Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 434
Filter
1.
Article in English | MEDLINE | ID: mdl-39099033

ABSTRACT

Objective: Glioblastoma multiforme (GBM), particularly the IDH-wildtype type, represents a significant clinical challenge due to its aggressive nature and poor prognosis. Despite advancements in medical imaging and its modalities, survival rates have not improved significantly, demanding innovative treatment planning and outcome prediction approaches. Methods: This study utilizes a Support Vector Machine (SVM) classifier using radiomics features to predict the overall survival (OS) of GBM, IDH-wildtype patients to short (< 12 Months) and long (>=12 Months) survivors. A dataset comprising multi-parametric MRI (mpMRI) scans from 574 patients was analyzed. Radiomic features were extracted from T1, T2, FLAIR, and T1-Gd sequences. Low variance features were removed, and Recursive Feature Elimination (RFE) was used to select the most informative features. The SVM model was trained using a k-fold cross-validation approach. Furthermore, clinical parameters such as age, gender, and MGMT promoter methylation status were integrated to enhance prediction accuracy. Results: The model showed reasonable results in terms of cross-validated AUC of 0.84 (95% CI: 0.80-0.90) with (p-value < 0.001) effectively categorizing patients into short and long survivors. Log-rank test (Chi-square statistics) analysis for the developed model was 0.00029 along with the 1.20 Cohen's d effect size. Most importantly, clinical data integration further refined the survival estimates, providing a more fitted prediction that considers individual patient characteristics by Kaplan-Meier curve with p-value<0.0001. Conclusion: The proposed method significantly enhances the predictive accuracy of OS outcomes in GBM, IDH-wildtype patients. By integrating detailed imaging features with key clinical indicators, this model offers a robust tool for personalized treatment planning, potentially improving OS.

2.
Diagnostics (Basel) ; 14(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125543

ABSTRACT

This study aims to explore the relationship between radiological imaging and genomic characteristics in clear cell renal cell carcinoma (ccRCC), focusing on the expression of adipose differentiation-related protein (ADFP) detected through computed tomography (CT). The goal is to establish a radiogenomic lipid profile and understand its association with tumor characteristics. Data from The Cancer Genome Atlas (TCGA) and the Cancer Imaging Archive (TCIA) were utilized to correlate imaging features with adipose differentiation-related protein (ADFP) expression in ccRCC. CT scans assessed various tumor features, including size, composition, margin, necrosis, and growth pattern, alongside measurements of tumoral Hounsfield units (HU) and abdominal adipose tissue compartments. Statistical analyses compared demographics, clinical-pathological features, adipose tissue quantification, and tumoral HU between groups. Among 197 patients, 22.8% exhibited ADFP expression significantly associated with hydronephrosis. Low-grade ccRCC patients expressing ADFP had higher quantities of visceral and subcutaneous adipose tissue and lower tumoral HU values compared to their high-grade counterparts. Similar trends were observed in low-grade ccRCC patients without ADFP expression. ADFP expression in ccRCC correlates with specific imaging features such as hydronephrosis and altered adipose tissue distribution. Low-grade ccRCC patients with ADFP expression display a distinct lipid metabolic profile, emphasizing the relationship between radiological features, genomic expression, and tumor metabolism. These findings suggest potential for personalized diagnostic and therapeutic strategies targeting tumor lipid metabolism.

3.
Biomark Res ; 12(1): 80, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135097

ABSTRACT

BACKGROUND: High-grade serous ovarian cancer (HGSOC), which is known for its heterogeneity, high recurrence rate, and metastasis, is often diagnosed after being dispersed in several sites, with about 80% of patients experiencing recurrence. Despite a better understanding of its metastatic nature, the survival rates of patients with HGSOC remain poor. METHODS: Our study utilized spatial transcriptomics (ST) to interpret the tumor microenvironment and computed tomography (CT) to examine spatial characteristics in eight patients with HGSOC divided into recurrent (R) and challenging-to-collect non-recurrent (NR) groups. RESULTS: By integrating ST data with public single-cell RNA sequencing data, bulk RNA sequencing data, and CT data, we identified specific cell population enrichments and differentially expressed genes that correlate with CT phenotypes. Importantly, we elucidated that tumor necrosis factor-α signaling via NF-κB, oxidative phosphorylation, G2/M checkpoint, E2F targets, and MYC targets served as an indicator of recurrence (poor prognostic markers), and these pathways were significantly enriched in both the R group and certain CT phenotypes. In addition, we identified numerous prognostic markers indicative of nonrecurrence (good prognostic markers). Downregulated expression of PTGDS was linked to a higher number of seeding sites (≥ 3) in both internal HGSOC samples and public HGSOC TCIA and TCGA samples. Additionally, lower PTGDS expression in the tumor and stromal regions was observed in the R group than in the NR group based on our ST data. Chemotaxis-related markers (CXCL14 and NTN4) and markers associated with immune modulation (DAPL1 and RNASE1) were also found to be good prognostic markers in our ST and radiogenomics analyses. CONCLUSIONS: This study demonstrates the potential of radiogenomics, combining CT and ST, for identifying diagnostic and therapeutic targets for HGSOC, marking a step towards personalized medicine.

4.
Front Oncol ; 14: 1337815, 2024.
Article in English | MEDLINE | ID: mdl-39132508

ABSTRACT

This comprehensive review explores the pivotal role of radiotherapy in cancer treatment, emphasizing the diverse applications of genetic profiling. The review highlights genetic markers for predicting radiation toxicity, enabling personalized treatment planning. It delves into the impact of genetic profiling on radiotherapy strategies across various cancer types, discussing research findings related to treatment response, prognosis, and therapeutic resistance. The integration of genetic profiling is shown to transform cancer treatment paradigms, offering insights into personalized radiotherapy regimens and guiding decisions in cases where standard protocols may fall short. Ultimately, the review underscores the potential of genetic profiling to enhance patient outcomes and advance precision medicine in oncology.

5.
Clin Breast Cancer ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39019727

ABSTRACT

BACKGROUND: To develop a radiogenomics nomogram for predicting axillary lymph node (ALN) metastasis in breast cancer and reveal underlying associations between radiomics features and biological pathways. MATERIALS AND METHODS: This study included 1062 breast cancer patients, 90 patients with both DCE-MRI and gene expression data. The optimal immune-related genes and radiomics features associated with ALN metastasis were firstly calculated, and corresponding feature signatures were constructed to further validate their performances in predicting ALN metastasis. The radiogenomics nomogram for predicting the risk of ALN metastasis was established by integrating radiomics signature, immune-related genes (IRG) signature, and critical clinicopathological factors. Gene modules associated with key radiomics features were identified by weighted gene co-expression network analysis (WGCNA) and submitted to functional enrichment analysis. Gene set variation analysis (GSVA) and correlation analysis were performed to investigate the associations between radiomics features and biological pathways. RESULTS: The radiogenomics nomogram showed promising predictive power for predicting ALN metastasis, with AUCs of 0.973 and 0.928 in the training and testing groups, respectively. WGCNA and functional enrichment analysis revealed that gene modules associated with key radiomics features were mainly enriched in breast cancer metastasis-related pathways, such as focal adhesion, ECM-receptor interaction, and cell adhesion molecules. GSVA also identified pathway activities associated with radiomics features such as glycogen synthesis, integration of energy metabolism. CONCLUSION: The radiogenomics nomogram can serve as an effective tool to predict the risk of ALN metastasis. This study provides further evidence that radiomics phenotypes may be driven by biological pathways related to breast cancer metastasis.

6.
Article in English | MEDLINE | ID: mdl-39025746

ABSTRACT

INTRODUCTION: Radiomics offers the potential to predict oncological outcomes from pre-operative imaging in order to identify 'high risk' patients at increased risk of recurrence. The application of radiomics in predicting disease recurrence provides tailoring of therapeutic strategies. We aim to comprehensively assess the existing literature regarding the current role of radiomics as a predictor of disease recurrence in gastric cancer. METHODS: A systematic search was conducted in Medline, EMBASE, and Web of Science databases. Inclusion criteria encompassed retrospective and prospective studies investigating the use of radiomics to predict post-operative recurrence in ovarian cancer. Study quality was assessed using the QUADAS-2 and Radiomics Quality Score tools. RESULTS: Nine studies met the inclusion criteria, involving a total of 6,662 participants. Radiomic-based nomograms demonstrated consistent performance in predicting disease recurrence, as evidenced by satisfactory area under the receiver operating characteristic curve values (AUC range 0.72 - 1). The pooled AUCs calculated using the inverse-variance method for both the training and validation datasets were 0.819 and 0.789 respectively CONCLUSION: Our review provides good evidence supporting the role of radiomics as a predictor of post-operative disease recurrence in gastric cancer. Included studies noted good performance in predicting their primary outcome. Radiomics may enhance personalised medicine by tailoring treatment decision based on predicted prognosis.

7.
Cancer Imaging ; 24(1): 98, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080809

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is highly heterogeneous, resulting in different responses to neoadjuvant chemotherapy (NAC) and prognoses among patients. This study sought to characterize the heterogeneity of TNBC on MRI and develop a radiogenomic model for predicting both pathological complete response (pCR) and prognosis. MATERIALS AND METHODS: In this retrospective study, TNBC patients who underwent neoadjuvant chemotherapy at Fudan University Shanghai Cancer Center were enrolled as the radiomic development cohort (n = 315); among these patients, those whose genetic data were available were enrolled as the radiogenomic development cohort (n = 98). The study population of the two cohorts was randomly divided into a training set and a validation set at a ratio of 7:3. The external validation cohort (n = 77) included patients from the DUKE and I-SPY 1 databases. Spatial heterogeneity was characterized using features from the intratumoral subregions and peritumoral region. Hemodynamic heterogeneity was characterized by kinetic features from the tumor body. Three radiomics models were developed by logistic regression after selecting features. Model 1 included subregional and peritumoral features, Model 2 included kinetic features, and Model 3 integrated the features of Model 1 and Model 2. Two fusion models were developed by further integrating pathological and genomic features (PRM: pathology-radiomics model; GPRM: genomics-pathology-radiomics model). Model performance was assessed with the AUC and decision curve analysis. Prognostic implications were assessed with Kaplan‒Meier curves and multivariate Cox regression. RESULTS: Among the radiomic models, the multiregional model representing multiscale heterogeneity (Model 3) exhibited better pCR prediction, with AUCs of 0.87, 0.79, and 0.78 in the training, internal validation, and external validation sets, respectively. The GPRM showed the best performance for predicting pCR in the training (AUC = 0.97, P = 0.015) and validation sets (AUC = 0.93, P = 0.019). Model 3, PRM and GPRM could stratify patients by disease-free survival, and a predicted nonpCR was associated with poor prognosis (P = 0.034, 0.001 and 0.019, respectively). CONCLUSION: Multiscale heterogeneity characterized by DCE-MRI could effectively predict the pCR and prognosis of TNBC patients. The radiogenomic model could serve as a valuable biomarker to improve the prediction performance.


Subject(s)
Magnetic Resonance Imaging , Neoadjuvant Therapy , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/diagnostic imaging , Female , Neoadjuvant Therapy/methods , Middle Aged , Retrospective Studies , Adult , Magnetic Resonance Imaging/methods , Prognosis , Aged
8.
Cell Rep Methods ; 4(7): 100817, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38981473

ABSTRACT

Deep-learning tools that extract prognostic factors derived from multi-omics data have recently contributed to individualized predictions of survival outcomes. However, the limited size of integrated omics-imaging-clinical datasets poses challenges. Here, we propose two biologically interpretable and robust deep-learning architectures for survival prediction of non-small cell lung cancer (NSCLC) patients, learning simultaneously from computed tomography (CT) scan images, gene expression data, and clinical information. The proposed models integrate patient-specific clinical, transcriptomic, and imaging data and incorporate Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway information, adding biological knowledge within the learning process to extract prognostic gene biomarkers and molecular pathways. While both models accurately stratify patients in high- and low-risk groups when trained on a dataset of only 130 patients, introducing a cross-attention mechanism in a sparse autoencoder significantly improves the performance, highlighting tumor regions and NSCLC-related genes as potential biomarkers and thus offering a significant methodological advancement when learning from small imaging-omics-clinical samples.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Deep Learning , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Tomography, X-Ray Computed/methods , Biomarkers, Tumor/genetics , Prognosis , Male , Female , Gene Expression Regulation, Neoplastic , Transcriptome
9.
Radiother Oncol ; 199: 110463, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067707

ABSTRACT

INTRODUCTION: To develop and validate a T2-weighted magnetic resonance imaging (MRI)-based radiomic signature associated with disease-free survival (DFS) in locally advanced cervical cancer. MATERIALS AND METHODS: The study comprised a training dataset of 132 patients (93 Norwegian; 39 The Cancer Imaging Archive (TCIA) and an independent validation Canadian dataset of 199 patients with FIGO stage IB-IVA cervical cancer treated with chemoradiation. Radiomic features were extracted using PyRadiomics. A radiomic signature was developed based on a multivariable radiomic prognostic model for DFS built using the training dataset, with minimal redundancy maximum relevancy feature selection method. Univariate and multivariable Cox regression analyses were then conducted to examine the association of the derived radiomic signature with DFS. RESULTS: A radiomic signature was prognostic for DFS in the training cohort (Norwegian hazard ratio [HR] 5.54, p = 0.002; TCIA HR 3.59, p = 0.04). The radiomic signature remained independently associated with DFS (HR 3.70, p = 0.004) when adjusted for stage and tumor volume. The radiomic signature was also prognostic for DFS in the validation cohort, both on univariate analysis (HR 2.22, p = 0.003), and multivariable analysis adjusted for stage and tumor volume (HR 1.84, p = 0.04). The 4-year DFS rates of patients with radiomic signature score > 0 vs ≤ 0 were 48.2 % vs 87.9 %, and 56.4 % vs 80.8 % for training and validation cohorts respectively. CONCLUSION: An MRI-based radiomic signature can be used as a prognostic biomarker for DFS in patients with locally advanced cervical cancer undergoing chemoradiation.

10.
Front Oncol ; 14: 1371432, 2024.
Article in English | MEDLINE | ID: mdl-39055557

ABSTRACT

Purpose: This study aimed to develop and validate a radiogenomics nomogram for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) on the basis of MRI and microRNAs (miRNAs). Materials and methods: This cohort study included 168 patients (training cohort: n = 116; validation cohort: n = 52) with pathologically confirmed HCC, who underwent preoperative MRI and plasma miRNA examination. Univariate and multivariate logistic regressions were used to identify independent risk factors associated with MVI. These risk factors were used to produce a nomogram. The performance of the nomogram was evaluated by receiver operating characteristic curve (ROC) analysis, sensitivity, specificity, accuracy, and F1-score. Decision curve analysis was performed to determine whether the nomogram was clinically useful. Results: The independent risk factors for MVI were maximum tumor length, rad-score, and miRNA-21 (all P < 0.001). The sensitivity, specificity, accuracy, and F1-score of the nomogram in the validation cohort were 0.970, 0.722, 0.884, and 0.916, respectively. The AUC of the nomogram was 0.900 (95% CI: 0.808-0.992) in the validation cohort, higher than that of any other single factor model (maximum tumor length, rad-score, and miRNA-21). Conclusion: The radiogenomics nomogram shows satisfactory predictive performance in predicting MVI in HCC and provides a feasible and practical reference for tumor treatment decisions.

11.
Interact J Med Res ; 13: e51347, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980713

ABSTRACT

BACKGROUND: Radiogenomics is an emerging technology that integrates genomics and medical image-based radiomics, which is considered a promising approach toward achieving precision medicine. OBJECTIVE: The aim of this study was to quantitatively analyze the research status, dynamic trends, and evolutionary trajectory in the radiogenomics field using bibliometric methods. METHODS: The relevant literature published up to 2023 was retrieved from the Web of Science Core Collection. Excel was used to analyze the annual publication trend. VOSviewer was used for constructing the keywords co-occurrence network and the collaboration networks among countries and institutions. CiteSpace was used for citation keywords burst analysis and visualizing the references timeline. RESULTS: A total of 3237 papers were included and exported in plain-text format. The annual number of publications showed an increasing annual trend. China and the United States have published the most papers in this field, with the highest number of citations in the United States and the highest average number per item in the Netherlands. Keywords burst analysis revealed that several keywords, including "big data," "magnetic resonance spectroscopy," "renal cell carcinoma," "stage," and "temozolomide," experienced a citation burst in recent years. The timeline views demonstrated that the references can be categorized into 8 clusters: lower-grade glioma, lung cancer histology, lung adenocarcinoma, breast cancer, radiation-induced lung injury, epidermal growth factor receptor mutation, late radiotherapy toxicity, and artificial intelligence. CONCLUSIONS: The field of radiogenomics is attracting increasing attention from researchers worldwide, with the United States and the Netherlands being the most influential countries. Exploration of artificial intelligence methods based on big data to predict the response of tumors to various treatment methods represents a hot spot research topic in this field at present.

12.
Magn Reson Imaging ; 113: 110214, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047852

ABSTRACT

OBJECTIVE: The research aimed to determine whether and which radiomic features from breast dynamic contrast enhanced (DCE) MRI could predict the presence of BRCA1 mutation in patients with triple-negative breast cancer (TNBC). MATERIAL AND METHODS: This retrospective study included consecutive patients histologically diagnosed with TNBC who underwent breast DCE-MRI in 2010-2021. Baseline DCE-MRIs were retrospectively reviewed; percentage maps of wash-in and wash-out were computed and breast lesions were manually segmented, drawing a 5 mm-Region of Interest (ROI) inside the tumor and another 5 mm-ROI inside the contralateral healthy gland. Features for each map and each ROI were extracted with Pyradiomics-3D Slicer and considered first separately (tumor and contralateral gland) and then together. In each analysis the more important features for BRCA1 status classification were selected with Maximum Relevance Minimum Redundancy algorithm and used to fit four classifiers. RESULTS: The population included 67 patients and 86 lesions (21 in BRCA1-mutated, 65 in non BRCA-carriers). The best classifiers for BRCA mutation were Support Vector Classifier and Logistic Regression in models fitted with both gland and tumor features, reaching an Area Under ROC Curve (AUC) of 0.80 (SD 0.21) and of 0.79 (SD 0.20), respectively. Three features were higher in BRCA1-mutated compared to non BRCA-mutated: Total Energy and Correlation from gray level cooccurrence matrix, both measured in contralateral gland in wash-out maps, and Root Mean Squared, selected from the wash-out map of the tumor. CONCLUSIONS: This study showed the feasibility of a radiomic study with breast DCE-MRI and the potential of radiomics in predicting BRCA1 mutational status.

13.
Curr Oncol Rep ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009914

ABSTRACT

PURPOSE OF REVIEW: Isocitrate dehydrogenase wild-type glioblastoma is the most aggressive primary brain tumour in adults. Its infiltrative nature and heterogeneity confer a dismal prognosis, despite multimodal treatment. Precision medicine is increasingly advocated to improve survival rates in glioblastoma management; however, conventional neuroimaging techniques are insufficient in providing the detail required for accurate diagnosis of this complex condition. RECENT FINDINGS: Advanced magnetic resonance imaging allows more comprehensive understanding of the tumour microenvironment. Combining diffusion and perfusion magnetic resonance imaging to create a multiparametric scan enhances diagnostic power and can overcome the unreliability of tumour characterisation by standard imaging. Recent progress in deep learning algorithms establishes their remarkable ability in image-recognition tasks. Integrating these with multiparametric scans could transform the diagnosis and monitoring of patients by ensuring that the entire tumour is captured. As a corollary, radiomics has emerged as a powerful approach to offer insights into diagnosis, prognosis, treatment, and tumour response through extraction of information from radiological scans, and transformation of these tumour characteristics into quantitative data. Radiogenomics, which links imaging features with genomic profiles, has exhibited its ability in characterising glioblastoma, and determining therapeutic response, with the potential to revolutionise management of glioblastoma. The integration of deep learning algorithms into radiogenomic models has established an automated, highly reproducible means to predict glioblastoma molecular signatures, further aiding prognosis and targeted therapy. However, challenges including lack of large cohorts, absence of standardised guidelines and the 'black-box' nature of deep learning algorithms, must first be overcome before this workflow can be applied in clinical practice.

14.
J Clin Med ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999524

ABSTRACT

Recent advancements in understanding clear cell renal cell carcinoma (ccRCC) have underscored the critical role of the BAP1 gene in its pathogenesis and prognosis. While the von Hippel-Lindau (VHL) mutation has been extensively studied, emerging evidence suggests that mutations in BAP1 and other genes significantly impact patient outcomes. Radiogenomics with and without texture analysis based on CT imaging holds promise in predicting BAP1 mutation status and overall survival outcomes. However, prospective studies with larger cohorts and standardized imaging protocols are needed to validate these findings and translate them into clinical practice effectively, paving the way for personalized treatment strategies in ccRCC. This review aims to summarize the current knowledge on the role of BAP1 mutation in ccRCC pathogenesis and prognosis, as well as the potential of radiogenomics in predicting mutation status and clinical outcomes.

15.
Magn Reson Imaging ; 112: 63-81, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38914147

ABSTRACT

This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.


Subject(s)
Brain Neoplasms , Glioma , Magnetic Resonance Imaging , Humans , Glioma/diagnostic imaging , Glioma/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Biomarkers, Tumor/genetics
17.
Genes (Basel) ; 15(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38927654

ABSTRACT

Glioblastoma multiforme (GBM)is the most common and aggressive primary brain tumor. Although temozolomide (TMZ)-based radiochemotherapy improves overall GBM patients' survival, it also increases the frequency of false positive post-treatment magnetic resonance imaging (MRI) assessments for tumor progression. Pseudo-progression (PsP) is a treatment-related reaction with an increased contrast-enhancing lesion size at the tumor site or resection margins miming tumor recurrence on MRI. The accurate and reliable prognostication of GBM progression is urgently needed in the clinical management of GBM patients. Clinical data analysis indicates that the patients with PsP had superior overall and progression-free survival rates. In this study, we aimed to develop a prognostic model to evaluate the tumor progression potential of GBM patients following standard therapies. We applied a dictionary learning scheme to obtain imaging features of GBM patients with PsP or true tumor progression (TTP) from the Wake dataset. Based on these radiographic features, we conducted a radiogenomics analysis to identify the significantly associated genes. These significantly associated genes were used as features to construct a 2YS (2-year survival rate) logistic regression model. GBM patients were classified into low- and high-survival risk groups based on the individual 2YS scores derived from this model. We tested our model using an independent The Cancer Genome Atlas Program (TCGA) dataset and found that 2YS scores were significantly associated with the patient's overall survival. We used two cohorts of the TCGA data to train and test our model. Our results show that the 2YS scores-based classification results from the training and testing TCGA datasets were significantly associated with the overall survival of patients. We also analyzed the survival prediction ability of other clinical factors (gender, age, KPS (Karnofsky performance status), normal cell ratio) and found that these factors were unrelated or weakly correlated with patients' survival. Overall, our studies have demonstrated the effectiveness and robustness of the 2YS model in predicting the clinical outcomes of GBM patients after standard therapies.


Subject(s)
Brain Neoplasms , Glioblastoma , Magnetic Resonance Imaging , Humans , Glioblastoma/genetics , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Glioblastoma/mortality , Brain Neoplasms/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Male , Female , Magnetic Resonance Imaging/methods , Middle Aged , Prognosis , Adult , Aged , Disease Progression , Temozolomide/therapeutic use , Genomics/methods , Survival Rate , Clinical Relevance
18.
Front Neurol ; 15: 1398876, 2024.
Article in English | MEDLINE | ID: mdl-38915798

ABSTRACT

Background: Arteriovenous malformations (AVMs) are rare vascular anomalies involving a disorganization of arteries and veins with no intervening capillaries. In the past 10 years, radiomics and machine learning (ML) models became increasingly popular for analyzing diagnostic medical images. The goal of this review was to provide a comprehensive summary of current radiomic models being employed for the diagnostic, therapeutic, prognostic, and predictive outcomes in AVM management. Methods: A systematic literature review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, in which the PubMed and Embase databases were searched using the following terms: (cerebral OR brain OR intracranial OR central nervous system OR spine OR spinal) AND (AVM OR arteriovenous malformation OR arteriovenous malformations) AND (radiomics OR radiogenomics OR machine learning OR artificial intelligence OR deep learning OR computer-aided detection OR computer-aided prediction OR computer-aided treatment decision). A radiomics quality score (RQS) was calculated for all included studies. Results: Thirteen studies were included, which were all retrospective in nature. Three studies (23%) dealt with AVM diagnosis and grading, 1 study (8%) gauged treatment response, 8 (62%) predicted outcomes, and the last one (8%) addressed prognosis. No radiomics model had undergone external validation. The mean RQS was 15.92 (range: 10-18). Conclusion: We demonstrated that radiomics is currently being studied in different facets of AVM management. While not ready for clinical use, radiomics is a rapidly emerging field expected to play a significant future role in medical imaging. More prospective studies are warranted to determine the role of radiomics in the diagnosis, prediction of comorbidities, and treatment selection in AVM management.

19.
Abdom Radiol (NY) ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744703

ABSTRACT

Ovarian cancer is associated with high cancer-related mortality rate attributed to late-stage diagnosis, limited treatment options, and frequent disease recurrence. As a result, careful patient selection is important especially in setting of radical surgery. Radiomics is an emerging field in medical imaging, which may help provide vital prognostic evaluation and help patient selection for radical treatment strategies. This systematic review aims to assess the role of radiomics as a predictor of disease recurrence in ovarian cancer. A systematic search was conducted in Medline, EMBASE, and Web of Science databases. Studies meeting inclusion criteria investigating the use of radiomics to predict post-operative recurrence in ovarian cancer were included in our qualitative analysis. Study quality was assessed using the QUADAS-2 and Radiomics Quality Score tools. Six retrospective studies met the inclusion criteria, involving a total of 952 participants. Radiomic-based signatures demonstrated consistent performance in predicting disease recurrence, as evidenced by satisfactory area under the receiver operating characteristic curve values (AUC range 0.77-0.89). Radiomic-based signatures appear to good prognosticators of disease recurrence in ovarian cancer as estimated by AUC. The reviewed studies consistently reported the potential of radiomic features to enhance risk stratification and personalise treatment decisions in this complex cohort of patients. Further research is warranted to address limitations related to feature reliability, workflow heterogeneity, and the need for prospective validation studies.

20.
Comput Biol Med ; 177: 108636, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810473

ABSTRACT

BACKGROUND: Accurate classification of gliomas is critical to the selection of immunotherapy, and MRI contains a large number of radiomic features that may suggest some prognostic relevant signals. We aim to predict new subtypes of gliomas using radiomic features and characterize their survival, immune, genomic profiles and drug response. METHODS: We initially obtained 341 images of 36 patients from the CPTAC dataset for the development of deep learning models. Further 1812 images of 111 patients from TCGA_GBM and 152 images of 53 patients from TCGA_LGG were collected for testing and validation. A deep learning method based on Mask R-CNN was developed to identify new subtypes of glioma patients and compared the survival status, immune infiltration patterns, genomic signatures, specific drugs, and predictive models of different subtypes. RESULTS: 200 glioma patients (mean age, 33 years ± 19 [standard deviation]) were enrolled. The accuracy of the deep learning model for identifying tumor regions achieved 88.3 % (98/111) in the test set and 83 % (44/53) in the validation set. The sample was divided into two subtypes based on radiomic features showed different prognostic outcomes (hazard ratio, 2.70). According to the results of the immune infiltration analysis, the subtype with a poorer prognosis was defined as the immunosilencing radiomic (ISR) subtype (n = 43), and the other subtype was the immunoactivated radiomic (IAR) subtype (n = 53). Subtype-specific genomic signatures distinguished celllines into ISR celllines (n = 9) and control celllines (n = 13), and identified eight ISR-specific drugs, four of which were validated by the OCTAD database. Three machine learning-based classifiers showed that radiomic and genomic co-features better predicted the radiomic subtypes of gliomas. CONCLUSIONS: These findings provide insights into how radiogenomic could identify specific subtypes that predict prognosis, immune and drug sensitivity in a non-invasive manner.


Subject(s)
Brain Neoplasms , Deep Learning , Glioma , Humans , Glioma/genetics , Glioma/diagnostic imaging , Glioma/immunology , Female , Male , Adult , Brain Neoplasms/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/immunology , Middle Aged , Magnetic Resonance Imaging , Prognosis , Radiomics
SELECTION OF CITATIONS
SEARCH DETAIL