20.
Front Pharmacol ; 15: 1364827, 2024.
Article in English | MEDLINE | ID: mdl-38799171

ABSTRACT

Background: The renin-angiotensin-aldosterone system (RAAS) members, especially Ang II and aldosterone, play key roles in the pathogenesis of diabetic cardiomyopathy (DCM). Angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers combined with aldosterone receptor antagonists (mineralocorticoid receptor antagonists) have substantially improved clinical outcomes in patients with DCM. However, the use of the combination has been limited due to its high risk of inducing hyperkalemia. Methods: Type 1 diabetes was induced in 8-week-old male C57BL/6J mice by intraperitoneal injection of streptozotocin at a dose of 55 mg/kg for 5 consecutive days. Adeno-associated virus 9-mediated short-hairpin RNA (shRNA) was used to knock down the expression of ADAM17 in mice hearts. Eplerenone was administered via gavage at 200 mg/kg daily for 4 weeks. Primary cardiac fibroblasts were exposed to high glucose (HG) in vitro for 24 h to examine the cardiac fibroblasts to myofibroblasts transformation (CMT). Results: Cardiac collagen deposition and CMT increased in diabetic mice, leading to cardiac fibrosis and dysfunction. In addition, ADAM17 expression and activity increased in the hearts of diabetic mice. ADAM17 inhibition and eplerenone treatment both improved diabetes-induced cardiac fibrosis, cardiac hypertrophy and cardiac dysfunction, ADAM17 deficiency combined with eplerenone further reduced the effects of cardiac fibrosis, cardiac hypertrophy and cardiac dysfunction compared with single therapy in vivo. High-glucose stimulation promotes CMT in vitro and leads to increased ADAM17 expression and activity. ADAM17 knockdown and eplerenone pretreatment can reduce the CMT of fibroblasts that is induced by high glucose levels by inhibiting TGFß1/Smad3 activation; the combination of the two can further reduce CMT compared with single therapy in vitro. Conclusion: Our findings indicated that ADAM17 knockout could improve diabetes-induced cardiac dysfunction and remodeling through the inhibition of RAAS overactivation when combined with eplerenone treatment, which reduced TGF-ß1/Smad3 pathway activation-mediated CMT. The combined intervention of ADAM17 deficiency and eplerenone therapy provided additional cardiac protection compared with a single therapy alone without disturbing potassium level. Therefore, the combination of ADAM17 inhibition and eplerenone is a potential therapeutic strategy for human DCM.

SELECTION OF CITATIONS
SEARCH DETAIL