Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 634
Filter
1.
Clin Chim Acta ; 564: 119948, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39214396

ABSTRACT

Chronic renal failure (CRF) is an incurable disease with unique challenges. Anemia is a frequent complication affecting dialysis patients. Erythropoietin (EPO) is used to treat anemia, but a poor response may result. We investigated genetic polymorphisms of store-operated calcium channel (SOC) signaling, an important erythropoietin-activated pathway that may induce EPO resistance in patients with renal failure. A total of 108 end stage renal disease (ESRD) patients were selected for this study. Patients were divided into two groups according to their erythropoietin resistance index (ERI): 39 patients with an ERI>10 and 69 patients with an ERI<10. We selected four tagging single nucleotide polymorphisms (tSNPs) in STIM1 and five in ORAI1 in our study. A polymerase chain reaction was performed, and genotyping against EPO resistance was correlated. Patients with the AG genotype of rs1561876 in STIM1, the TC genotype of rs6486795 in ORAI1, and the TG or GG genotypes of rs12320939 in ORAI1 were associated with an increased risk of erythropoietin resistance. Overall, we reported a moderately significant relationship between genetic polymorphisms of STIM1 and EPO resistance. We also reported a highly significant relationship between genetic polymorphisms of ORAI1 and EPO resistance. The (A-A-G) haplotype of STIM1 and the (G-T-G-T-A, G-C-G-C-G, or G-T-T-C-G) haplotypes of ORAI1 were significantly associated with EPO resistance.


Subject(s)
Erythropoietin , Kidney Failure, Chronic , Neoplasm Proteins , ORAI1 Protein , Polymorphism, Single Nucleotide , Stromal Interaction Molecule 1 , Humans , Stromal Interaction Molecule 1/genetics , Egypt , Kidney Failure, Chronic/genetics , Male , Erythropoietin/genetics , Female , ORAI1 Protein/genetics , Middle Aged , Neoplasm Proteins/genetics , Adult , Drug Resistance/genetics
2.
Cell Calcium ; 123: 102946, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39226840

ABSTRACT

The conformational change in STIM1 that communicates sensing of ER calcium-store depletion from the STIM ER-luminal domain to the STIM cytoplasmic region and ultimately to ORAI channels in the plasma membrane is broadly understood. However, the structural basis for the STIM luminal-domain dimerization that drives the conformational change has proven elusive. A recently published study has approached this question via molecular dynamics simulations. The report pinpoints STIM residues that may be part of a luminal-domain dimerization interface, and provides unexpected insight into how torsional movements of the STIM luminal domains might trigger release of the cytoplasmic SOAR/CAD domain from its resting tethers to the STIM CC1 segments.

3.
J Biol Chem ; : 107674, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128711

ABSTRACT

Autophagy is classified as non-selective or selective depending on the types of degrading substrates. Endoplasmic reticulum (ER)-phagy is a form of selective autophagy for transporting the ER-resident proteins to autolysosomes. FAM134B, a member of the family with sequence similarity 134, is a well-known ER-phagy receptor. Dysfunction of FAM134B results in several diseases including viral infection, inflammation, neurodegenerative disorder and cancer, indicating that FAM134B has crucial roles in various kinds of intracellular functions. However, how FAM134B-mediated ER-phagy regulates intracellular functions is not well understood. In this study, we found that FAM134B knockdown in mammalian cells accelerated cell proliferation. FAM134B knockdown increased the protein amount of STIM1, an ER Ca2+ sensor protein mediating the store-operated Ca2+ entry (SOCE) involved in G1 to S phase transition. FAM134B bound to STIM1 through its C-terminal cytosolic region. FAM134B knockdown reduced transport of STIM1 from the ER to autolysosomes. Finally, FAM134B knockdown accelerated G1 to S phase transition. These results suggest that FAM134B is involved in cell proliferation possibly through degradation of STIM1 via ER-phagy.

4.
J Biol Chem ; 300(9): 107636, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122007

ABSTRACT

In cellular contexts, the oscillation of calcium ions (Ca2+) is intricately linked to various physiological processes, such as cell proliferation, metabolism, and survival. Stromal interaction molecule 1 (STIM1) proteins form a crucial regulatory component in the store-operated calcium entry process. The structural attributes of STIM1 are vital for its functionality, encompassing distinct domains situated in the endoplasmic reticulum lumen and the cytoplasm. The intraluminal domain enables the timely detection of diminishing Ca2+ concentrations, prompting structural modifications that activate the cytoplasmic domain. This activated cytoplasmic domain undergoes conformational alterations and engages with membrane components, opening a channel that facilitates the influx of Ca2+ from the extracellular environment. Given its multiple domains and interaction mechanisms, STIM1 plays a foundational role in cellular biology. This review focuses on the design of optogenetic tools inspired by the structure and function of STIM1. These tools offer a groundbreaking approach for studying and manipulating intracellular Ca2+ signaling with precise spatiotemporal control. We further explore the practical applications of these tools, spanning fundamental scientific research, clinical studies, and their potential for translational research.

5.
FASEB J ; 38(15): e23853, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39120544

ABSTRACT

Sodium butyrate (NaB) improves ß-cell function in preclinical models of diabetes; however, the mechanisms underlying these beneficial effects have not been fully elucidated. In this study, we investigated the impact of NaB on ß-cell function and calcium (Ca2+) signaling using ex vivo and in vitro models of diabetes. Our results show that NaB significantly improved glucose-stimulated insulin secretion in islets from human organ donors with type 2 diabetes and in cytokine-treated INS-1 ß cells. Consistently, NaB improved glucose-stimulated Ca2+ oscillations in mouse islets treated with proinflammatory cytokines. Because the oscillatory phenotype of Ca2+ in the ß cell is governed by changes in endoplasmic reticulum (ER) Ca2+ levels, we explored the relationship between NaB and store-operated calcium entry (SOCE), a rescue mechanism that acts to refill ER Ca2+ levels through STIM1-mediated gating of plasmalemmal Orai channels. We found that NaB treatment preserved basal ER Ca2+ levels and restored SOCE in IL-1ß-treated INS-1 cells. Furthermore, we linked these changes with the restoration of STIM1 levels in cytokine-treated INS-1 cells and mouse islets, and we found that NaB treatment was sufficient to prevent ß-cell death in response to IL-1ß treatment. Mechanistic experiments revealed that NaB mediated these beneficial effects in the ß-cell through histone deacetylase (HDAC) inhibition, iNOS suppression, and modulation of AKT-GSK-3 signaling. Taken together, these data support a model whereby NaB treatment promotes ß-cell function and Ca2+ homeostasis under proinflammatory conditions through pleiotropic effects that are linked with maintenance of SOCE. These results also suggest a relationship between ß-cell SOCE and gut microbiome-derived butyrate that may be relevant in the treatment and prevention of diabetes.


Subject(s)
Butyric Acid , Calcium , Insulin-Secreting Cells , Stromal Interaction Molecule 1 , Animals , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Stromal Interaction Molecule 1/metabolism , Mice , Humans , Butyric Acid/pharmacology , Calcium/metabolism , Cytokines/metabolism , Calcium Signaling/drug effects , Male , Mice, Inbred C57BL , Endoplasmic Reticulum/metabolism , Diabetes Mellitus, Type 2/metabolism
6.
Clin Immunol ; 265: 110306, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977117

ABSTRACT

Store-operated calcium entry (SOCE) plays a crucial role in maintaining cellular calcium homeostasis. This mechanism involves proteins, such as stromal interaction molecule 1 (STIM1) and ORAI1. Mutations in the genes encoding these proteins, especially STIM1, can lead to various diseases, including CRAC channelopathies associated with severe combined immunodeficiency. Herein, we describe a novel homozygous mutation, NM_003156 c.792-3C > G, in STIM1 in a patient with a clinical profile of CRAC channelopathy, including immune system deficiencies and muscle weakness. Functional analyses revealed three distinct spliced forms in the patient cells: wild-type, exon 7 skipping, and intronic retention. Calcium influx analysis revealed impaired SOCE in the patient cells, indicating a loss of STIM1 function. We developed an antisense oligonucleotide treatment that improves STIM1 splicing and highlighted its potential as a therapeutic approach. Our findings provide insights into the complex effects of STIM1 mutations and shed light on the multifaceted clinical presentation of the patient.


Subject(s)
Calcium , Mutation , Neoplasm Proteins , Stromal Interaction Molecule 1 , Humans , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Calcium/metabolism , Channelopathies/genetics , Male , Calcium Release Activated Calcium Channels/genetics , Calcium Release Activated Calcium Channels/metabolism , Female , Severe Combined Immunodeficiency/genetics , ORAI1 Protein/genetics , ORAI1 Protein/metabolism
7.
Cell Calcium ; 123: 102926, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38959763

ABSTRACT

Two recent papers have highlighted that STIM1, a key component of Store-operated Ca2+-entry, is able to translocate to the nucleus and participate in nuclear Ca2+-handling and in DNA repair. These finding opens new avenues on the role that this Ca2+-sensing protein may have in health and disease.

8.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000357

ABSTRACT

Transient receptor potential canonical (TRPC) channels are calcium channels with diverse expression profiles and physiological implications in the retina. Neurons and glial cells of rat retinas with photoreceptor degeneration caused by retinitis pigmentosa (RP) exhibit basal calcium levels that are above those detected in healthy retinas. Inner retinal cells are the last to degenerate and are responsible for maintaining the activity of the visual cortex, even after complete loss of photoreceptors. We considered the possibility that TRPC1 and TRPC5 channels might be associated with both the high calcium levels and the delay in inner retinal degeneration. TRPC1 is known to mediate protective effects in neurodegenerative processes while TRPC5 promotes cell death. In order to comprehend the implications of these channels in RP, the co-localization and subsequent physical interaction between TRPC1 and TRPC5 in healthy retina (Sprague-Dawley rats) and degenerating (P23H-1, a model of RP) retina were detected by immunofluorescence and proximity ligation assays. There was an overlapping signal in the innermost retina of all animals where TRPC1 and TRPC5 physically interacted. This interaction increased significantly as photoreceptor loss progressed. Both channels function as TRPC1/5 heteromers in the healthy and damaged retina, with a marked function of TRPC1 in response to retinal degenerative mechanisms. Furthermore, our findings support that TRPC5 channels also function in partnership with STIM1 in Müller and retinal ganglion cells. These results suggest that an increase in TRPC1/5 heteromers may contribute to the slowing of the degeneration of the inner retina during the outer retinal degeneration.


Subject(s)
Rats, Sprague-Dawley , Retinal Degeneration , TRPC Cation Channels , Animals , TRPC Cation Channels/metabolism , Rats , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retina/metabolism , Retina/pathology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Retinitis Pigmentosa/genetics , Disease Models, Animal
9.
Eur J Pharmacol ; 979: 176832, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39038639

ABSTRACT

The contractile function of vascular smooth muscle cells (VSMCs) typically undergoes significant changes with advancing age, leading to severe vascular aging-related diseases. The precise role and mechanism of stromal interaction molecule-1 (STIM1) in age-mediated Ca2+ signaling and vasocontraction remain unclear. The connection between STIM1 and age-related vascular dysfunction was investigated using a multi-myograph system, immunohistochemical analysis, protein blotting, and SA-ß-gal staining. Results showed that vasoconstrictor responses in the thoracic aorta, intrarenal artery, and coronary artery decreased with age. STIM1 knockdown in the intrarenal and coronary arteries reduced vascular tone in young mice, while no change was observed in the thoracic aorta. A significant reduction in vascular tone occurred in the STIM1 knockout group with nifedipine. In the thoracic aorta, vasoconstriction significantly decreased with age following the use of nifedipine and thapsigargin and almost disappeared after STIM1 knockdown. The proportion of senescent VSMCs increased significantly in aged mice and further increased in sm-STIM1 KO aged mice. Moreover, the expression of senescence markers p21, p16, and IL-6 significantly increased with age, with p21 expression further increased in the STIM1 knockdown aged group, but not p16 or IL-6. These findings indicate that different arteries exhibit distinct organ-specific features and that STIM1 downregulation may contribute to age-related vasoconstrictive dysfunction through activation of the p21 pathway.


Subject(s)
Aging , Coronary Vessels , Down-Regulation , Stromal Interaction Molecule 1 , Vasoconstriction , Animals , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Vasoconstriction/drug effects , Mice , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Aging/metabolism , Male , Mice, Knockout , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Renal Artery/metabolism , Cellular Senescence/drug effects , Interleukin-6/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Aorta/metabolism , Aorta/drug effects
10.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062821

ABSTRACT

Sensing the lowering of endoplasmic reticulum (ER) calcium (Ca2+), STIM1 mediates a ubiquitous Ca2+ influx process called the store-operated Ca2+ entry (SOCE). Dysregulated STIM1 function or abnormal SOCE is strongly associated with autoimmune disorders, atherosclerosis, and various forms of cancers. Therefore, uncovering the molecular intricacies of post-translational modifications, such as oxidation, on STIM1 function is of paramount importance. In a recent proteomic screening, we identified three protein disulfide isomerases (PDIs)-Prolyl 4-hydroxylase subunit beta (P4HB), protein disulfide-isomerase A3 (PDIA3), and thioredoxin domain-containing protein 5 (TXNDC5)-as the ER-luminal interactors of STIM1. Here, we demonstrated that these PDIs dynamically associate with STIM1 and STIM2. The mutation of the two conserved cysteine residues of STIM1 (STIM1-2CA) decreased its Ca2+ affinity both in cellulo and in situ. Knockdown of PDIA3 or P4HB increased the Ca2+ affinity of wild-type STIM1 while showing no impact on the STIM1-2CA mutant, indicating that PDIA3 and P4HB regulate STIM1's Ca2+ affinity by acting on ER-luminal cysteine residues. This modulation of STIM1's Ca2+ sensitivity was further confirmed by Ca2+ imaging experiments, which showed that knockdown of these two PDIs does not affect STIM1-mediated SOCE upon full store depletion but leads to enhanced SOCE amplitudes upon partial store depletion. Thus, P4HB and PDIA3 dynamically modulate STIM1 activation by fine-tuning its Ca2+ binding affinity, adjusting the level of activated STIM1 in response to physiological cues. The coordination between STIM1-mediated Ca2+ signaling and redox responses reported herein may have implications for cell physiology and pathology.


Subject(s)
Calcium , Neoplasm Proteins , Oxidation-Reduction , Procollagen-Proline Dioxygenase , Protein Disulfide-Isomerases , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Humans , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Calcium/metabolism , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Endoplasmic Reticulum/metabolism , HEK293 Cells , Protein Binding , Calcium Signaling , Stromal Interaction Molecule 2/metabolism , Stromal Interaction Molecule 2/genetics
11.
FASEB J ; 38(14): e23825, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031532

ABSTRACT

Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wild-type (WT) mice, we determined whether loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD R1/2A pathology.


Subject(s)
Calcium , Calpain , Mice, Knockout , Muscle Proteins , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Calpain/metabolism , Mice , Calcium/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Male , Mice, Inbred C57BL , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Calcium Signaling
12.
Front Mol Neurosci ; 17: 1391189, 2024.
Article in English | MEDLINE | ID: mdl-38962804

ABSTRACT

This investigation aims to elucidate the novel role of Stromal Interaction Molecule 1 (STIM1) in modulating store-operated calcium entry (SOCE) and its subsequent impact on inflammatory cytokine release in T lymphocytes, thereby advancing our understanding of trigeminal neuralgia (TN) pathogenesis. Employing the Gene Expression Omnibus (GEO) database, we extracted microarray data pertinent to TN to identify differentially expressed genes (DEGs). A subsequent comparison with SOCE-related genes from the Genecards database helped pinpoint potential target genes. The STRING database facilitated protein-protein interaction (PPI) analysis to spotlight STIM1 as a gene of interest in TN. Through histological staining, transmission electron microscopy (TEM), and behavioral assessments, we probed STIM1's pathological effects on TN in rat models. Additionally, we examined STIM1's influence on the SOCE pathway in trigeminal ganglion cells using techniques like calcium content measurement, patch clamp electrophysiology, and STIM1- ORAI1 co-localization studies. Changes in the expression of inflammatory markers (TNF-α, IL-1ß, IL-6) in T cells were quantified using Western blot (WB) and enzyme-linked immunosorbent assay (ELISA) in vitro, while immunohistochemistry and flow cytometry were applied in vivo to assess these cytokines and T cell count alterations. Our bioinformatic approach highlighted STIM1's significant overexpression in TN patients, underscoring its pivotal role in TN's etiology and progression. Experimental findings from both in vitro and in vivo studies corroborated STIM1's regulatory influence on the SOCE pathway. Furthermore, STIM1 was shown to mediate SOCE-induced inflammatory cytokine release in T lymphocytes, a critical factor in TN development. Supportive evidence from histological, ultrastructural, and behavioral analyses reinforced the link between STIM1-mediated SOCE and T lymphocyte-driven inflammation in TN pathogenesis. This study presents novel evidence that STIM1 is a key regulator of SOCE and inflammatory cytokine release in T lymphocytes, contributing significantly to the pathogenesis of trigeminal neuralgia. Our findings not only deepen the understanding of TN's molecular underpinnings but also potentially open new avenues for targeted therapeutic strategies.

13.
Front Aging ; 5: 1432858, 2024.
Article in English | MEDLINE | ID: mdl-39011027
14.
Front Cell Dev Biol ; 12: 1399092, 2024.
Article in English | MEDLINE | ID: mdl-38903530

ABSTRACT

Introduction: Previous publications have shown that STIM1, ORAI1, and KDM2B, are implicated in Ca2+ signaling and are highly expressed in various cancer subtypes including prostate cancer. They play multiple roles in cancer cell migration, invasion, and metastasis. In the current study we investigated the expression of the above biomarkers in circulating tumor cells from patients with metastatic prostate cancer. Methods: Thirty-two patients were enrolled in this study and CTCs' isolation was performed with Ficoll density gradient. Two different triple immunofluorescence stainings were conducted with the following combination of antibodies: CK/KDM2B/CD45 and CK/STIM1/ORAI1. Slides were analyzed using VyCAP microscopy technology. Results: CTC-positive patients were detected in 41% for (CK/KDM2B/CD45) staining and in 56% for (CK/STIM1/ORAI1) staining. The (CK+/KDM2B+/CD45-) and the (CK+/STIM1+/ORAI1+) were the most frequent phenotypes as they were detected in 85% and 94% of the CTC-positive patients, respectively. Furthermore, the expression of ORAI1 and STIM1 in patients' PBMCs was very low exhibiting them as interesting specific biomarkers for CTC detection. The (CK+/STIM1+/ORAI1+) phenotype was correlated to bone metastasis (p = 0.034), while the (CK+/STIM1+/ORAI1-) to disease relapse (p = 0.049). Discussion: STIM1, ORAI1, and KDM2B were overexpressed in CTCs from patients with metastatic prostate cancer. STIM1 and ORAI1 expression was related to disease recurrence and bone metastasis. Further investigation of these biomarkers in a larger cohort of patients will clarify their clinical significance for prostate cancer patients.

15.
Neurotoxicology ; 103: 134-145, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38901802

ABSTRACT

Methamphetamine (METH) is a widely abused amphetamine-type psychoactive drug that causes serious health problems. Previous studies have demonstrated that METH can induce neuron autophagy and apoptosis in vivo and in vitro. However, the molecular mechanisms underlying METH-induced neuron autophagy and apoptosis remain poorly understood. Stromal interacting molecule 1 (STIM1) was hypothesized to be involved in METH-induced neuron autophagy and apoptosis. Therefore, the expression of STIM1 protein was measured and the effect of blocking STIM1 expression with siRNA was investigated in cultured neuronal cells, and the hippocampus and striatum of mice exposed to METH. Furthermore, intracellular calcium concentration and endoplasmic reticulum (ER) stress-related proteins were determined in vitro and in vivo in cells treated with METH. The results suggested that STIM1 mediates METH-induced neuron autophagy by activating the p-Akt/p-mTOR pathway. METH exposure also resulted in increased expression of Orai1, which was reversed after STIM1 silencing. Moreover, the disruption of intracellular calcium homeostasis induced ER stress and up-regulated the expression of pro-apoptotic protein CCAAT/enhancer-binding protein homologous protein (CHOP), resulting in classic mitochondria apoptosis. METH exposure can cause neuronal autophagy and apoptosis by increasing the expression of STIM1 protein; thus, STIM1 may be a potential gene target for therapeutics in METH-caused neurotoxicity.


Subject(s)
Apoptosis , Autophagy , Endoplasmic Reticulum Stress , Methamphetamine , Neurons , Stromal Interaction Molecule 1 , Methamphetamine/toxicity , Animals , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Autophagy/drug effects , Apoptosis/drug effects , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Mice , Mice, Inbred C57BL , Central Nervous System Stimulants/toxicity , Calcium/metabolism , Cells, Cultured , Male , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , ORAI1 Protein/metabolism , ORAI1 Protein/genetics , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology
16.
Sci Rep ; 14(1): 11243, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755179

ABSTRACT

Immune thrombocytopenia (ITP) is an autoimmune disease caused by T-cell dysfunction. Recently, several studies have shown that a disturbed Th17/Treg balance contributes to the development of ITP. MicroRNAs (miRNAs) are small noncoding RNA moleculesthat posttranscriptionally regulate gene expression. Emerging evidences have demonstrated that miRNAs play an important role in regulating the Th17/Treg balance. In the present study, we found that miR-641 was upregulated in ITP patients. In primary T cells, overexpression of miR-641 could cause downregulation of its target genes STIM1 and SATB1, thus inducing a Th17 (upregulated)/Treg (downregulated) imbalance. Inhibition of miR-641 by a miR-641 sponge in primary T cells of ITP patients or by antagomiR-641 in an ITP murine model could cause upregulation of STIM1 and SATB1, thus restoring Th17/Treg homeostasis. These results suggested that the miR-641-STIM/SATB1 axis plays an important role in regulating the Th17/Treg balance in ITP.


Subject(s)
Matrix Attachment Region Binding Proteins , MicroRNAs , Purpura, Thrombocytopenic, Idiopathic , Stromal Interaction Molecule 1 , T-Lymphocytes, Regulatory , Th17 Cells , Adult , Animals , Female , Humans , Male , Mice , Middle Aged , Disease Models, Animal , Gene Expression Regulation , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/genetics , Purpura, Thrombocytopenic, Idiopathic/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
17.
Saudi Pharm J ; 32(7): 102109, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38817821

ABSTRACT

KDM2B, a histone lysine demethylase, is expressed in a plethora of cancers. Earlier studies from our group, have showcased that overexpression of KDM2B in the human prostate cancer cell line DU-145 is associated with cell adhesion, actin reorganization, and improved cancer cell migration. In addition, we have previously examined changes of cytosolic Ca2+, regulated by the pore-forming proteins ORAI and the Ca2+ sensing stromal interaction molecules (STIM), via store-operated Ca2+ entry (SOCE) in wild-type DU-145. This study sought to evaluate the impact of KDM2B overexpression on the expression of key molecules (SGK1, Nhe1, Orai1, Stim1) and SOCE. Furthermore, this is the first study to evaluate KDM2B expression in circulating tumor cells (CTCs) from patients with prostate cancer. mRNA levels for SGK1, Nhe1, Orai1, and Stim1 were quantified by RT-PCR. Calcium signals were measured in KDM2B-overexpressing DU-145 cells, loaded with Fura-2. Blood samples from 22 prostate cancer cases were scrutinized for KDM2B expression using immunofluorescence staining and the VyCAP system. KDM2B overexpression in DU-145 cells increased Orai1, Stim1, and Nhe1 mRNA levels and significantly decreased Ca2+ release. KDM2B expression was examined in 22 prostate cancer patients. CTCs were identified in 45 % of these patients. 80 % of the cytokeratin (CK)-positive patients and 63 % of the total examined CTCs exhibited the (CK + KDM2B + CD45-) phenotype. To conclude, this study is the first to report increased expression of KDM2B in CTCs from patients with prostate cancer, bridging in vitro and preclinical assessments on the potentially crucial role of KDM2B on migration, invasiveness, and ultimately metastasis in prostate cancer.

18.
Radiother Oncol ; 196: 110310, 2024 07.
Article in English | MEDLINE | ID: mdl-38677328

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a kind of malignant head and neck tumor with high mortality. lncRNAs are valuable diagnostic biomarkers and therapeutic targets for various tumors. This study investigated the effects and mechanism of LINC00313 in nasopharyngeal carcinoma. METHODS: Cell Counting Kit-8 (CCK-8) and immunohistochemistry were used for assessing cell proliferation. The levels of autophagy-related proteins, and stem cell markers were detected. Immunofluorescence assay was used for LC3 detection. Methylated RNA Immunoprecipitation (meRIP) of LINC00313 in NPC cells was assessed. The localization of LINC00313 was verified by luorescence in situ hybridization (FIHS). The interaction between LINC00313 and the downstream targets were analyzed and confirmed by immunoprecipitation (RIP). Besides, the tumorigenesis roles of LINC00313 were confirmed in tumor growth mice model. RESULTS: LINC00313 was increased in NPC tissues and cells. LINC00313 knockdown enhanced autophagy, and decreased stemness and cell viability of NPC cells through regulating STIM1. METTL3/IGF2BP1-mediated m6A modification promoted the stabilization and up-regulation of LINC00313. LINC00313 activated AKT/mTOR pathway in NPC cells through PTBP1/STIM1 axis. Moreover, LINC00313 promoted tumor growth and metastasis in xenograft model. CONCLUSION: Upregulation of LINC00313 suppressed autophagy and promoted stemness of NPC cells through PTBP1/STIM1 axis.


Subject(s)
Autophagy , Heterogeneous-Nuclear Ribonucleoproteins , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Polypyrimidine Tract-Binding Protein , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Mice , Animals , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Cell Proliferation , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Mice, Nude
20.
Biochem Soc Trans ; 52(2): 747-760, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38526208

ABSTRACT

An important calcium (Ca2+) entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel, which controls a series of downstream signaling events such as gene transcription, secretion and proliferation. It is composed of a Ca2+ sensor in the endoplasmic reticulum (ER), the stromal interaction molecule (STIM), and the Ca2+ ion channel Orai in the plasma membrane (PM). Their activation is initiated by receptor-ligand binding at the PM, which triggers a signaling cascade within the cell that ultimately causes store depletion. The decrease in ER-luminal Ca2+ is sensed by STIM1, which undergoes structural rearrangements that lead to coupling with Orai1 and its activation. In this review, we highlight the current understanding of the Orai1 pore opening mechanism. In this context, we also point out the questions that remain unanswered and how these can be addressed by the currently emerging genetic code expansion (GCE) technology. GCE enables the incorporation of non-canonical amino acids with novel properties, such as light-sensitivity, and has the potential to provide novel insights into the structure/function relationship of CRAC channels at a single amino acid level in the living cell.


Subject(s)
Calcium Release Activated Calcium Channels , Calcium , Endoplasmic Reticulum , ORAI1 Protein , Stromal Interaction Molecule 1 , Animals , Humans , Calcium/metabolism , Calcium Release Activated Calcium Channels/metabolism , Calcium Signaling , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL