Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Trends Plant Sci ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019767

ABSTRACT

The year 2023 was the warmest year since 1850. Greenhouse gases, including CO2 and methane, played a significant role in increasing global warming. Among these gases, methane has a 25-fold greater impact on global warming than CO2. Methane is emitted during rice cultivation by a group of rice rhizosphere microbes, termed methanogens, in low oxygen (hypoxic) conditions. To reduce methane emissions, it is crucial to decrease the methane production capacity of methanogens through water and fertilizer management, breeding of new rice cultivars, regulating root exudation, and manipulating rhizosphere microbiota. In this opinion article we review the recent developments in hypoxia ecology and methane emission mitigation and propose potential solutions based on the manipulation of microbiota and methanogens for the mitigation of methane emissions.

2.
Article in English | MEDLINE | ID: mdl-38748205

ABSTRACT

There is an increasing demand for bioinoculants based on plant growth-promoting rhizobacteria (PGPR) for use in agricultural ecosystems. However, there are still concerns and limited data on their reproducibility in different soil types and their effects on endemic rhizosphere communities. Therefore, this study explored the effects of inoculating the PGPR, Pseudomonas fluorescens strain UM270, on maize growth (Zea mays L.) and its associated rhizosphere bacteriome by sequencing the 16S ribosomal genes under greenhouse conditions. The results showed that inoculation with PGPR P. fluorescens UM270 improved shoot and root dry weights, chlorophyll concentration, and total biomass in the three soil types evaluated (clay, sandy-loam, and loam) compared to those of the controls. Bacterial community analysis of the three soil types revealed that maize plants inoculated with the UM270 strain showed a significant increase in Proteobacteria and Acidobacteria populations, whereas Actinobacteria and Bacteroidetes decreased. Shannon, Pielou, and Faith alpha-biodiversity indices did not reveal significant differences between treatments. Beta diversity revealed a bacterial community differential structure in each soil type, with some variation among treatments. Finally, some bacterial groups were found to co-occur and co-exclude with respect to UM270 inoculation. Considered together, these results show that PGPR P. fluorescens UM270 increases maize plant growth and has an important effect on the resident rhizobacterial communities of each soil type, making it a potential agricultural biofertilizer.

3.
Microbiol Spectr ; 12(6): e0005624, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687070

ABSTRACT

The Atacama Desert is the oldest and driest desert on Earth, encompassing great temperature variations, high ultraviolet radiation, drought, and high salinity, making it ideal for studying the limits of life and resistance strategies. It is also known for harboring a great biodiversity of adapted life forms. While desertification is increasing as a result of climate change and human activities, it is necessary to optimize soil and water usage, where stress-resistant crops are possible solutions. As many studies have revealed the great impact of the rhizobiome on plant growth efficiency and resistance to abiotic stress, we set up to explore the rhizospheric soils of Suaeda foliosa and Distichlis spicata desert plants. By culturing these soils and using 16S rRNA amplicon sequencing, we address community taxonomy composition dynamics, stability through time, and the ability to promote lettuce plant growth. The rhizospheric soil communities were dominated by the families Pseudomonadaceae, Bacillaceae, and Planococcaceae for S. foliosa and Porphyromonadaceae and Haloferacaceae for D. spicata. Nonetheless, the cultures were completely dominated by the Enterobacteriaceae family (up to 98%). Effectively, lettuce plants supplemented with the cultures showed greater size and biomass accumulation. We identified 12 candidates that could be responsible for these outcomes, of which 5 (Enterococcus, Pseudomonas, Klebsiella, Paenisporosarcina, and Ammoniphilus) were part of the built co-occurrence network. We aim to contribute to the efforts to characterize the microbial communities as key for the plant's survival in extreme environments and as a possible source of consortia with plant growth promotion traits aimed at agricultural applications.IMPORTANCEThe current scenario of climate change and desertification represents a series of incoming challenges for all living organisms. As the human population grows rapidly, so does the rising demand for food and natural resources; thus, it is necessary to make agriculture more efficient by optimizing soil and water usage, thus ensuring future food supplies. Particularly, the Atacama Desert (northern Chile) is considered the most arid place on Earth as a consequence of geological and climatic characteristics, such as the naturally low precipitation patterns and high temperatures, which makes it an ideal place to carry out research that seeks to aid agriculture in future conditions that are predicted to resemble these scenarios. Our main interest lies in utilizing microorganism consortia from plants thriving under extreme conditions, aiming to promote plant growth, improve crops, and render "unsuitable" soils farmable.


Subject(s)
Bacteria , Desert Climate , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/growth & development , RNA, Ribosomal, 16S/genetics , Plant Development , Lactuca/microbiology , Lactuca/growth & development , Microbiota , Soil/chemistry , Biodiversity , Chenopodiaceae/microbiology , Chenopodiaceae/growth & development
4.
AMB Express ; 14(1): 27, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381255

ABSTRACT

The operative mechanisms and advantageous synergies existing between the rhizobiome and the wild plant species Abutilon fruticosum were studied. Within the purview of this scientific study, the reservoir of genes in the rhizobiome, encoding the most highly enriched enzymes, was dominantly constituted by members of phylum Thaumarchaeota within the archaeal kingdom, phylum Proteobacteria within the bacterial kingdom, and the phylum Streptophyta within the eukaryotic kingdom. The ensemble of enzymes encoded through plant exudation exhibited affiliations with 15 crosstalking KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways. The ultimate goal underlying root exudation, as surmised from the present investigation, was the biosynthesis of saccharides, amino acids, and nucleic acids, which are imperative for the sustenance, propagation, or reproduction of microbial consortia. The symbiotic companionship existing between the wild plant and its associated rhizobiome amplifies the resilience of the microbial community against adverse abiotic stresses, achieved through the orchestration of ABA (abscisic acid) signaling and its cascading downstream effects. Emergent from the process of exudation are pivotal bioactive compounds including ATP, D-ribose, pyruvate, glucose, glutamine, and thiamine diphosphate. In conclusion, we hypothesize that future efforts to enhance the growth and productivity of commercially important crop plants under both favorable and unfavorable environmental conditions may focus on manipulating plant rhizobiomes.

6.
Plants (Basel) ; 12(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37765390

ABSTRACT

The growing human population has a greater demand for food; however, the care and preservation of nature as well as its resources must be considered when fulfilling this demand. An alternative employed in recent decades is the use and application of microbial inoculants, either individually or in consortium. The transplantation of rhizospheric microbiomes (rhizobiome) recently emerged as an additional proposal to protect crops from pathogens. In this review, rhizobiome transplantation was analyzed as an ecological alternative for increasing plant protection and crop production. The differences between single-strain/species inoculation and dual or consortium application were compared. Furthermore, the feasibility of the transplantation of other associated micro-communities, including phyllosphere and endosphere microbiomes, were evaluated. The current and future challenges surrounding rhizobiome transplantation were additionally discussed. In conclusion, rhizobiome transplantation emerges as an attractive alternative that goes beyond single/group inoculation of microbial agents; however, there is still a long way ahead before it can be applied in large-scale agriculture.

7.
Microorganisms ; 11(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37110258

ABSTRACT

Land plants have an ancient and intimate relationship with microorganisms, which influences the composition of natural ecosystems and the performance of crops. Plants shape the microbiome around their roots by releasing organic nutrients into the soil. Hydroponic horticulture aims to protect crops from damaging soil-borne pathogens by replacing soil with an artificial growing medium, such as rockwool, an inert material made from molten rock spun into fibres. Microorganisms are generally considered a problem to be managed, to keep the glasshouse clean, but the hydroponic root microbiome assembles soon after planting and flourishes with the crop. Hence, microbe-plant interactions play out in an artificial environment that is quite unlike the soil in which they evolved. Plants in a near-ideal environment have little dependency on microbial partners, but our growing appreciation of the role of microbial communities is revealing opportunities to advance practices, especially in agriculture and human health. Hydroponic systems are especially well-suited to active management of the root microbiome because they allow complete control over the root zone environment; however, they receive much less attention than other host-microbiome interactions. Novel techniques for hydroponic horticulture can be identified by extending our understanding of the microbial ecology of this unique environment.

8.
New Phytol ; 238(6): 2305-2312, 2023 06.
Article in English | MEDLINE | ID: mdl-37010088

ABSTRACT

Plant-nematode interactions are mainly considered from the negative aspect with a focus on plant-parasitic nematodes (PPNs), which is justified considering the agronomic losses caused by PPNs. Despite the fact that PPNs are outnumbered by nonparasitic free-living nematodes (FLNs), the functional importance of FLNs, especially with regard to plant performance, remains largely unknown. Here, we provide a comprehensive overview and most recent insights into soil nematodes by showing direct and indirect links of both PPNs and FLNs with plant performance. We especially emphasize the knowledge gaps and potential of FLNs as important indirect players in driving plant performance such as stimulating the resistance to pests via improving the disease suppressive activity of the rhizobiome. Together, we present a holistic view of soil nematodes as positive and negative contributors to plant performance, accentuating the positive but underexplored role of FLNs.


Subject(s)
Nematoda , Plant Diseases , Animals , Plant Diseases/parasitology , Plants/parasitology , Agriculture/methods , Soil
9.
Microbiome ; 11(1): 79, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37076924

ABSTRACT

BACKGROUND: While the rootstock genotype (belowground part of a plant) can impact rhizosphere microbial communities, few studies have examined the relationships between rootstock genotype-based recruitment of active rhizosphere bacterial communities and the availability of root nutrients for plant uptake. Rootstocks are developed to provide resistance to disease or tolerance of abiotic stresses, and compost application is a common practice to also control biotic and abiotic stresses in crops. In this field study, we examined: (i) the effect of four citrus rootstocks and/or compost application on the abundance, diversity, composition, and predicted functionality of active rhizosphere bacterial communities, and (ii) the relationships between active rhizosphere bacterial communities and root nutrient concentrations, with identification of bacterial taxa significantly correlated with changes in root nutrients in the rhizosphere. RESULTS: The rootstock genotype determined differences in the diversity of active rhizosphere bacterial communities and also impacted how compost altered the abundance, diversity, composition, and predicted functions of these active communities. Variations in the active bacterial rhizobiome were strongly linked to root nutrient cycling, and these interactions were root-nutrient- and rootstock-specific. Direct positive relationships between enriched taxa in treated soils and specific root nutrients were detected, and potentially important taxa for root nutrient uptake were identified. Significant differences in specific predicted functions were related to soil nutrient cycling (carbon, nitrogen, and tryptophan metabolisms) in the active bacterial rhizobiome among rootstocks, particularly in soils treated with compost. CONCLUSIONS: This study illustrates that interactions between citrus rootstocks and compost can influence active rhizosphere bacterial communities, which impact root nutrient concentrations. In particular, the response of the rhizobiome bacterial abundance, diversity, and community composition to compost was determined by the rootstock. Specific bacterial taxa therefore appear to be driving changes in root nutrient concentrations in the active rhizobiome of different citrus rootstocks. Several potential functions of active bacterial rhizobiomes recruited by different citrus rootstocks did not appear to be redundant but rather rootstock-specific. Together, these findings have important agronomic implications as they indicate the potential for agricultural production systems to maximize benefits from rhizobiomes through the choice of selected rootstocks and the application of compost. Video Abstract.


Subject(s)
Citrus , Composting , Rhizosphere , Soil Microbiology , Plant Roots/microbiology , Bacteria/genetics , Soil
10.
New Phytol ; 237(6): 2012-2019, 2023 03.
Article in English | MEDLINE | ID: mdl-36604846

ABSTRACT

Feedbacks between plants and soil microbes form a keystone to terrestrial community and ecosystem dynamics. Recent advances in dissecting the spatial and temporal dynamics of plant-soil feedbacks (PSFs) have challenged longstanding assumptions of spatially well-mixed microbial communities and exceedingly fast microbial assembly dynamics relative to plant lifespans. Instead, PSFs emerge from interactions that are inherently mismatched in spatial and temporal scales, and explicitly considering these spatial and temporal dynamics is crucial to understanding the contribution of PSFs to foundational ecological patterns. I propose a synthetic spatiotemporal framework for future research that pairs experimental and modeling approaches grounded in mechanism to improve predictability and generalizability of PSFs.


Subject(s)
Ecosystem , Soil , Feedback , Plants , Soil Microbiology
11.
BMC Genomics ; 23(1): 784, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36451103

ABSTRACT

BACKGROUND: Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities. RESULTS: In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass, Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome of Andropogon gerardii under drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest - MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas, which might be associated with enhanced drought tolerance and growth for Andropogon gerardii. CONCLUSIONS: Our data indicated that the metagenome-assembled MAG-Pseudomonas has the functional potential to contribute to the plant host's growth during stressful conditions. Our study also suggested the nitrogen transformation potential of MAG-Pseudomonas that could impact Andropogon gerardii growth in a positive way. The cultivation of MAG-Pseudomonas sets the foundation to construct a successful synthetic community for Andropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonas could place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonas and its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.


Subject(s)
Andropogon , Poa , Rhizosphere , Droughts , Pseudomonas , Phylogeny , Nitrogen , Nitrate Reductases
12.
Plants (Basel) ; 11(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36297696

ABSTRACT

Sustainable agricultural systems based on the application of phyto-friendly bacteria and fungi are increasingly needed to preserve soil fertility and microbial biodiversity, as well as to reduce the use of chemical fertilizers and pesticides. Although there is considerable attention on the potential applications of microbial consortia as biofertilizers and biocontrol agents for crop management, knowledge on the molecular responses modulated in host plants because of these beneficial associations is still incomplete. This review provides an up-to-date overview of the different mechanisms of action triggered by plant-growth-promoting microorganisms (PGPMs) to promote host-plant growth and improve its defense system. In addition, we combined available gene-expression profiling data from tomato roots sampled in the early stages of interaction with Pseudomonas or Trichoderma strains to develop an integrated model that describes the common processes activated by both PGPMs and highlights the host's different responses to the two microorganisms. All the information gathered will help define new strategies for the selection of crop varieties with a better ability to benefit from the elicitation of microbial inoculants.

13.
Plant Soil ; 478(1-2): 177-209, 2022.
Article in English | MEDLINE | ID: mdl-36277079

ABSTRACT

Increasing food demand coupled with climate change pose a great challenge to agricultural systems. In this review we summarize recent advances in our knowledge of how plants, together with their associated microbiota, shape rhizosphere processes. We address (molecular) mechanisms operating at the plant-microbe-soil interface and aim to link this knowledge with actual and potential avenues for intensifying agricultural systems, while at the same time reducing irrigation water, fertilizer inputs and pesticide use. Combining in-depth knowledge about above and belowground plant traits will not only significantly advance our mechanistic understanding of involved processes but also allow for more informed decisions regarding agricultural practices and plant breeding. Including belowground plant-soil-microbe interactions in our breeding efforts will help to select crops resilient to abiotic and biotic environmental stresses and ultimately enable us to produce sufficient food in a more sustainable agriculture in the upcoming decades.

14.
Elife ; 112022 09 13.
Article in English | MEDLINE | ID: mdl-36098683

ABSTRACT

Maize genes influence which species of bacteria are recruited from the soil, especially in the absence of nitrogen supplied by fertilizer.


Subject(s)
Fertilizers , Plant Roots , Nitrogen/analysis , Plant Roots/microbiology , Soil , Zea mays/microbiology
15.
Elife ; 112022 07 27.
Article in English | MEDLINE | ID: mdl-35894213

ABSTRACT

The root-associated microbiome (rhizobiome) affects plant health, stress tolerance, and nutrient use efficiency. However, it remains unclear to what extent the composition of the rhizobiome is governed by intraspecific variation in host plant genetics in the field and the degree to which host plant selection can reshape the composition of the rhizobiome. Here, we quantify the rhizosphere microbial communities associated with a replicated diversity panel of 230 maize (Zea mays L.) genotypes grown in agronomically relevant conditions under high N (+N) and low N (-N) treatments. We analyze the maize rhizobiome in terms of 150 abundant and consistently reproducible microbial groups and we show that the abundance of many root-associated microbes is explainable by natural genetic variation in the host plant, with a greater proportion of microbial variance attributable to plant genetic variation in -N conditions. Population genetic approaches identify signatures of purifying selection in the maize genome associated with the abundance of several groups of microbes in the maize rhizobiome. Genome-wide association study was conducted using the abundance of microbial groups as rhizobiome traits, and n=622 plant loci were identified that are linked to the abundance of n=104 microbial groups in the maize rhizosphere. In 62/104 cases, which is more than expected by chance, the abundance of these same microbial groups was correlated with variation in plant vigor indicators derived from high throughput phenotyping of the same field experiment. We provide comprehensive datasets about the three-way interaction of host genetics, microbe abundance, and plant performance under two N treatments to facilitate targeted experiments toward harnessing the full potential of root-associated microbial symbionts in maize production.


Subject(s)
Nitrogen , Zea mays , Genome-Wide Association Study , Phenotype , Plant Roots , Plants , Soil Microbiology , Zea mays/genetics
16.
Front Microbiol ; 13: 848057, 2022.
Article in English | MEDLINE | ID: mdl-35509321

ABSTRACT

The role of the microbial community in mediating fish and plant co-culture is often considered the black box of aquaponics. Despite widespread recognition regarding the dependency of plants on their rhizosphere, the extent to which upstream aquaculture influences downstream hydroponic root communities has been poorly described in the literature. In this study we performed a taxonomic survey (16S rRNA metabarcoding) of microbial communities originating in the facility water source, hydroponic nutrient solution (HNS) sump, nutrient supplemented biofilter effluent (BF) sump, and recirculating aquaculture system tanks stocked with Nile tilapia (Oreochromis niloticus). Lettuce (Lactuca sativa) was then grown using the HNS and BF effluent under sterilized or mature (prior aquaponics/hydroponics lettuce culture water) conditions, likewise, the influence of probiotic addition or inoculation with soil-grown lettuce rhizosphere was assessed. Compositional similarities across treatments suggest that under soil-less conditions, plants are able to exert a stronger discriminatory influence on their rhizosphere composition than is done by colonization from upstream sources. Furthermore, cluster dendrograms grouped the sterilized and unsterilized treatments more consistently together than hydroponics and aquaponics treatments. These findings contradict conventional beliefs that microbial communities in the water column colonize roots based on their presence alone, ignoring the role that plants play in rhizosphere community selection.

17.
Plant J ; 111(1): 54-71, 2022 07.
Article in English | MEDLINE | ID: mdl-35426964

ABSTRACT

Rhizobiome confer stress tolerance to ruderal plants, yet their ability to alleviate stress in crops is widely debated, and the associated mechanisms are poorly understood. We monitored the drought tolerance of maize (Zea mays) as influenced by the cross-inoculation of rhizobiota from a congeneric ruderal grass Andropogon virginicus (andropogon-inoculum), and rhizobiota from organic farm maintained under mesic condition (organic-inoculum). Across drought treatments (40% field capacity), maize that received andropogon-inoculum produced two-fold greater biomass. This drought tolerance translated to a similar leaf metabolomic composition as that of the well-watered control (80% field capacity) and reduced oxidative damage, despite a lower activity of antioxidant enzymes. At a morphological-level, drought tolerance was associated with an increase in specific root length and surface area facilitated by the homeostasis of phytohormones promoting root branching. At a proteome-level, the drought tolerance was associated with upregulation of proteins related to glutathione metabolism and endoplasmic reticulum-associated degradation process. Fungal taxa belonging to Ascomycota, Mortierellomycota, Archaeorhizomycetes, Dothideomycetes, and Agaricomycetes in andropogon-inoculum were identified as potential indicators of drought tolerance. Our study provides a mechanistic understanding of the rhizobiome-facilitated drought tolerance and demonstrates a better path to utilize plant-rhizobiome associations to enhance drought tolerance in crops.


Subject(s)
Droughts , Zea mays , Crops, Agricultural/metabolism , Endoplasmic Reticulum-Associated Degradation , Proteome/metabolism , Stress, Physiological , Zea mays/metabolism
18.
Microbiol Spectr ; 10(3): e0239121, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35442065

ABSTRACT

Environmental change, especially frequent droughts, is predicted to detrimentally impact the North American perennial grasslands. Consistent dry spells will affect plant communities as well as their associated rhizobiomes, possibly altering the plant host performance under environmental stress. Therefore, there is a need to understand the impact of drought on the rhizobiome, and how the rhizobiome may modulate host performance and ameliorate its response to drought stress. In this study, we analyzed bacterial and fungal communities in the rhizospheres of three ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii. The ecotypes were established in 2010 in a common garden design and grown for a decade under persistent dry conditions at the arid margin of the species' range in Colby, Kansas. The experiment aimed to answer whether and to what extent do the different ecotypes maintain or recruit distinct rhizobiomes after 10 years in an arid climate. In order to answer this question, we screened the bacterial and fungal rhizobiome profiles of the ecotypes under the arid conditions of western Kansas as a surrogate for future climate environmental stress using 16S rRNA and ITS2 metabarcoding sequencing. Under these conditions, bacterial communities differed compositionally among the A. gerardii ecotypes, whereas the fungal communities did not. The ecotypes were instrumental in driving the differences among bacterial rhizobiomes, as the ecotypes maintained distinct bacterial rhizobiomes even after 10 years at the edge of the host species range. This study will aid us to optimize plant productivity through the use of different ecotypes under future abiotic environmental stress, especially drought. IMPORTANCE In this study, we used a 10-year long reciprocal garden system, and reports that different ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii can maintain or recruit distinct bacterial but not fungal rhizobiomes after 10 years in an arid environment. We used both 16S rRNA and ITS2 amplicons to analyze the bacterial and fungal communities in the rhizospheres of the respective ecotypes. We showed that A. gerardii might regulate the bacterial community to adapt to the arid environment, in which some ecotypes were not adapted to. Our study also suggested a possible tradeoff between the generalist and the specialist bacterial communities in specific environments, which could benefit the plant host. Our study will provide insights into the plant host regulation of the rhizosphere bacterial and fungal communities, especially during frequent drought conditions anticipated in the future.


Subject(s)
Andropogon , Mycobiome , Andropogon/genetics , Bacteria/genetics , Ecotype , Poaceae/genetics , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil Microbiology
19.
mBio ; 13(2): e0007922, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35384699

ABSTRACT

Switchgrass (Panicum virgatum) is a model perennial grass for bioenergy production that can be productive in agricultural lands that are not suitable for food production. There is growing interest in whether its associated microbiome may be adaptive in low- or no-input cultivation systems. However, the relative impact of plant genotype and soil factors on plant microbiome and biomass are a challenge to decouple. To address this, a common garden greenhouse experiment was carried out using six common switchgrass genotypes, which were each grown in four different marginal soils collected from long-term bioenergy research sites in Michigan and Wisconsin. We characterized the fungal and bacterial root communities with high-throughput amplicon sequencing of the ITS and 16S rDNA markers, and collected phenological plant traits during plant growth, as well as soil chemical traits. At harvest, we measured the total plant aerial dry biomass. Significant differences in richness and Shannon diversity across soils but not between plant genotypes were found. Generalized linear models showed an interaction between soil and genotype for fungal richness but not for bacterial richness. Community structure was also strongly shaped by soil origin and soil origin × plant genotype interactions. Overall, plant genotype effects were significant but low. Random Forest models indicate that important factors impacting switchgrass biomass included NO3-, Ca2+, PO43-, and microbial biodiversity. We identified 54 fungal and 52 bacterial predictors of plant aerial biomass, which included several operational taxonomic units belonging to Glomeraceae and Rhizobiaceae, fungal and bacterial lineages that are involved in provisioning nutrients to plants. IMPORTANCE Greenhouse gas reduction, carbon sequestration, and environmental remediation are top research themes within the U.S. Department of Energy funded bioenergy research centers. The utilization of unproductive agricultural land for bioenergy crop production is one of the most promising directions to achieve these goals. Switchgrass is a model biofuel system: it is adapted to a wide variety of geographical regions in North America, it is protective of soil and water resources, and it can be productive in low-fertility soils, but its profitability depends greatly on the biomass yield. Beneficial microbes have known roles in modulating plant biomass production but their interaction with soil geography, and switchgrass cultivars were not thoroughly studied. This study aims to fill important knowledge gaps and to serve as a foundation for switchgrass biomass promotion through microbe selection with an ultimate goal of facilitating sustainable bioenergy crop production.


Subject(s)
Microbiota , Panicum , Bacteria/genetics , Genotype , Microbiota/genetics , Soil/chemistry , Soil Microbiology
20.
Tree Physiol ; 42(3): 600-615, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34508603

ABSTRACT

The rhizobiome is being increasingly acknowledged as a key player in plant health and breeding strategies. The pine pitch canker (PPC), caused by the fungus Fusarium circinatum, affects pine species with varying susceptibility degrees. Our aims were to explore the bacterial rhizobiome of a susceptible (Pinus radiata) and a resistant (Pinus pinea) species together with other physiological traits, and to analyze shifts upon F. circinatum inoculation. Pinus seedlings were stem inoculated with F. circinatum spores and needle gas exchange and antioxidant-related parameters were analyzed in non-inoculated and inoculated plants. Rhizobiome structure was evaluated through 16S rRNA gene massive parallel sequencing. Species (non-inoculated plants) harbored distinct rhizobiomes (<40% similarity), where P. pinea displayed a rhizobiome with increased abundance of taxa described in suppressive soils, displaying plant growth promoting (PGP) traits and/or anti-fungal activity. Plants of this species also displayed higher levels of phenolic compounds. F. circinatum induced slight changes in the rhizobiome of both species and a negative impact in photosynthetic-related parameters in P. radiata. We concluded that the rhizobiome of each pine species is distinct and higher abundance of bacterial taxa associated to disease protection was registered for the PPC-resistant species. Furthermore, differences in the rhizobiome are paralleled by a distinct content in phenolic compounds, which are also linked to plants' resistance against PPC. This study unveils a species-specific rhizobiome and provides insights to exploit the rhizobiome for plant selection in nurseries and for rhizobiome-based plant-growth-promoting strategies, boosting environmentally friendly disease control strategies.


Subject(s)
Fusarium , Pinus , Fusarium/genetics , Pinus/microbiology , Plant Diseases/microbiology , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL