Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cells ; 13(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39120309

ABSTRACT

Eukaryotic NMEs/NDP kinases are a family of 10 multifunctional proteins that occur in different cellular compartments and interact with various cellular components (proteins, membranes, and DNA). In contrast to the well-studied Group I NMEs (NME1-4), little is known about the more divergent Group II NMEs (NME5-9). Three recent publications now shed new light on NME6. First, NME6 is a third mitochondrial NME, largely localized in the matrix space, associated with the mitochondrial inner membrane. Second, while its monomeric form is inactive, NME6 gains NDP kinase activity through interaction with mitochondrial RCC1L. This challenges the current notion that mammalian NMEs require the formation of hexamers to become active. The formation of complexes between NME6 and RCC1L, likely heterodimers, seemingly obviates the necessity for hexamer formation, stabilizing a NDP kinase-competent conformation. Third, NME6 is involved in mitochondrial gene maintenance and expression by providing (d)NTPs for replication and transcription (in particular the pyrimidine nucleotides) and by a less characterized mechanism that supports mitoribosome function. This review offers an overview of NME evolution and structure and highlights the new insight into NME6. The new findings position NME6 as the most comprehensively studied protein in NME Group II and may even suggest it as a new paradigm for related family members.


Subject(s)
Mitochondria , Humans , Animals , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , NM23 Nucleoside Diphosphate Kinases/metabolism , NM23 Nucleoside Diphosphate Kinases/genetics , Nucleoside Diphosphate Kinase D/metabolism , Nucleoside Diphosphate Kinase D/genetics
2.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585782

ABSTRACT

Mitochondrial dysfunction has been linked to both idiopathic and familial forms of Parkinson's disease (PD). We have previously identified RCC1-like (RCC1L) as a protein of the inner mitochondrial membrane important to mitochondrial fusion. Herein, to test whether deficits in RCC1L mitochondrial function might be involved in PD pathology, we have selectively ablated the Rcc1l gene in the dopaminergic (DA) neurons of mice. A PD-like phenotype resulted that includes progressive movement abnormalities, paralleled by progressive degeneration of the nigrostriatal tract. Experimental and control groups were examined at 2, 3-4, and 5-6 months of age. Animals were tested in the open field task to quantify anxiety, exploratory drive, locomotion, and immobility; and in the cylinder test to quantify rearing behavior. Beginning at 3-4 months, both female and male Rcc1l knockout mice show rigid muscles and resting tremor, kyphosis and a growth deficit compared with heterozygous or wild type littermate controls. Rcc1l knockout mice begin showing locomotor impairments at 3-4 months, which progress until 5-6 months of age, at which age the Rcc1l knockout mice die. The progressive motor impairments were associated with progressive and significantly reduced tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta (SNc), and dramatic loss of nigral DA projections in the striatum. Dystrophic spherical mitochondria are apparent in the soma of SNc neurons in Rcc1l knockout mice as early as 1.5-2.5 months of age and become progressively more pronounced until 5-6 months. Together, the results reveal the RCC1L protein to be essential to in vivo mitochondrial function in DA neurons. Further characterization of this mouse model will determine whether it represents a new model for in vivo study of PD, and the putative role of the human RCC1L gene as a risk factor that might increase PD occurrence and severity in humans.

3.
J Cancer ; 15(7): 1901-1915, 2024.
Article in English | MEDLINE | ID: mdl-38434981

ABSTRACT

Background: Lung adenocarcinoma (LUAD) incidence and mortality take the leading place of most malignancies. Previous studies have revealed the regulator of chromosome condensation 1 (RCC1) family members played an essential role during tumorigenesis. However, its biological functions in LUAD still need further investigation. Methods: Several databases were applied to explore potential effects of RCC1 family members on LUAD, such as Oncomine, GEPIA, and cBioPortal. Real-time PCR and immunohistochemistry were used to verify the expression of RCC2 in stage I LUAD. H1975 and A549 were selected to explore the biological function of RCC2 in cellular malignant phenotype. Results: The expressions of RCC1 and RCC2 showed marked differences in malignant tissue compared to lung tissue. The higher the expression levels of RCC1 or RCC2 in LUAD patients, the shorter their overall survival (OS). In normal lung tissues, RCC1 expression was highly enriched in alveolar cells and endothelial cells. Compare with RCC1, RCC2 expression in normal lung tissue was significantly enriched in macrophages, B cells and granulocytes. Additionally, RCC2 expression level was correlated with multiple immune cell infiltration in LUAD. Moreover, the mutation or different sCNA status of RCC2 exerted influence on multiple immune cell infiltration distribution. We found that the upregulation of RCC1 and RCC2 were obviously related to TP53 mutation. GSEA analysis revealed that RCC2 was involved in the process of DNA replication, nucleotide excision repair and cell cycle, which might affect tumor progression through P53 signaling pathway. We further elucidated that downregulation of RCC2 could dramatically repress the migration and invasion of LUAD cells. Conclusions: The study demonstrated that RCC1 and RCC2 expression were markedly increased in early-stage of LUAD. Patients with high expression of RCC1 or RCC2 had a worse prognosis. Based on our analysis, RCC1 and RCC2 might exert influence on LUAD process through DNA replication, nucleotide excision repair and cell cycle, as well as cells migration and invasion. Different from RCC1, RCC2 also involved in immune infiltration. These analyses provided a novel insight into the identification of diagnostic biomarker.

4.
Mol Biol Rep ; 51(1): 16, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087057

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) accounts for the majority (80%-90%) of renal cell carcinoma (RCC) patients at the time of diagnosis, and approximately 15% of ccRCC patients will develop distant metastasis or recurrence during their lifetime. Increasing number of studies have revealed that the aberrant DNA methylations is closely correlated with the tumorigenesis in ccRCC. RESULTS: In this study, we utilized a LASSO (least absolute shrinkage and selection operator) model to identify a combination of 13 probes-based DNA methylation signature that associated with the progression-free survival (PFS) of ccRCC patients. First, differentially methylated regions (CpGs) related to PFS and phenotypes were identified. Next, prognostic DNA methylation probes were selected from the differentially methylated probes (DMPs) and calculated risk scores to stratify patients with ccRCC. The performance of this signature was validated in an independent testing set using various analyses, including Kaplan-Meier analysis for PFS and receiver operating characteristic (ROC) curve analysis. Based on our 13-DNA methylation probes signature, ccRCC patients were successfully stratified into high- and low-risk groups. Combining DNA methylation signature with clinical variables such as T stage, M stage and tumor grade could further improve the accuracy of prediction. Moreover, we highlight two molecular biomarkers (RCC1 and GDF6) corresponding to our probes. Invitro experiments showed that knockdown of RCC1 or GDF6 in ccRCC cell lines reduced cell proliferation, which indicated that both biomarkers are associated with tumorigenesis. CONCLUSIONS: The 13-probes-based DNA methylation signature has the potential to serve as an independent tool for survival outcome improvement and treatment strategy selection for ccRCC patients. In addition, our findings suggest that RCC1 and GDF6 may serve as promising markers for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , DNA Methylation/genetics , Kidney Neoplasms/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/genetics , Carcinogenesis/genetics , Nuclear Proteins/genetics , Cell Cycle Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Growth Differentiation Factor 6
5.
BMC Genomics ; 24(1): 692, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980503

ABSTRACT

BACKGROUND: Artemisia annua is the major source for artemisinin production. The artemisinin content in A. annua is affected by different types of light especially the UV light. UVR8, a member of RCC1 gene family was found to be the UV-B receptor in plants. The gene structures, evolutionary history and expression profile of UVR8 or RCC1 genes remain undiscovered in A. annua. RESULTS: Twenty-two RCC1 genes (AaRCC1) were identified in each haplotype genome of two diploid strains of A. annua, LQ-9 and HAN1. Varied gene structures and sequences among paralogs were observed. The divergence of most RCC1 genes occurred at 46.7 - 51 MYA which overlapped with species divergence of core Asteraceae during the Eocene, while no recent novel RCC1 members were found in A. annua genome. The number of RCC1 genes remained stable among eudicots and RCC1 genes underwent purifying selection. The expression profile of AaRCC1 is analogous to that of Arabidopsis thaliana (AtRCC1) when responding to environmental stress. CONCLUSIONS: This study provided a comprehensive characterization of the AaRCC1 gene family and suggested that RCC1 genes were conserved in gene number, structures, constitution of amino acids and expression profiles among eudicots.


Subject(s)
Arabidopsis , Artemisia annua , Artemisinins , Artemisia annua/genetics , Artemisia annua/metabolism , Artemisinins/metabolism , Genes, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Chromosomes/metabolism
6.
Cancer Med ; 12(19): 19889-19903, 2023 10.
Article in English | MEDLINE | ID: mdl-37747077

ABSTRACT

BACKGROUND: RCC1 functions as a pivotal guanine nucleotide exchange factor and was reported to be involved in mitosis, the assembly of the nuclear envelope, nucleocytoplasmic transport in cell physiological processes. Recent studies reported that RCC1 could regulate immunological pathways and promote the growth of some malignant solid tumors. However, the prognostic value and exact function of RCC1 remain unknown in patients with clear cell renal cell carcinoma (cRCC). METHODS: The UALCAN and KM plotter portals were used to analyze the expression profile and related tumor prognosis of RCC1 in ccRCC using data from TCGA. The expression profile of RCC1 was also confirmed in clinical samples using qRT-PCR, western blotting, and immunohistochemistry. The role of RCC1 on ccRCC cells in vitro was confirmed by a series of functional assays. Animal experiments were performed to verify the suppressive effect of RCC1 knockdown on tumor growth in vivo. The correlation of RCC1 expression with that of EZH2 was explored in clinical samples using IHC. The interaction between RCC1 and EZH2 was further verified using a CO-IP assay and a protein stability assay. RESULTS: RCC1 was upregulated in ccRCC tissues compared with normal tissues in TCGA dataset and paired clinical samples. RCC1 promoted ccRCC progression by accelerating the cell cycle and suppressing apoptosis. In addition, RCC1 could bind EZH2 and regulate its expression at the posttranscriptional level. RCC1 and EZH2 expression showed a strong correlation in clinical samples. Further investigation proved that RCC1 regulated EZH2 protein stability through the ubiquitin-proteasome pathway. CONCLUSIONS: RCC1 could be a potential therapeutic target in ccRCC. The RCC1/EZH2 axis takes part in the development of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Carcinoma, Renal Cell/pathology , Cell Proliferation , Cell Cycle/genetics , Prognosis , Apoptosis , Kidney Neoplasms/pathology , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Nuclear Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics
7.
Front Plant Sci ; 14: 1124905, 2023.
Article in English | MEDLINE | ID: mdl-36909424

ABSTRACT

Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is the world's most widely cultivated crop and an important staple food for humans, accounting for one-fifth of calories consumed. Proteins encoded by the regulator of chromosome condensation 1 (RCC1) are highly conserved among eukaryotes and consist of seven repeated domains that fold into a seven-bladed propeller structure. In this study, a total of 76 RCC1 genes of bread wheat were identified via a genome-wide search, and their phylogenetic relationship, gene structure, protein-conserved domain, chromosome localization, conserved motif, and transcription factor binding sites were systematically analyzed using the bioinformatics approach to indicate the evolutionary and functional features of these genes. The expression patterns of 76 TaRCC1 family genes in wheat under various stresses were further analyzed, and RT-PCR verified that RCC1-3A (TraesCS3A02G362800), RCC1-3B (TraesCS3B02G395200), and RCC1-3D (TraesCS3D02G35650) were significantly induced by salt, cold, and drought stresses. Additionally, the co-expression network analysis and binding site prediction suggested that Myb-7B (TraesCS7B02G188000) and Myb-7D (TraesCS7D02G295400) may bind to the promoter of RCC1-3A/3B and upregulate their expression in response to abiotic stresses in wheat. The results have furthered our understanding of the wheat RCC1 family members and will provide important information for subsequent studies and the use of RCC1 genes in wheat.

