Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
bioRxiv ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39229050

ABSTRACT

Drug abuse continues to pose a significant challenge in HIV control efforts. In our investigation, we discovered that cocaine not only upregulates the expression of DNA-dependent protein kinase (DNA-PK) but also augments DNA-PK activation by enhancing its phosphorylation at S2056. Moreover, DNA-PK phosphorylation triggers the translocation of DNA-PK into the nucleus. The finding that cocaine promotes nuclear translocation of DNA-PK further validates our observation of enhanced DNA-PK recruitment at the HIV long terminal repeat (LTR) following cocaine exposure. By activating and facilitating the nuclear translocation of DNA-PK, cocaine effectively orchestrates multiple stages of HIV transcription, thereby promoting HIV replication. Additionally, our study indicates that cocaine-induced DNA-PK promotes hyper-phosphorylation of RNA polymerase II (RNAP II) carboxyl-terminal domain (CTD) at Ser5 and Ser2 sites, enhancing both initiation and elongation phases, respectively, of HIV transcription. Cocaine's enhancement of transcription initiation and elongation is further supported by its activation of cyclin-dependent kinase 7 (CDK7) and subsequent phosphorylation of CDK9, thereby promoting positive transcriptional elongation factor b (P-TEFb) activity. We demonstrate for the first time that cocaine, through DNA-PK activation, promotes the specific phosphorylation of TRIM28 at Serine 824 (p-TRIM28, S824). This modification converts TRIM28 from a transcriptional inhibitor to a transactivator for HIV transcription. Additionally, we observe that phosphorylation of TRIM28 (p-TRIM28, S824) promotes the transition from the pausing phase to the elongation phase of HIV transcription, thereby facilitating the production of full-length HIV genomic transcripts. This finding corroborates the observed enhanced RNAP II CTD phosphorylation at Ser2, a marker of transcriptional elongation, following cocaine exposure. Accordingly, upon cocaine treatment, we observed elevated recruitment of p-TRIM28-(S824) at the HIV LTR. Overall, our results have unraveled the intricate molecular mechanisms underlying cocaine-induced HIV transcription and gene expression. These findings hold promise for the development of highly targeted therapeutics aimed at mitigating the detrimental effects of cocaine in individuals living with HIV.

2.
PeerJ ; 12: e18042, 2024.
Article in English | MEDLINE | ID: mdl-39247540

ABSTRACT

Agrochemical inducible gene expression system provides cost-effective and orthogonal control of energy and information flow in bacterial cells. However, the previous version of Mandipropamid inducible gene expression system (Mandi-T7) became constitutively active at room temperature. We moved the split site of the eRNAP from position LYS179 to position ILE109. This new eRNAP showed proximity dependence at 23 °C, but not at 37 °C. We built Mandi-T7-v2 system based on the new eRNAP and it worked in both Escherichia coli and Agrobacterium tumefaciens. We also induced GFP expression in Agrobacterium cells in a semi-in vivo system. The modified eRNAP when combined with the leucine zipper-based dimerization system, behaved as a cold inducible gene expression system. Our new system provides a means to broaden the application of agrochemicals for both research and agricultural application. Portions of this text were previously published as part of a preprint (https://www.biorxiv.org/content/10.1101/2024.04.02.587689v1).


Subject(s)
Agrobacterium tumefaciens , Agrochemicals , DNA-Directed RNA Polymerases , Escherichia coli , Agrobacterium tumefaciens/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Agrochemicals/pharmacology , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Bacterial
3.
Sci Rep ; 14(1): 18146, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103417

ABSTRACT

Urate nephropathy, a common complication of hyperuricemia, has garnered increasing attention worldwide. However, the exact pathogenesis of this condition remains unclear. Currently, inflammation is widely accepted as the key factor in urate nephropathy. Therefore, the aim of this study was to elucidate the interaction of lincRNA-p21/AIF-1/CMPK2/NLRP3 via exosomes in urate nephropathy. This study evaluated the effect of lincRNA-p21/AIF-1/CMPK2/NLRP3 using clinical data collected from patients with urate nephropathy and human renal tubular epithelial cells (HK2) cultured with different concentrations of urate. In clinical research section, the level of lincRNA-p21/AIF-1 in exosomes of urine in patients with hyperuricemia or urate nephropathy was found to be increased, particularly in patients with urate nephropathy. In vitro study section, the level of exosomes, inflammation, autophagy, and apoptosis was increased in HK2 cells induced by urate. Additionally, the expression of lincRNA-p21, AIF-1, CMPK2, and NLRP3 was upregulated in exosomes and HK2 cells. Furthermore, manipulating the activity of lincRNA-p21, AIF-1, CMPK2, and NLRP3 through overexpression or interference vectors regulated the level of inflammation, autophagy, and apoptosis in HK2 cells. In conclusion, the pathway of lincRNA-p21/AIF-1/CMPK2/NLRP3 contributed to inflammation, autophagy, and apoptosis of human renal tubular epithelial cell induced by urate via exosomes. Additionally, the specific exosomes in urine might serve as novel biomarkers for urate nephropathy.


Subject(s)
Apoptosis , Autophagy , Epithelial Cells , Exosomes , NLR Family, Pyrin Domain-Containing 3 Protein , RNA, Long Noncoding , Uric Acid , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Uric Acid/metabolism , Exosomes/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Signal Transduction , Inflammation/metabolism , Inflammation/pathology , Kidney Tubules/metabolism , Kidney Tubules/pathology , Cell Line , Male , Apoptosis Inducing Factor/metabolism , Female , Middle Aged , Hyperuricemia/metabolism , Hyperuricemia/urine , Calcium-Binding Proteins , Microfilament Proteins
4.
Microbiol Spectr ; 12(6): e0056024, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38647280

ABSTRACT

The continued emergence of Neisseria gonorrhoeae strains that express resistance to multiple antibiotics, including the last drug for empiric monotherapy (ceftriaxone), necessitates the development of new treatment options to cure gonorrheal infections. Toward this goal, we recently reported that corallopyronin A (CorA), which targets the switch region of the ß' subunit (RpoC) of bacterial DNA-dependent RNA polymerase (RNAP), has potent anti-gonococcal activity against a panel of multidrug-resistant clinical strains. Moreover, in that study, CorA could eliminate gonococcal infection of primary human epithelial cells and gonococci in a biofilm state. To determine if N. gonorrhoeae could develop high-level resistance to CorA in a single step, we sought to isolate spontaneous mutants expressing any CorA resistance phenotypes. However, no single-step mutants with high-level CorA resistance were isolated. High-level CorA resistance could only be achieved in this study through a multi-step pathway involving over-expression of the MtrCDE drug efflux pump and single amino acid changes in the ß and ß' subunits (RpoB and RpoC, respectively) of RNAP. Molecular modeling of RpoB and RpoC interacting with CorA was used to deduce how the amino acid changes in RpoB and RpoC could influence gonococcal resistance to CorA. Bioinformatic analyses of whole genome sequences of clinical gonococcal isolates indicated that the CorA resistance determining mutations in RpoB/C, identified herein, are very rare (≤ 0.0029%), suggesting that the proposed pathway for resistance is predictive of how this phenotype could potentially evolve if CorA is used therapeutically to treat gonorrhea in the future. IMPORTANCE: The continued emergence of multi-antibiotic-resistant strains of Neisseria gonorrhoeae necessitates the development of new antibiotics that are effective against this human pathogen. We previously described that the RNA polymerase-targeting antibiotic corallopyronin A (CorA) has potent activity against a large collection of clinical strains that express different antibiotic resistance phenotypes including when such gonococci are in a biofilm state. Herein, we tested whether a CorA-sensitive gonococcal strain could develop spontaneous resistance. Our finding that CorA resistance could only be achieved by a multi-step process involving over-expression of the MtrCDE efflux pump and single amino acid changes in RpoB and RpoC suggests that such resistance may be difficult for gonococci to evolve if this antibiotic is used in the future to treat gonorrheal infections that are refractory to cure by other antibiotics.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , DNA-Directed RNA Polymerases , Gonorrhea , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/enzymology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Anti-Bacterial Agents/pharmacology , Humans , Gonorrhea/microbiology , Gonorrhea/drug therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Mutation , Drug Resistance, Multiple, Bacterial/genetics , Biofilms/drug effects , Biofilms/growth & development , Lactones
5.
Food Chem Toxicol ; 187: 114622, 2024 May.
Article in English | MEDLINE | ID: mdl-38531469

ABSTRACT

Amatoxins are responsible for most fatal mushroom poisoning cases, as it causes both hepatotoxicity and nephrotoxicity. However, studies on amatoxin nephrotoxicity are limited. Here, we investigated nephrotoxicity over 4 days and nephrotoxicity/hepatotoxicity over 14 days in mice. The organ weight ratio, serological indices, and tissue histology results indicated that a nephrotoxicity mouse model was established with two stages: (1) no apparent effects within 24 h; and (2) the appearance of adverse effects, with gradual worsening within 2-14 days. For each stage, the kidney transcriptome revealed patterns of differential mRNA expression and significant pathway changes, and Western blot analysis verified the expression of key proteins. Amanitin-induced nephrotoxicity was directly related to RNA polymerase II because mRNA levels decreased, RNA polymerase II-related pathways were significantly enriched at the transcription level, and RNA polymerase II protein was degraded in the early poisoning stage. In the late stage, nephrotoxicity was more severe than hepatotoxicity. This is likely associated with inflammation because inflammation-related pathways were significantly enriched and NF-κB activation was increased in the kidney.


Subject(s)
Agaricales , Chemical and Drug Induced Liver Injury , Mushroom Poisoning , Male , Mice , Animals , Alpha-Amanitin/toxicity , Mice, Inbred ICR , RNA Polymerase II/genetics , Kidney , Inflammation , Gene Expression Profiling , RNA, Messenger
6.
mSystems ; 9(3): e0083923, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38315666

ABSTRACT

Engineering microbial hosts to synthesize pyruvate derivatives depends on blocking pyruvate oxidation, thereby causing severe growth defects in aerobic glucose-based bioprocesses. To decouple pyruvate metabolism from cell growth to improve pyruvate availability, a genome-scale metabolic model combined with constraint-based flux balance analysis, geometric flux balance analysis, and flux variable analysis was used to identify genetic targets for strain design. Using translation elements from a ~3,000 cistronic library to modulate fxpK expression in a bicistronic cassette, a bifido shunt pathway was introduced to generate three molecules of non-pyruvate-derived acetyl-CoA from one molecule of glucose, bypassing pyruvate oxidation and carbon dioxide generation. The dynamic control of flux distribution by T7 RNAP-mediated synthetic small RNA decoupled pyruvate catabolism from cell growth. Adaptive laboratory evolution and multi-omics analysis revealed that a mutated isocitrate dehydrogenase functioned as a metabolic switch to activate the glyoxylate shunt as the only C4 anaplerotic pathway to generate malate from two molecules of acetyl-CoA input and bypass two decarboxylation reactions in the tricarboxylic acid cycle. A chassis strain for pyruvate derivative synthesis was constructed to reduce carbon loss by using the glyoxylate shunt as the only C4 anaplerotic pathway and the bifido shunt as a non-pyruvate-derived acetyl-CoA synthetic pathway and produced 22.46, 27.62, and 6.28 g/L of l-leucine, l-alanine, and l-valine by a controlled small RNA switch, respectively. Our study establishes a novel metabolic pattern of glucose-grown bacteria to minimize carbon loss under aerobic conditions and provides valuable insights into cell design for manufacturing pyruvate-derived products.IMPORTANCEBio-manufacturing from biomass-derived carbon sources using microbes as a cell factory provides an eco-friendly alternative to petrochemical-based processes. Pyruvate serves as a crucial building block for the biosynthesis of industrial chemicals; however, it is different to improve pyruvate availability in vivo due to the coupling of pyruvate-derived acetyl-CoA with microbial growth and energy metabolism via the oxidative tricarboxylic acid cycle. A genome-scale metabolic model combined with three algorithm analyses was used for strain design. Carbon metabolism was reprogrammed using two genetic control tools to fine-tune gene expression. Adaptive laboratory evolution and multi-omics analysis screened the growth-related regulatory targets beyond rational design. A novel metabolic pattern of glucose-grown bacteria is established to maintain growth fitness and minimize carbon loss under aerobic conditions for the synthesis of pyruvate-derived products. This study provides valuable insights into the design of a microbial cell factory for synthetic biology to produce industrial bio-products of interest.


Subject(s)
Glucose , Pyruvates , Acetyl Coenzyme A/genetics , Glucose/metabolism , Glyoxylates/metabolism , RNA
7.
Appl Microbiol Biotechnol ; 108(1): 109, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38204130

ABSTRACT

RNA polymerase III (RNAP III) synthetizes small essential non-coding RNA molecules such as tRNAs and 5S rRNA. In yeast and vertebrates, RNAP III needs general transcription factors TFIIIA, TFIIIB, and TFIIIC to initiate transcription. TFIIIC, composed of six subunits, binds to internal promoter elements in RNAP III-dependent genes. Limited information is available about RNAP III transcription in the trypanosomatid protozoa Trypanosoma brucei and Leishmania major, which diverged early from the eukaryotic lineage. Analyses of the first published draft of the trypanosomatid genome sequences failed to recognize orthologs of any of the TFIIIC subunits, suggesting that this transcription factor is absent in these parasites. However, a putative TFIIIC subunit was recently annotated in the databases. Here we characterize this subunit in T. brucei and L. major and demonstrate that it corresponds to Tau95. In silico analyses showed that both proteins possess the typical Tau95 sequences: the DNA binding region and the dimerization domain. As anticipated for a transcription factor, Tau95 localized to the nucleus in insect forms of both parasites. Chromatin immunoprecipitation (ChIP) assays demonstrated that Tau95 binds to tRNA and U2 snRNA genes in T. brucei. Remarkably, by performing tandem affinity purifications we identified orthologs of TFIIIC subunits Tau55, Tau131, and Tau138 in T. brucei and L. major. Thus, contrary to what was assumed, trypanosomatid parasites do possess a TFIIIC complex. Other putative interacting partners of Tau95 were identified in T. brucei and L. major. KEY POINTS: • A four-subunit TFIIIC complex is present in T. brucei and L. major • TbTau95 associates with tRNA and U2 snRNA genes • Putative interacting partners of Tau95 might include some RNAP II regulators.


Subject(s)
Parasites , Transcription Factors, TFIII , Animals , Biological Assay , RNA, Transfer/genetics
8.
mBio ; 15(1): e0273723, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38095872

ABSTRACT

IMPORTANCE: Eukaryotic hosts have defense mechanisms that may disrupt molecular transactions along the pathogen's chromosome through excessive DNA damage. Given that DNA damage stalls RNA polymerase (RNAP) thereby increasing mutagenesis, investigating how host defense mechanisms impact the movement of the transcription machinery on the pathogen chromosome is crucial. Using a new methodology we developed, we elucidated the dynamics of RNAP movement and association with the chromosome in the pathogenic bacterium Salmonella enterica during infection. We found that dynamics of RNAP movement on the chromosome change significantly during infection genome-wide, including at regions that encode for key virulence genes. In particular, we found that there is pervasive RNAP backtracking on the bacterial chromosome during infections and that anti-backtracking factors are critical for pathogenesis. Altogether, our results suggest that, interestingly, the host environment can promote the development of antimicrobial resistance and hypervirulence as stalled RNAPs can accelerate evolution through increased mutagenesis.


Subject(s)
DNA-Directed RNA Polymerases , Transcription, Genetic , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Bacteria/genetics , Bacteria/metabolism , Virulence
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1022830

ABSTRACT

Objective:To detect the changes in the biological activity and expression of long-chain non-coding RNA-p21 (lncRNA-p21) in human lens epithelial cells HLE-B3 damage induced by hydrogen peroxide.Methods:HLE-B3 cells were divided into normal control group and hydrogen peroxide group, which were cultured in normal culture medium and culture medium containing 200 μmol/L hydrogen peroxide for 24 hours, respectively.Cell viability was determined by MTS colorimetric method.Cellular reactive oxygen species (ROS) level was detected using ROS assay kits.Cell apoptosis was tested by flow cytometry.Cell Caspase-3 activity was detected using Caspase-3 assay kit.Expressions of Bax and Bcl-2 proteins related to cell apoptosis were determined by Western Blot.Cell cycle distribution was determined by flow cytometry.Cell proliferation ability was detected by EDU proliferation assay kit.The expression of lncRNA-p21 in cells was detected by real time fluorescence quantitative polymerase chain reaction (PCR).The localization of lncRNA-p21 in cells was detected by fluorescence in situ hybridization.Results:The ROS content of cells in hydrogen peroxide group was (4.65±0.38), significantly higher than (1.00±0.01) of normal control group, and the difference was statistically significant ( t=16.66, P<0.05).Compared with the normal control group, the cell apoptosis rate was significantly increased, the activity of Caspase-3 was enhanced, and the relative expression of Bax was significantly increased in the hydrogen peroxide group, with statistically significant differences ( t=20.69, 39.80, 12.73, all at P<0.05).Compared with the normal control group, the proportion of G2 phase cells in the hydrogen peroxide group significantly increased, showing a statistically significant difference ( t=23.10, P<0.05).The EDU-positive cell rate of hydrogen peroxide group was (25.41±6.99)%, significantly lower than (50.58±9.15)% of normal control group ( t=6.559, P<0.05).The relative expression level of lncRNA-p21 in the hydrogen peroxide group was 2.36±0.29, significantly higher than 1.02±0.02 in the normal control group ( t=7.893, P<0.05).The fluorescence in situ hybridization experiments indicate that lncRNA-p21 was localized in the cytoplasm. Conclusions:In the oxidative stress model induced by hydrogen peroxide, the proliferation ability of lens epithelial cells significantly decreases, the apoptosis level significantly increases, and the expression levels of ROS and lncRNA-p21 enhances.lncRNA-p21 may be involved in the oxidative stress injury process of lens epithelial cells.

10.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139171

ABSTRACT

The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.


Subject(s)
Neoplasms , Repressor Proteins , Humans , RNA Splicing Factors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Alternative Splicing , Neoplasms/drug therapy , Neoplasms/genetics , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism
11.
Int J Mol Sci ; 24(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139252

ABSTRACT

The infection of human cytomegalovirus (HCMV) is strongly determined by the host-cell interaction in a way that the efficiency of HCMV lytic replication is dependent on the regulatory interplay between viral and cellular proteins. In particular, the activities of protein kinases, such as cyclin-dependent kinases (CDKs) and the viral CDK ortholog (vCDK/pUL97), play an important role in both viral reproduction and virus-host interaction. Very recently, we reported on the complexes formed between vCDK/pUL97, human cyclin H, and CDK7. Major hallmarks of this interplay are the interaction between cyclin H and vCDK/pUL97, which is consistently detectable across various conditions and host cell types of infection, the decrease or increase in pUL97 kinase activity resulting from cyclin H knock-down or elevated levels, respectively, and significant trans-stimulation of human CDK7 activity by pUL97 in vitro. Due to the fact that even a ternary complex of vCDK/pUL97-cyclin H-CDK7 can be detected by coimmunoprecipitation and visualized by bioinformatic structural modeling, we postulated a putative impact of the respective kinase activities on the patterns of transcription in HCMV-infected cells. Here, we undertook a first vCDK/pUL97-specific transcriptomic analysis, which combined conditions of fully lytic HCMV replication with those under specific vCDK/pUL97 or CDK7 drug-mediated inhibition or transient cyclin H knockout. The novel results were further strengthened using bioinformatic modeling of the involved multi-protein complexes. Our data underline the importance of these kinase activities for the C-terminal domain (CTD) phosphorylation-driven activation of host RNA polymerase in HCMV-infected cells. The impact of the individual experimental conditions on differentially expressed gene profiles is described in detail and discussed.


Subject(s)
Cyclins , Herpesviridae Infections , Humans , Cyclins/metabolism , Cytomegalovirus/genetics , Cyclin H/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Phosphorylation
12.
Mol Cell ; 83(22): 4158-4173.e7, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37949068

ABSTRACT

Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.


Subject(s)
Bacillus subtilis , Spores, Bacterial , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism , Promoter Regions, Genetic , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism
13.
Cell Physiol Biochem ; 57(5): 395-408, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37876219

ABSTRACT

Suppressor of Ty homolog-5 (SPT5) discovered in the yeast mutant screens as a suppressor of mutation caused by the insertion of the Transposons of yeast (Ty) element along with SPT4, with which it forms a holoenzyme complex known as DRB sensitivity-inducing factor (DSIF) and plays an essential role in the regulation of transcription. SPT5 is a highly conserved protein across all three domains of life and performs critical functions in transcription, starting from promoter-proximal pausing to termination. We also highlight the emerging role of SPT5 in other non-canonical functions, such as the regulation of post-translational modifications (PTM) and the transcriptional regulation of non-coding genes. Also, in brief, we highlight the clinical implications of SPT5 dysregulation.


Subject(s)
Nuclear Proteins , Saccharomyces cerevisiae Proteins , Nuclear Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic
14.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834211

ABSTRACT

RNA polymerase III (RNAP III) holoenzyme activity and the processing of its products have been linked to several metabolic dysfunctions in lower and higher eukaryotes. Alterations in the activity of RNAP III-driven synthesis of non-coding RNA cause extensive changes in glucose metabolism. Increased RNAP III activity in the S. cerevisiae maf1Δ strain is lethal when grown on a non-fermentable carbon source. This lethal phenotype is suppressed by reducing tRNA synthesis. Neither the cause of the lack of growth nor the underlying molecular mechanism have been deciphered, and this area has been awaiting scientific explanation for a decade. Our previous proteomics data suggested mitochondrial dysfunction in the strain. Using model mutant strains maf1Δ (with increased tRNA abundance) and rpc128-1007 (with reduced tRNA abundance), we collected data showing major changes in the TCA cycle metabolism of the mutants that explain the phenotypic observations. Based on 13C flux data and analysis of TCA enzyme activities, the present study identifies the flux constraints in the mitochondrial metabolic network. The lack of growth is associated with a decrease in TCA cycle activity and downregulation of the flux towards glutamate, aspartate and phosphoenolpyruvate (PEP), the metabolic intermediate feeding the gluconeogenic pathway. rpc128-1007, the strain that is unable to increase tRNA synthesis due to a mutation in the C128 subunit, has increased TCA cycle activity under non-fermentable conditions. To summarize, cells with non-optimal activity of RNAP III undergo substantial adaptation to a new metabolic state, which makes them vulnerable under specific growth conditions. Our results strongly suggest that balanced, non-coding RNA synthesis that is coupled to glucose signaling is a fundamental requirement to sustain a cell's intracellular homeostasis and flexibility under changing growth conditions. The presented results provide insight into the possible role of RNAP III in the mitochondrial metabolism of other cell types.


Subject(s)
Mitochondria , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mitochondria/metabolism , Homeostasis , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Untranslated/metabolism
15.
ACS Synth Biol ; 12(10): 3020-3029, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37750409

ABSTRACT

The deaminase-fused T7 RNA polymerase (T7RNAP) presents a promising toolkit for in vivo target-specific enzyme evolution, offering the unique advantage of simultaneous DNA modification and screening. Previous studies have reported the mutation efficiency of base editors relying on different resources. In contrast, the mechanism underlying the T7RNAP/T7 system is well-understood. Therefore, this study aimed to establish a new platform, termed dT7-Muta, by tuning the binding efficiency between T7RNAP and the T7 promoter for gene mutagenesis. The strategy for proof-of-concept involves alterations in the fluorescence distribution through dT7-Muta and screening of the mutants via flow cytometry. The cis-aconitate decarboxylase from Aspergillus terreus (AtCadA) was evolved and screened via an itaconate-induced biosensor as proof-of-function of enzyme evolution. First, the degenerated codons were designed within the binding and initial region of T7 promoters (dT7s), including upstream (U), central (C), and downstream (D) regions. Three strength variants of dT7 promoter from each design, i.e., strong (S), medium (M), and weak (W), were used for evaluation. Mutation using dT7s of varying strength resulted in a broader fluorescence distribution in sfGFP mutants from the promoters CW and DS. On the other hand, broader fluorescence distribution was observed in the AtCadA mutants from the original promoter T7, UW, and DS, with the highest fluorescence and itaconic acid titer at 860 a.u. and 0.51 g/L, respectively. The present platform introduces a novel aspect of the deaminase-based mutagenesis, emphasizing the potential of altering the binding efficiency between T7RNAP and the T7 promoter for further efforts in enzyme evolution.


Subject(s)
Biosensing Techniques , DNA-Directed RNA Polymerases , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism
16.
Mol Biol Rep ; 50(8): 6783-6793, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37392286

ABSTRACT

BACKGROUND: Bacterial diseases are a huge threat to the production of tomatoes. During infection intervals, pathogens affect biochemical, oxidant and molecular properties of tomato. Therefore, it is necessary to study the antioxidant enzymes, oxidation state and genes involved during bacterial infection in tomato. METHODS AND RESULTS: Different bioinformatic analyses were performed to conduct homology, gene promoter analysis and determined protein structure. Antioxidant, MDA and H2O2 response was measured in Falcon, Rio grande and Sazlica tomato cultivars. In this study, RNA Polymerase II (RNAP) C-Terminal Domain Phosphatase-like 3 (SlCPL-3) gene was identified and characterized. It contained 11 exons, and encoded for two protein domains i.e., CPDCs and BRCT. SOPMA and Phyre2, online bioinformatic tools were used to predict secondary structure. For the identification of protein pockets CASTp web-based tool was used. Netphos and Pondr was used for prediction of phosphorylation sites and protein disordered regions. Promoter analysis revealed that the SlCPL-3 is involved in defense-related mechanisms. We further amplified two different regions of SlCPL-3 and sequenced them. It showed homology respective to the reference tomato genome. Our results showed that SlCPL-3 gene was triggered during bacterial stress. SlCPL-3 expression was upregulated in response to bacterial stress during different time intervals. Rio grande showed a high level of SICPL-3 gene expression after 72 hpi. Biochemical and gene expression analysis showed that under biotic stress Rio grande cultivar is more sensitive to Pst DC 3000 bacteria. CONCLUSION: This study lays a solid foundation for the functional characterization of SlCPL-3 gene in tomato cultivars. All these findings would be beneficial for further analysis of SlCPL-3 gene and may be helpful for the development of resilient tomato cultivars.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , RNA Polymerase II/genetics , Antioxidants , Phosphoric Monoester Hydrolases/genetics , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Plant/genetics
17.
J Biol Chem ; 299(8): 104951, 2023 08.
Article in English | MEDLINE | ID: mdl-37356716

ABSTRACT

The application of genetic and biochemical techniques in yeast has informed our knowledge of transcription in mammalian cells. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in the nature of the transcription factors essential for transcription by Pol I in yeast and mammalian cells, and yeast RNA polymerase I contains 14 subunits while mammalian polymerase contains 13 subunits. We previously reported the adaptation of the auxin-dependent degron that enabled a combination of a "genetics-like" approach and biochemistry to study mammalian rDNA transcription. Using this system, we studied the mammalian orthologue of yeast RPA34.5, PAF49, and found that it is essential for rDNA transcription and cell division. The auxin-induced degradation of PAF49 induced nucleolar stress and the accumulation of P53. Interestingly, the auxin-induced degradation of AID-tagged PAF49 led to the degradation of its binding partner, PAF53, but not vice versa. A similar pattern of co-dependent expression was also found when we studied the non-essential, yeast orthologues. An analysis of the domains of PAF49 that are essential for rDNA transcription demonstrated a requirement for both the dimerization domain and an "arm" of PAF49 that interacts with PolR1B. Further, we demonstrate this interaction can be disrupted to inhibit Pol I transcription in normal and cancer cells which leads to the arrest of normal cells and cancer cell death. In summary, we have shown that both PAF53 and PAF49 are necessary for rDNA transcription and cell growth.


Subject(s)
Carrier Proteins , Nuclear Proteins , RNA Polymerase I , Saccharomyces cerevisiae , Animals , Humans , Mice , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Indoleacetic Acids/metabolism , Mammals/metabolism , Nuclear Proteins/metabolism , Pol1 Transcription Initiation Complex Proteins/metabolism , RNA Polymerase I/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Transcription, Genetic
18.
Biomolecules ; 13(5)2023 04 25.
Article in English | MEDLINE | ID: mdl-37238608

ABSTRACT

Bacterial RNA polymerases (RNAP) form distinct holoenzymes with different σ factors to initiate diverse gene expression programs. In this study, we report a cryo-EM structure at 2.49 Å of RNA polymerase transcription complex containing a temperature-sensitive bacterial σ factor, σ32 (σ32-RPo). The structure of σ32-RPo reveals key interactions essential for the assembly of E. coli σ32-RNAP holoenzyme and for promoter recognition and unwinding by σ32. Specifically, a weak interaction between σ32 and -35/-10 spacer is mediated by T128 and K130 in σ32. A histidine in σ32, rather than a tryptophan in σ70, acts as a wedge to separate the base pair at the upstream junction of the transcription bubble, highlighting the differential promoter-melting capability of different residue combinations. Structure superimposition revealed relatively different orientations between ßFTH and σ4 from other σ-engaged RNAPs and biochemical data suggest that a biased σ4-ßFTH configuration may be adopted to modulate binding affinity to promoter so as to orchestrate the recognition and regulation of different promoters. Collectively, these unique structural features advance our understanding of the mechanism of transcription initiation mediated by different σ factors.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , DNA-Directed RNA Polymerases/metabolism , Transcription, Genetic , Escherichia coli Proteins/metabolism , Promoter Regions, Genetic , Sigma Factor/metabolism , Bacterial Proteins/metabolism , DNA, Bacterial/genetics
19.
J Appl Microbiol ; 134(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37230951

ABSTRACT

AIMS: The inducible expression system plays an important role in engineering Escherichia coli for chemical production. However, it still heavily relies on expensive chemical inducers, like IPTG. There is a pressing need to develop alternative expression systems with more affordable inducers. MATERIALS AND RESULTS: We herein report a copper-inducible expression system in E. coli based on the two-component Cus system and T7 RNA polymerase (RNAP). By integrating the gene encoding T7 RNAP at the CusC locus, we managed to program eGFP expression under the T7 promoter in response to different concentrations of Cu2+ (0-20 µM). Subsequently, we demonstrated that the copper-inducible expression system was suitable for the metabolic engineering of E. coli toward protocatechuic acid overproduction, and the resulting strain with combined manipulation of the central metabolism via CRISPRi produced 4.12 g L-1 PCA under the optimal copper concentration and induction time. CONCLUSIONS: We have established a copper-inducible T7 RNAP expression system in E. coli. The copper-inducible expression system could rationally control metabolic pathways in a temporal and dose-dependent manner. The gradient expression system based on copper inducer could be widely used in E. coli cell factories, and the design principle reported here would also be applicable in other prokaryotes.


Subject(s)
Copper , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Copper/metabolism , Metabolic Engineering/methods , Promoter Regions, Genetic , Metabolic Networks and Pathways
20.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175907

ABSTRACT

RNA polymerase II (POL II) is responsible for the transcription of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs). Previously, we have shown the evolutionary invariance of the structural features of DNA in the POL II core promoters of the precursors of mRNAs. In this work, we have analyzed the POL II core promoters of the precursors of lncRNAs in Homo sapiens and Mus musculus genomes. Structural analysis of nucleotide sequences in positions -50, +30 bp in relation to the TSS have shown the extremely heterogeneous 3D structure that includes two singular regions - hexanucleotide "INR" around the TSS and octanucleotide "TATA-box" at around ~-28 bp upstream. Thus, the 3D structure of core promoters of lncRNA resembles the architecture of the core promoters of mRNAs; however, textual analysis revealed differences between promoters of lncRNAs and promoters of mRNAs, which lies in their textual characteristics; namely, the informational entropy at each position of the nucleotide text of lncRNA core promoters (by the exception of singular regions) is significantly higher than that of the mRNA core promoters. Another distinguishing feature of lncRNA is the extremely rare occurrence in the TATA box of octanucleotides with the consensus sequence. These textual differences can significantly affect the efficiency of the transcription of lncRNAs.


Subject(s)
RNA, Long Noncoding , Humans , Animals , Mice , RNA, Long Noncoding/genetics , Promoter Regions, Genetic , TATA Box , Base Sequence , RNA Polymerase II/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL