Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38959058

ABSTRACT

The family Turriviridae includes viruses with a dsDNA genome of 16-17 kbp. Virions are spherical with a diameter of approximately 75 nm and comprise a host-derived internal lipid membrane surrounded by a proteinaceous capsid shell. Members of the family Turriviridae infect extremophilic archaea of the genera Sulfolobus and Saccharolobus. Viral infection results in cell lysis for Sulfolobus turreted icosahedral virus 1 infection but other members of the family can be temperate. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Turriviridae, which is available at ictv.global/report/turriviridae.


Subject(s)
DNA Viruses , Genome, Viral , Virion , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/ultrastructure , Virion/ultrastructure , Archaeal Viruses/classification , Archaeal Viruses/genetics , Archaeal Viruses/ultrastructure , Archaeal Viruses/physiology , Sulfolobus/virology , Sulfolobus/genetics , DNA, Viral/genetics
2.
Sensors (Basel) ; 23(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36679751

ABSTRACT

As an important part of hydrometry, river discharge monitoring plays an irreplaceable role in the planning and management of water resources and is an essential element and necessary means of river management. Due to its benefits of simplicity, efficiency and safety, Space-Time Image Velocimetry (STIV) has attracted attention from all around the world. The most crucial component of the STIV is the detection of the Main Orientation of Texture (MOT), and the precision of detection directly affects the results of calculations. However, due to the complicated river flow characteristics and the harsh testing environment in the field, a large amount of noise and interfering textures show up in the space-time images, which affects the detection results of the MOT. In response to the shortage of noise and interference texture, a new non-contact image analysis method is developed. Firstly, Multi-scale Retinex (MSR) is proposed to pre-process the images for contrast enhancement; secondly, a fourth-order Gaussian derivative steerable filter is employed to enhance the structure of the texture; next, based on the probability density distribution function and the orientations of the enhanced images, the noise suppression function and the orientation-filtering function are designed to filter out the noise to highlight the texture. Finally, the Fourier Maximum Angle Analysis (FMAA) is used to filter out the noise further and obtain the clear orientations to achieve the measurement of velocity and discharge. The experimental results show that, compared with the widely used image velocimetry measurements, the accuracy of our method in the average velocity and flow discharge is significantly improved, and the real-time performance is excellent.


Subject(s)
Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Likelihood Functions , Fourier Analysis , Rheology
3.
Micromachines (Basel) ; 13(8)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35893165

ABSTRACT

Particle image velocimetry (PIV) is a quantitative flow visualization technique, which greatly improves the ability to characterize various complex flows in laboratory and field environments. However, the deployment of reference objects or ground control points (GCPs) for velocity calibration is still a challenge for in situ free-surface velocity measurements. By combining space-time image velocimetry (STIV) with direct sensor orientation (DSO) photogrammetry, a laser distance meter (LDM)-supported photogrammetric device is designed, to realize the GCPs-free surface velocity measurement under an oblique shooting angle. The velocity calibration with DSO is based on the collinear equation, while the lens distortion, oblique shooting angle, water level variation, and water surface slope are introduced to build an imaging measurement model with explicit physical meaning for parameters. To accurately obtain the in situ position and orientations of the camera utilizing the LDM and its embedded tilt sensor, the camera's intrinsic parameters and relative position within the LDM are previously calibrated with a planar chessboard. A flume experiment is designed to evaluate the uncertainty of optical flow estimation and velocity calibration. Results show that the proposed DSO-STIV has good transferability and operability for in situ measurements. It is superior to propeller current meters and surface velocity radars in characterizing shallow free-surface flows; this is attributed to its non-intrusive, whole-field, and high-resolution features. In addition, the combined uncertainty of free-surface velocity measurement is analyzed, which provides an alternative solution for error assessment when comparing measurement failures.

4.
Structure ; 27(11): 1634-1646.e3, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31587916

ABSTRACT

Sulfolobus turreted icosahedral virus (STIV) is a model archaeal virus and member of the PRD1-adenovirus lineage. Although STIV employs pyramidal lysis structures to exit the host, knowledge of the viral entry process is lacking. We therefore initiated studies on STIV attachment and entry. Negative stain and cryoelectron micrographs showed virion attachment to pili-like structures emanating from the Sulfolobus host. Tomographic reconstruction and sub-tomogram averaging revealed pili recognition by the STIV C381 turret protein. Specifically, the triple jelly roll structure of C381 determined by X-ray crystallography shows that pilus recognition is mediated by conserved surface residues in the second and third domains. In addition, the STIV petal protein (C557), when present, occludes the pili binding site, suggesting that it functions as a maturation protein. Combined, these results demonstrate a role for the namesake STIV turrets in initial cellular attachment and provide the first molecular model for viral attachment in the archaeal domain of life.


Subject(s)
Archaeal Viruses/chemistry , Viral Proteins/chemistry , Virus Attachment , Archaeal Viruses/pathogenicity , Archaeal Viruses/ultrastructure , Protein Domains , Sulfolobus/virology , Viral Proteins/metabolism
5.
Immunobiology ; 224(3): 371-382, 2019 05.
Article in English | MEDLINE | ID: mdl-30952553

ABSTRACT

Enteric fever, caused by Salmonella enterica serovars, Typhi (S. Typhi) and Paratyphi (S. Paratyphi) is a major public health challenge for the developing nations. Globally, the disease affects ˜15-30 million individuals every year, resulting in >200,000 deaths. Multidrug-resistant S. Typhi H58 strain has emerged as the dominant circulating strain in a large part of the world and an extensively drug-resistant (XDR) subclade of the strain was recently reported. Many believe that vaccination of the susceptible populations is urgently needed and the best option to control the infection. However, the commercial live attenuated (Ty21a) vaccine is not recommended for children below six years of age while the Vi-polysaccharide-based vaccine has poor long-term efficacy against typhoid fever. Moreover, no vaccines are available against S. Paratyphi infection. Thus, a new formulation capable of providing long term protection against both the pathogens and safe for all age groups is immediately required. We show that recombinant, S. Typhi outer membrane protein STIV (rSTIV) is immunogenic in mice and elicits high serum titers of different immunoglobulin subtypes. STIV antibodies opsonize S. Typhi and S. Paratyphi A to promote antibody-dependent cellular cytotoxicity and complement-mediated lysis. Immunization with rSTIV also induces robust cell-mediated immunity, including antigen-specific T cell proliferation and cytotoxic T lymphocyte response. Finally, mice immunized with rSTIV are significantly protected against S. Typhi and S. Paratyphi A challenge, with reduced visceral bacterial load. Our results underscore the potential of rSTIV as a novel vaccine candidate for enteric fever.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , CD8-Positive T-Lymphocytes/immunology , Paratyphoid Fever/immunology , Salmonella Vaccines/immunology , Salmonella typhi/physiology , Typhoid Fever/immunology , Animals , Antibodies, Bacterial/blood , Antibody-Dependent Cell Cytotoxicity , Bacterial Outer Membrane Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Cytotoxicity, Immunologic , Humans , Immunity, Humoral , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Recombinant Proteins/genetics
6.
Cell Microbiol ; 21(3): e12982, 2019 03.
Article in English | MEDLINE | ID: mdl-30426648

ABSTRACT

Typhoid is a life-threatening febrile illness that affects ~24.2 million people worldwide and is caused by the intracellular bacteria Salmonella Typhi (S. Typhi). Intestinal epithelial invasion by S. Typhi is essential for the establishment of successful infection and is traditionally believed to depend on Salmonella pathogenicity island 1-encoded type 3 secretion system 1 (T3SS-1). We had previously reported that bacterial outer membrane protein T2942/STIV functions as a standalone invasin and contributes to the pathogenesis of S. Typhi by promoting epithelial invasion independent of T3SS-1 (Cell Microbiol, 2015). Here, we show that STIV, by using its 20-amino-acid extracellular loop, interacts with receptor tyrosine kinase, Met, of host intestinal epithelial cells. This interaction leads to Met phosphorylation and activation of a downstream signalling cascade, involving Src, phosphatidylinositol 3-kinase/Akt, and Rac1, which culminates into localized actin polymerisation and bacterial engulfment by the cell. Inhibition of Met tyrosine kinase activity severely limited intestinal invasion and systemic infection by S. Typhi in vivo, highlighting the importance of this invasion pathway in disease progression. This is the first report elucidating the mechanism of T3SS-1-independent epithelial invasion of S. Typhi, and this crucial host-pathogen interaction may be targeted therapeutically to restrict pathogenesis.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Endocytosis , Epithelial Cells/microbiology , Host-Pathogen Interactions , Proto-Oncogene Proteins c-met/metabolism , Salmonella typhi/growth & development , Typhoid Fever/physiopathology , Actins/metabolism , Cell Line , Humans , Phosphorylation , Protein Multimerization , Protein Processing, Post-Translational , Signal Transduction
7.
Subcell Biochem ; 84: 357-377, 2017.
Article in English | MEDLINE | ID: mdl-28500532

ABSTRACT

Although morphologically resembling bacteria, archaea constitute a distinct domain of life with a closer affiliation to eukaryotes than to bacteria. This similarity is seen in the machineries for a number of essential cellular processes, including DNA replication and gene transcription. Perhaps surprisingly, given their prokaryotic morphology, some archaea also possess a core cell division apparatus that is related to that involved in the final stages of membrane abscission in vertebrate cells, the ESCRT machinery.


Subject(s)
Archaea/chemistry , Archaea/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/metabolism , Cell Division
SELECTION OF CITATIONS
SEARCH DETAIL