8.
Exp Hematol Oncol ; 12(1): 23, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36849955

ABSTRACT

BACKGROUND: More effective targeted therapy and new combination regimens are needed for Acute myeloid leukemia (AML), owing to the unsatisfactory long-term prognosis of the disease. Here, we investigated the synergistic effect and the mechanism of a histone deacetylase inhibitor, Chidamide in combination with Cladribine, a purine nucleoside antimetabolite analog in the disease. METHODS: Cell counting kit-8 assays and Chou-Talalay's combination index were used to examine the synergistic effect of Chidamide and Cladribine on AML cell lines (U937, THP-1, and MV4-11) and primary AML cells. PI and Annexin-V/PI assays were used to detect the cell cycle effect and apoptosis effect, respectively. Global transcriptome analysis, RT-qPCR, c-MYC Knockdown, western blotting, co-immunoprecipitation, and chromatin immunoprecipitation assays were employed to explore the molecule mechanisms. RESULTS: The combination of Chidamide with Cladribine showed a significant increase in cell proliferation arrest, the G0/G1 phase arrest, and apoptosis compared to the single drug control in AML cell lines along with upregulated p21Waf1/Cip1 expression and downregulated CDK2/Cyclin E2 complex, and elevated cleaved caspase-9, caspase-3, and PARP. The combination significantly suppresses the c-MYC expression in AML cells, and c-MYC knockdown significantly increased the sensitivity of U937 cells to the combination compared to single drug control. Moreover, we observed HDAC2 interacts with c-Myc in AML cells, and we further identified that c-Myc binds to the promoter region of RCC1 that also could be suppressed by the combination through c-Myc-dependent. Consistently, a positive correlation of RCC1 with c-MYC was observed in the AML patient cohort. Also, RCC1 and HDAC2 high expression are associated with poor survival in AML patients. Finally, we also observed the combination significantly suppresses cell growth and induces the apoptosis of primary cells in AML patients with AML1-ETO fusion, c-KIT mutation, MLL-AF6 fusion, FLT3-ITD mutation, and in a CMML-BP patient with complex karyotype. CONCLUSIONS: Our results demonstrated the synergistic effect of Chidamide with Cladribine on cell growth arrest, cell cycle arrest, and apoptosis in AML and primary cells with genetic defects by targeting HDAC2/c-Myc/RCC1 signaling in AML. Our data provide experimental evidence for the undergoing clinical trial (Clinical Trial ID: NCT05330364) of Chidamide plus Cladribine as a new potential regimen in AML.

9.
Front Mol Biosci ; 9: 946507, 2022.
Article in English | MEDLINE | ID: mdl-36148010

ABSTRACT

Regulator of chromatin condensation 1 (RCC1) is the major guanine nucleotide exchange factor of RAN GTPase, which plays a key role in various biological processes such as cell cycle and DNA damage repair. Small nucleolar RNA host gene 3 (SNHG3) and small nucleolar RNA host gene12 are long-stranded non-coding RNAs (lncRNAs) and are located on chromatin very close to the sequence of Regulator of chromatin condensation 1. Many studies have shown that they are aberrantly expressed in tumor tissues and can affect the proliferation and viability of cancer cells. Although the effects of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 on cellular activity have been reported, respectively, their overall analysis on the pan-cancer level has not been performed. Here, we performed a comprehensive analysis of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 in 33 cancers through the Cancer Genome Atlas and Gene Expression Database. The results showed that Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 were highly expressed in a variety of tumor tissues compared to normal tissues. The expression of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 in BRCA, LGG and LIHC was associated with TP53 mutations. In addition, Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 expression was closely associated with the prognosis of patients with multiple tumors. Immunocorrelation analysis indicated that Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 showed a correlation with multiple immune cell infiltration. The results of enrichment analysis suggested that Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 was involved in the regulation of cell cycle, apoptosis and other pathways. We found that these effects were mainly mediated by Regulator of chromatin condensation 1, while the trend of small nucleolar RNA host gene 3/small nucleolar RNA host gene12 regulation was also consistent with regulator of chromatin condensation 1. The important role played by Regulator of chromatin condensation 1 in tumor diseases was further corroborated by the study of adjacent lncRNAs.These findings provide new and comprehensive insights into the role of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 in tumor development and show their potential as clinical monitoring and therapy.

10.
Cell Cycle ; 21(17): 1785-1794, 2022 09.
Article in English | MEDLINE | ID: mdl-35549614

ABSTRACT

Nup50 is nuclear pore complex component localized to the nuclear side of the pore and in the nucleoplasm. It has been characterized as an auxiliary factor in nuclear transport reactions. Our recent work indicates that it interacts with and stimulates RCC1, the sole guanine nucleotide exchange factor for the GTPase Ran. Here, we discuss how this interaction might contribute to Nup50 function in nuclear transport but also its other functions like control of gene expression, cell cycle and DNA damage repair.


Subject(s)
Cell Cycle Proteins , Nuclear Proteins , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Nuclear Proteins/metabolism , ran GTP-Binding Protein/metabolism
11.
Pathol Oncol Res ; 27: 1610077, 2021.
Article in English | MEDLINE | ID: mdl-34924821

ABSTRACT

Introduction: Regulator of chromatin condensation 1 (RCC1) is a major guanine-nucleotide exchange factor for Ran GTPase, and it plays key roles in various biological processes. Previous studies have found that RCC1 may play a role in the development of tumors, but little is known about the relationship between RCC1 and colorectal liver oligometastases (CLOs). Methods: One hundred and twenty-nine pairs of matched human CLO samples, including both primary tumor and its liver metastasis specimens, were subjected to immunohistochemistry to determine the location and expression levels of RCC1. Associations between RCC1 and survival as well as gene expression profiling were explored. Results: In this study, we first observed that RCC1 was mildly increased in CLO tumor tissues compared with normal tissues, and the localization was primarily nuclear. In addition, our study found that high RCC1 expression in liver oligometastases was an independent prognostic marker for unfavorable recurrence-free survival and overall survival (p = 0.036 and p = 0.016). Gene expression profiles generated from microarray analysis showed that RCC1 was involved in pathways including "Myc targets," "E2F targets" and "DNA repair" pathways. Conclusion: Our data indicated that RCC1 was expressed mainly in the nucleus, and strong and significant associations were found between RCC1 expression levels and the survival of CLO patients. These findings indicated that RCC1 may play a role in CLO development.


Subject(s)
Cell Cycle Proteins/metabolism , Colorectal Neoplasms/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Liver Neoplasms/metabolism , Nuclear Proteins/metabolism , Adult , Aged , Biomarkers, Tumor/metabolism , Cell Nucleus/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Disease-Free Survival , Female , Gene Expression Profiling , Humans , Liver Neoplasms/mortality , Liver Neoplasms/secondary , Male , Middle Aged , Prognosis
12.
EMBO J ; 40(23): e108788, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34725842

ABSTRACT

During mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport-competent nucleus. Here, we show that Nup50 plays a crucial role in NPC assembly independent of its well-established function in nuclear transport. RNAi-mediated downregulation in cells or immunodepletion of Nup50 protein in Xenopus egg extracts interferes with NPC assembly. We define a conserved central region of 46 residues in Nup50 that is crucial for Nup153 and MEL28/ELYS binding, and for NPC interaction. Surprisingly, neither NPC interaction nor binding of Nup50 to importin α/ß, the GTPase Ran, or chromatin is crucial for its function in the assembly process. Instead, an N-terminal fragment of Nup50 can stimulate the Ran GTPase guanine nucleotide exchange factor RCC1 and NPC assembly, indicating that Nup50 acts via the Ran system in NPC reformation at the end of mitosis. In support of this conclusion, Nup50 mutants defective in RCC1 binding and stimulation cannot replace the wild-type protein in in vitro NPC assembly assays, whereas excess RCC1 can compensate the loss of Nup50.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Mitosis , Mutation , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Female , Guanine Nucleotide Exchange Factors/genetics , HeLa Cells , Humans , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Xenopus laevis
13.
Cell Biosci ; 11(1): 195, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789336

ABSTRACT

BACKGROUND: NME6 is a member of the nucleoside diphosphate kinase (NDPK/NME/Nm23) family which has key roles in nucleotide homeostasis, signal transduction, membrane remodeling and metastasis suppression. The well-studied NME1-NME4 proteins are hexameric and catalyze, via a phospho-histidine intermediate, the transfer of the terminal phosphate from (d)NTPs to (d)NDPs (NDP kinase) or proteins (protein histidine kinase). For the NME6, a gene/protein that emerged early in eukaryotic evolution, only scarce and partially inconsistent data are available. Here we aim to clarify and extend our knowledge on the human NME6. RESULTS: We show that NME6 is mostly expressed as a 186 amino acid protein, but that a second albeit much less abundant isoform exists. The recombinant NME6 remains monomeric, and does not assemble into homo-oligomers or hetero-oligomers with NME1-NME4. Consequently, NME6 is unable to catalyze phosphotransfer: it does not generate the phospho-histidine intermediate, and no NDPK activity can be detected. In cells, we could resolve and extend existing contradictory reports by localizing NME6 within mitochondria, largely associated with the mitochondrial inner membrane and matrix space. Overexpressing NME6 reduces ADP-stimulated mitochondrial respiration and complex III abundance, thus linking NME6 to dysfunctional oxidative phosphorylation. However, it did not alter mitochondrial membrane potential, mass, or network characteristics. Our screen for NME6 protein partners revealed its association with NME4 and OPA1, but a direct interaction was observed only with RCC1L, a protein involved in mitochondrial ribosome assembly and mitochondrial translation, and identified as essential for oxidative phosphorylation. CONCLUSIONS: NME6, RCC1L and mitoribosomes localize together at the inner membrane/matrix space where NME6, in concert with RCC1L, may be involved in regulation of the mitochondrial translation of essential oxidative phosphorylation subunits. Our findings suggest new functions for NME6, independent of the classical phosphotransfer activity associated with NME proteins.

14.
Cells ; 10(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34831030

ABSTRACT

Although heterochromatin makes up 40% of the Drosophila melanogaster genome, its organization remains little explored, especially in polytene chromosomes, as it is virtually not represented in them due to underreplication. Two all-new approaches were used in this work: (i) with the use of a newly synthesized Drosophila line that carries three mutations, Rif11, SuURES and Su(var)3-906, suppressing the underreplication of heterochromatic regions, we obtained their fullest representation in polytene chromosomes and described their structure; (ii) 20 DNA fragments with known positions on the physical map as well as molecular genetic features of the genome (gene density, histone marks, heterochromatin proteins, origin recognition complex proteins, replication timing sites and satellite DNAs) were mapped in the newly polytenized heterochromatin using FISH and bioinformatics data. The borders of the heterochromatic regions and variations in their positions on arm 3L have been determined for the first time. The newly polytenized heterochromatic material exhibits two main types of morphology: a banding pattern (locations of genes and short satellites) and reticular chromatin (locations of large blocks of satellite DNA). The locations of the banding and reticular polytene heterochromatin was determined on the physical map.


Subject(s)
Carrier Proteins/genetics , DNA Replication/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Heterochromatin/metabolism , Mutation/genetics , Polytene Chromosomes/genetics , Repressor Proteins/genetics , Animals , Antibodies/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Genes, Essential , Genome, Insect , Guanine Nucleotide Exchange Factors/metabolism , Histones/metabolism , Introns/genetics , Models, Biological , Nuclear Proteins/metabolism , Protein Processing, Post-Translational , Repetitive Sequences, Nucleic Acid/genetics , Replication Origin/genetics
15.
BMC Plant Biol ; 21(1): 369, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34384381

ABSTRACT

BACKGROUND: Low temperature severely limits the growth, yield, and geographic distributions of soybean. Soybean plants respond to cold stress by reprogramming the expression of a series of cold-responsive genes. However, the intrinsic mechanism underlying cold-stress tolerance in soybean remains unclear. A. thaliana tolerant to chilling and freezing 1 (AtTCF1) is a regulator of chromosome condensation 1 (RCC1) family protein and regulates freezing tolerance through an independent C-repeat binding transcription factor (CBF) signaling pathway. RESULTS: In this study, we identified a homologous gene of AtTCF1 in soybean (named GmTCF1a), which mediates plant tolerance to low temperature. Like AtTCF1, GmTCF1a contains five RCC1 domains and is located in the nucleus. GmTCF1a is strongly and specifically induced by cold stress. Interestingly, ectopic overexpression of GmTCF1a in Arabidopsis greatly increased plant survival rate and decreased electrolyte leakage under freezing stress. A cold-responsive gene, COR15a, was highly induced in the GmTCF1a-overexpressing transgenic lines. CONCLUSIONS: GmTCF1a responded specifically to cold stress, and ectopic expression of GmTCF1a enhanced cold tolerance and upregulated COR15a levels. These results indicate that GmTCF1a positively regulates cold tolerance in soybean and may provide novel insights into genetic improvement of cold tolerance in crops.


Subject(s)
Acclimatization/genetics , Genes, Plant , Glycine max/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cold Temperature , Cold-Shock Response/genetics , Nuclear Proteins/genetics , Glycine max/physiology
16.
Biomolecules ; 11(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-34356619

ABSTRACT

Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.


Subject(s)
Cell Cycle Proteins/metabolism , G1 Phase , Guanine Nucleotide Exchange Factors/metabolism , Human papillomavirus 16/metabolism , Keratinocytes/metabolism , Nuclear Proteins/metabolism , Papillomavirus E7 Proteins/biosynthesis , S Phase , Cell Line, Transformed , Humans , Keratinocytes/virology , Phosphorylation
17.
Int J Mol Sci ; 22(14)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34298996

ABSTRACT

Regulator of Chromatin Condensation 1 (RCC1) is the only known guanine nucleotide exchange factor that acts on the Ras-like G protein Ran and plays a key role in cell cycle regulation. Although there is growing evidence to support the relationship between RCC1 and cancer, detailed pancancer analyses have not yet been performed. In this genome database study, based on The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases, the potential role of RCC1 in 33 tumors' entities was explored. The results show that RCC1 is highly expressed in most human malignant neoplasms in contrast to healthy tissues. RCC1 expression is closely related to the prognosis of a broad variety of tumor patients. Enrichment analysis showed that some tumor-related pathways such as "cell cycle" and "RNA transport" were involved in the functional mechanism of RCC1. In particular, the conducted analysis reveals the relation of RCC1 to multiple immune checkpoint genes and suggests that the regulation of RCC1 is closely related to tumor infiltration of cancer-associated fibroblasts and CD8+ T cells. Coherent data demonstrate the association of RCC1 with the tumor mutation burden and microsatellite instability in various tumors. These findings provide new insights into the role of RCC1 in oncogenesis and tumor immunology in various tumors and indicate its potential as marker for therapy prognosis and targeted treatment strategies.


Subject(s)
Cell Cycle Proteins/genetics , Chromatin/metabolism , Gene Expression Regulation, Neoplastic/genetics , Guanine Nucleotide Exchange Factors/genetics , Neoplasms/metabolism , Nuclear Proteins/genetics , Big Data , CD8-Positive T-Lymphocytes/metabolism , Cancer-Associated Fibroblasts/metabolism , Carcinogenesis/genetics , Carcinogenesis/immunology , Cell Cycle/genetics , Cell Cycle/immunology , Cell Cycle Proteins/metabolism , Chromatin/genetics , DNA Methylation , Databases, Genetic , Gene Expression Regulation, Neoplastic/immunology , Gene Ontology , Guanine Nucleotide Exchange Factors/metabolism , Humans , Immune Checkpoint Proteins/genetics , Kaplan-Meier Estimate , Microsatellite Instability , Neoplasms/genetics , Neoplasms/mortality , Neoplasms/pathology , Nuclear Proteins/metabolism , Phosphorylation , Prognosis , Protein Interaction Maps , Transcriptome
18.
Mol Cell ; 81(6): 1276-1291.e9, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33539787

ABSTRACT

Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.


Subject(s)
Brain Neoplasms , Carcinogenesis , Cell Cycle Proteins , Glioblastoma , Guanine Nucleotide Exchange Factors , Mitosis/radiation effects , Neoplasm Proteins , Nuclear Proteins , Protein-Arginine N-Methyltransferases , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/radiotherapy , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/radiation effects , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Female , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/radiotherapy , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , Male , Mice , Mitosis/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Signal Transduction/genetics , Signal Transduction/radiation effects , Xenograft Model Antitumor Assays
19.
J Cell Mol Med ; 25(8): 4136-4147, 2021 04.
Article in English | MEDLINE | ID: mdl-33630417

ABSTRACT

In recent years, although Immune Checkpoint Inhibitors (ICIs) significantly improves survival both in local advanced stage and advanced stage of non-small cell lung cancer (NSCLC), the objective response rate of ICI monotherapy is still only about 20%. Thus, to identify the mechanisms of ICI resistance is critical to increase the efficacy of ICI treatments. By bioinformatics analysis, we found that the expression of regulator of chromosome condensation 1 (RCC1) in lung adenocarcinoma was significantly higher than that in normal lung tissue in TCGA and Oncomine databases. The survival analysis showed that high expression RCC1 was associated with the poor prognosis of NSCLC. And the expression of RCC1 was inversely related to the number of immune cell infiltration. In vitro, knockdown of RCC1 not only significantly inhibited the proliferation of lung adenocarcinoma cells but also increased the expression levels of p27kip1 and PD-L1, and decreased the expression level of CDK4 and p-Rb. In vivo, knockdown of RCC1 significantly slowed down the growth rate of tumour, and further reduced the volume and weight of tumour model after treated by PD-L1 monoclonal antibody. Therefore, RCC1 could up-regulate the expression level of PD-L1 by regulating p27kip1 /CDK4 pathway and decrease the resistance to ICIs. And this study might provide a new way to increase the efficacy of PD-L1 monoclonal antibody by inhibiting RCC1.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Cycle Proteins/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Immunotherapy/methods , Nuclear Proteins/antagonists & inhibitors , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adult , Aged , Animals , Apoptosis , B7-H1 Antigen/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Movement , Cell Proliferation , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Female , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Young Adult
20.
Front Mol Biosci ; 7: 225, 2020.
Article in English | MEDLINE | ID: mdl-33102517

ABSTRACT

RCC1 (regulator of chromosome condensation 1) is the only known guanine nucleotide exchange factor of Ran, a nuclear Ras-like G protein. RCC1 combines with chromatin and Ran to establish a concentration gradient of RanGTP, thereby participating in a series of cell physiological activities. In this review, we discuss the structure of RCC1 and describe how RCC1 affects the formation and function of the nuclear envelope, spindle formation, and nuclear transport. We mainly focus on the effect of RCC1 on the cell cycle during tumorigenesis and the recent research progress that has been made in relation to different tumor types.

SELECTION OF CITATIONS
SEARCH DETAIL