Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Mol Ther ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169621

ABSTRACT

Multiple sulfatase deficiency (MSD) is a severe, lysosomal storage disorder caused by pathogenic variants in the gene SUMF1, encoding the sulfatase modifying factor formylglycine-generating enzyme. Patients with MSD exhibit functional deficiencies in all cellular sulfatases. The inability of sulfatases to break down their substrates leads to progressive and multi-systemic complications in patients, similar to those seen in single-sulfatase disorders such as metachromatic leukodystrophy and mucopolysaccharidoses IIIA. Here, we aimed to determine if hematopoietic stem cell transplantation with ex vivo SUMF1 lentiviral gene therapy could improve outcomes in a clinically relevant mouse model of MSD. We first tested our approach in MSD patient-derived cells and found that our SUMF1 lentiviral vector improved protein expression, sulfatase activities, and glycosaminoglycan accumulation. In vivo, we found that our gene therapy approach rescued biochemical deficits, including sulfatase activity and glycosaminoglycan accumulation, in affected organs of MSD mice treated post-symptom onset. In addition, treated mice demonstrated improved neuroinflammation and neurocognitive function. Together, these findings suggest that SUMF1 HSCT-GT can improve both biochemical and functional disease markers in the MSD mouse.

2.
Clin Genet ; 106(4): 505-511, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38863195

ABSTRACT

Biallelic variants in SUMF1 are associated with multiple sulfatase deficiency (MSD), a rare lysosomal storage disorder typically diagnosed in early infancy or childhood, marked by severe neurodegeneration and early mortality. We present clinical and molecular characterisation of three unrelated patients aged 13 to 58 years with milder clinical manifestations due to SUMF1 disease variants, including two adult patients presenting with apparent non-syndromic retinal dystrophy. Whole genome sequencing identified biallelic SUMF1 variants in all three patients; Patient 1 homozygous for a complex allele c.[290G>T;293T>A]; p.[(Gly97Val);(Val98Glu)], Patient 2 homozygous for c.866A>G; p.(Tyr289Cys), and Patient 3 compound heterozygous for c.726-1G>C and p.(Tyr289Cys). Electroretinography indicated a rod-cone dystrophy with additional possible inner retinal dysfunction in all three patients. Biochemical studies confirmed reduced, but not absent, sulfatase enzyme activity in the absence of extra-ocular disease (Patient 1) or only mild systemic disease (Patients 2, 3). These cases are suggestive that non-null SUMF1 genotypes can cause an attenuated clinical phenotype, including retinal dystrophy without systemic complications, in adulthood.


Subject(s)
Alleles , Retinal Dystrophies , Sulfatases , Humans , Male , Female , Adult , Adolescent , Retinal Dystrophies/genetics , Retinal Dystrophies/pathology , Middle Aged , Sulfatases/genetics , Sulfatases/deficiency , Leukocytes/pathology , Leukocytes/metabolism , Oxidoreductases Acting on Sulfur Group Donors/genetics , Multiple Sulfatase Deficiency Disease/genetics , Multiple Sulfatase Deficiency Disease/pathology , Mutation , Phenotype , Young Adult , Whole Genome Sequencing , Genotype
3.
Aging (Albany NY) ; 16(5): 4699-4722, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38460946

ABSTRACT

BACKGROUND: Glioma is a prevalent type of malignant tumor. To date, there is a lack of literature reports that have examined the association between sulfatase modifying factor 1 (SUMF1) and glioma. METHODS: The levels of SUMF1 were examined, and their relationships with the diagnosis, prognosis, and immune microenvironment of patients with glioma were investigated. Cox and Lasso regression analysis were employed to construct nomograms and risk models associated with SUMF1. The functions and mechanisms of SUMF1 were explored and verified using gene ontology, cell counting kit-8, wound healing, western blotting, and transwell experiments. RESULTS: SUMF1 expression tended to increase in glioma tissues. SUMF1 overexpression was linked to the diagnosis of cancer, survival events, isocitrate dehydrogenase status, age, and histological subtype and was positively correlated with poor prognosis in patients with glioma. SUMF1 overexpression was an independent risk factor for poor prognosis. SUMF1-related nomograms and high-risk scores could predict the outcome of patients with glioma. SUMF1 co-expressed genes were involved in cytokine, T-cell activation, and lymphocyte proliferation. Inhibiting the expression of SUMF1 could deter the proliferation, migration, and invasion of glioma cells through epithelial mesenchymal transition. SUMF1 overexpression was significantly associated with the stromal score, immune cells (such as macrophages, neutrophils, activated dendritic cells), estimate score, immune score, and the expression of the programmed cell death 1, cytotoxic T-lymphocyte associated protein 4, CD79A and other immune cell marker. CONCLUSION: SUMF1 overexpression was found to be correlated with adverse prognosis, cancer detection, and immune status in patients with glioma. Inhibiting the expression of SUMF1 was observed to deter the proliferation, migration, and invasion of cancer cells. The nomograms and risk models associated with SUMF1 could predict the prognosis of patients with glioma.


Subject(s)
Glioma , Humans , Glioma/genetics , Lymphocyte Activation , Nomograms , Blotting, Western , Cell Count , Prognosis , Tumor Microenvironment/genetics , Oxidoreductases Acting on Sulfur Group Donors
4.
Mol Genet Metab ; 141(2): 108116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161139

ABSTRACT

Multiple sulfatase deficiency (MSD) is an ultra-rare, inherited lysosomal storage disease caused by mutations in the gene sulfatase modifying factor 1 (SUMF1). MSD is characterized by the functional deficiency of all sulfatase enzymes, leading to the storage of sulfated substrates including glycosaminoglycans (GAGs), sulfolipids, and steroid sulfates. Patients with MSD experience severe neurological impairment, hearing loss, organomegaly, corneal clouding, cardiac valve disease, dysostosis multiplex, contractures, and ichthyosis. Here, we generated a novel human model of MSD by reprogramming patient peripheral blood mononuclear cells to establish an MSD induced pluripotent stem cell (iPSC) line (SUMF1 p.A279V). We also generated an isogenic control iPSC line by correcting the pathogenic variant with CRISPR/Cas9 gene editing. We successfully differentiated these iPSC lines into neural progenitor cells (NPCs) and NGN2-induced neurons (NGN2-iN) to model the neuropathology of MSD. Mature neuronal cells exhibited decreased SUMF1 gene expression, increased lysosomal stress, impaired neurite outgrowth and maturation, reduced sulfatase activities, and GAG accumulation. Interestingly, MSD iPSCs and NPCs did not exhibit as severe of phenotypes, suggesting that as neurons differentiate and mature, they become more vulnerable to loss of SUMF1. In summary, we demonstrate that this human iPSC-derived neuronal model recapitulates the cellular and biochemical features of MSD. These cell models can be used as tools to further elucidate the mechanisms of MSD pathology and for the development of therapeutics.


Subject(s)
Induced Pluripotent Stem Cells , Multiple Sulfatase Deficiency Disease , Humans , Leukocytes, Mononuclear/metabolism , Neurons/pathology , Sulfatases , Oxidoreductases Acting on Sulfur Group Donors
5.
BMC Genom Data ; 24(1): 34, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344788

ABSTRACT

BACKGROUND: Evidence shows that genetic factors play important roles in the severity of coronavirus disease 2019 (COVID-19). Sulfatase modifying factor 1 (SUMF1) gene is involved in alveolar damage and systemic inflammatory response. Therefore, we speculate that it may play a key role in COVID-19. RESULTS: We found that rs794185 was significantly associated with COVID-19 severity in Chinese population, under the additive model after adjusting for gender and age (for C allele = 0.62, 95% CI = 0.44-0.88, P = 0.0073, logistic regression). And this association was consistent with this in European population Genetics Of Mortality In Critical Care (GenOMICC: OR for C allele = 0.94, 95% CI = 0.90-0.98, P = 0.0037). Additionally, we also revealed a remarkable association between rs794185 and the prothrombin activity (PTA) in subjects (P = 0.015, Generalized Linear Model). CONCLUSIONS: In conclusion, our study for the first time identified that rs794185 in SUMF1 gene was associated with the severity of COVID-19.


Subject(s)
COVID-19 , Sulfatases , Humans , Sulfatases/genetics , COVID-19/genetics , Polymorphism, Genetic , Oxidoreductases Acting on Sulfur Group Donors/genetics
6.
BMC Pediatr ; 23(1): 133, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36959582

ABSTRACT

BACKGROUND: Multiple sulfatase deficiency (MSD) is a rare lysosomal storage disorder caused due to pathogenic variants in the SUMF1 gene. The SUMF1 gene encodes for formylglycine generating enzyme (FGE) that is involved in the catalytic activation of the family of sulfatases. The affected patients present with a wide spectrum of clinical features including multi-organ involvement. To date, almost 140 cases of MSD have been reported worldwide, with only four cases reported from India. The present study describes two cases of late infantile form of MSD from India and the identification of a novel missense variant in the SUMF1 gene. CASE PRESENTATION: In case 1, a male child presented to us at the age of 6 years. The remarkable presenting features included ichthyosis, presence of irritability, poor social response, thinning of corpus callosum on MRI and, speech regression. Clinical suspicion of MSD was confirmed by enzyme analysis of two sulfatase enzymes followed by gene sequencing. We identified a novel missense variant c.860A > T (p.Asn287Ile) in exon 7 of the SUMF1 gene. In case 2, a two and a half years male child presented with ichthyosis, leukodystrophy and facial dysmorphism. We performed an enzyme assay for two sulfatases, which showed significantly reduced activities thereby confirming MSD diagnosis. CONCLUSION: Overall, present study has added to the existing data on MSD from India. Based on the computational analysis, the novel variant c.860A > T identified in this study is likely to be associated with a milder phenotype and prolonged survival.


Subject(s)
Ichthyosis , Multiple Sulfatase Deficiency Disease , Male , Humans , Multiple Sulfatase Deficiency Disease/diagnosis , Multiple Sulfatase Deficiency Disease/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics , Mutation, Missense , Sulfatases/genetics
7.
J Clin Lab Anal ; 36(12): e24786, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36441600

ABSTRACT

BACKGROUND: Multiple sulfatase deficiency (MSD) (MIM#272200) is an ultra-rare autosomal recessive lysosomal storage disorder caused by mutation of the Sulfatase Modifying Factor 1 (SUMF1) gene. METHODS: Herein, we report an eight-year-old boy with a late infantile form of multiple sulfatase deficiency. A combination of copy-number variation sequencing (CNV-seq) and whole-exome sequencing (WES) were used to analyze the genetic cause for the MSD patient. RESULTS: Our results, previously not seen in China, show a novel compound heterozygous mutation with one allele containing a 240.55 kb microdeletion on 3p26.1 encompassing the SETMAR gene and exons 4-9 of the SUMF1 gene, and the other allele containing a novel missense mutation of c.671G>A (p.Arg224Gln) in the SUMF1 gene. Both were inherited from the proband's unaffected parents, one from each. Bioinformatics analyses show the novel variation to be "likely pathogenic." SWISS-MODEL analysis shows that the missense mutation may alter the three-dimensional (3D) structure. CONCLUSIONS: In summary, this study reported a novel compound heterozygous with microdeletion in SUMF1 gene, which has not been reported in China. The complex clinical manifestations of MSD may delay diagnosis; however, molecular genetic analysis of the SUMF1 gene can be performed to help obtain an early diagnosis.


Subject(s)
Multiple Sulfatase Deficiency Disease , Male , Humans , Child , Multiple Sulfatase Deficiency Disease/genetics , Multiple Sulfatase Deficiency Disease/diagnosis , Sulfatases/genetics , Mutation/genetics , Mutation, Missense , Computational Biology , Histone-Lysine N-Methyltransferase/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics
8.
Front Cell Dev Biol ; 10: 843079, 2022.
Article in English | MEDLINE | ID: mdl-35721514

ABSTRACT

Multiple sulfatase deficiency (MSD) is a rare recessively inherited Mendelian disorder that manifests with developmental delay, neurodegeneration, skeletal deformities, facial dysmorphism, congenital growth retardation, and other clinical signs. The disorder is caused by mutations in the SUMF1 gene, which encodes the formylglycine-generating enzyme (FGE), and responsible for the activation of sulfatases. Mutations in SUMF1 result in reduced or absent FGE function with consequent compromised activities of its client sulfatases. This leads to an accumulation of enzyme substrates, such as glycosaminoglycans and sulfolipids, within lysosomes and subsequently impaired lysosome function and cellular pathology. Currently, there are no disease modifying therapeutic options for MSD patients, hence the need for more suitable animal models to investigate the disorder. Here, we describe the characterisation of a sumf1 null zebrafish model, which has negligible sulfatase activity. Our sumf1 -/- zebrafish model successfully recapitulates the pathology of MSD such as cranial malformation, altered bone development, an enlarged population of microglia, and growth retardation during early development but lacks early lethality of mouse Sumf1 -/- models. Notably, we provide evidence of recovery in MSD pathology during later developmental stages, resulting in homozygous mutants that are viable. Hence, our data suggest the possibility of a unique compensatory mechanism that allows the sumf1 -/- null zebrafish to survive better than human MSD patients and mouse Sumf1 -/- models.

9.
JIMD Rep ; 58(1): 80-88, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33728250

ABSTRACT

Multiple sulfatase deficiency (MSD) is a lysosomal storage disease caused by a deficiency of formylglycine-generating enzyme due to SUMF1 defects. MSD may be misdiagnosed as metachromatic leukodystrophy (MLD), as neurological and neuroimaging findings are similar, and arylsulfatase A (ARSA) deficiency and enhanced urinary sulfatide excretion may also occur. While ARSA deficiency seems a cause for neurological symptoms and later neurodegenerative disease course, deficiency of other sulfatases results in clinical features such as dysmorphism, dysostosis, or ichthyosis. We report on a girl and a boy of the same origin presenting with severe ARSA deficiency and neurological and neuroimaging features compatible with MLD. However, exome sequencing revealed not yet described homozygosity of the missense variant c.529G > C, p.Ala177Pro in SUMF1. We asked whether dynamics of disease course differs between MSD and MLD. Comparison to a cohort of 59 MLD patients revealed different disease course concerning onset and disease progression in both MSD patients. The MSD patients showed first gross motor symptoms earlier than most patients with juvenile MLD (<10th percentile of Gross-Motor-Function in MLD [GMFC-MLD] 1). However, subsequent motor decline was more protracted (75th and 90th percentile of GMFC-MLD 2 (loss of independent walking) and 75th percentile of GMFC-MLD 5 (loss of any locomotion)). Language decline started clearly after 50th percentile of juvenile MLD and progressed rapidly. Thus, dynamics of disease course may be a further clue for the characterization of MSD. These data may contribute to knowledge of natural course of ultra-rare MSD and be relevant for counseling and therapy.

10.
Gene ; 780: 145527, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33636292

ABSTRACT

Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal storage disease produced by the deficiency of the N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme, leading to glycosaminoglycans (GAGs) accumulation. Since currently available treatments remain limited and unspecific, novel therapeutic approaches are essential for the disease treatment. In an attempt to reduce treatment limitations, gene therapy rises as a more effective and specific alternative. We present in this study the delivery assessment of GALNS and sulfatase-modifying factor 1 (SUMF1) genes via HIV-1 derived lentiviral vectors into fibroblasts from MPS IVA patients. After transduction, we determined GALNS enzymatic activity, lysosomal mass change, and autophagy pathway impairment. Additionally, we computationally assessed the effect of mutations over the enzyme-substrate interaction and phenotypic effects. The results showed that the co-transduction of MPS IVA fibroblasts with GALNS and SUMF1 cDNAs led to a significant increase in GALNS enzyme activity and a reduction of lysosomal mass. We show that patient-specific differences in cellular response are directly associated with the set of mutations on each patient. Lastly, we present new evidence supporting autophagy impairment in MPS IVA due to the presence and changes in autophagy proteins in treated MPS IVA fibroblasts. Our results offer new evidence that demonstrate the potential of lentiviral vectors as a strategy to correct GALNS deficiency.


Subject(s)
Chondroitinsulfatases , Fibroblasts/metabolism , Genetic Vectors , HIV-1 , Mucopolysaccharidosis IV , Oxidoreductases Acting on Sulfur Group Donors , Transduction, Genetic , Chondroitinsulfatases/biosynthesis , Chondroitinsulfatases/genetics , Genetic Therapy , HEK293 Cells , Humans , Mucopolysaccharidosis IV/genetics , Mucopolysaccharidosis IV/metabolism , Mucopolysaccharidosis IV/therapy , Oxidoreductases Acting on Sulfur Group Donors/biosynthesis , Oxidoreductases Acting on Sulfur Group Donors/genetics
11.
Insect Sci ; 28(6): 1541-1552, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33399267

ABSTRACT

The invasive pest whitefly (Bemisia tabaci) is a complex species, of which Middle East-Minor Asia 1 (MEAM1) and Mediterranean (MED) are the two most damaging members. Previous research showed that cabbage is frequently infested with MEAM1 but seldomly with MED, and this difference in performance is associated with glucosinolate (GS) content. Some insects can modify GS using glucosinolate sulfatase (SULF), the activity of which is regulated by sulfatase modifying factor 1 (SUMF1); therefore, to increase our understanding of different performances of MEAM1 and MED on cabbage plants, we identified and compared nine putative SULFs and one SUMF in MEAM1 and MED. We found that the lengths of two genes, BtSulf2 and BtSulf4, differed between MEAM1 and MED. The messenger RNA levels of BtSulf4 increased more than 20-fold after MEAM1 and MED adults were exposed to GS, but BtSulf2 expression was only induced by GS in MEAM1. Knockdown of BtSulf2 and BtSulf4 in MEAM1 resulted in a substantial increase in the mortality of GS-treated adults but not in MED. These results indicate that differences in BtSulf2 and BtSulf4 sequences and/or expression may explain why MEAM1 performs better than MED on cabbage. Our results provide a basis for future functional research on SULF and SUMF in B. tabaci.


Subject(s)
Glucosinolates , Hemiptera , Insect Proteins/genetics , Sulfatases , Animals , Brassica , Hemiptera/enzymology , Hemiptera/genetics , Middle East , Sulfatases/genetics
12.
Mol Genet Metab Rep ; 25: 100688, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33335837

ABSTRACT

Metachromatic leukodystrophy (MLD) is a glycosphingolipid storage disease caused by deficiency of the lysosomal enzyme arylsulfatase A (ASA) or its activator protein saposin B. MLD can affect all age groups in severity varying from a severe fatal form to milder adult onset forms. Diagnosis is usually made by measuring leukocyte ASA activity. However, this test can give false negative or false positive laboratory results due to pseudodeficiency of ASA and saposin B deficiency, respectively. Therefore, we aimed to evaluate patients with suspected MLD in a Turkish population by comprehensive clinical, biochemical, radiological, and genetic analyses for molecular and phenotypic characterization. We analyzed 28 suspected MLD patients and 41 relatives from 24 families. ASA activity was found to be decreased in 21 of 28 patients. Sixteen patients were diagnosed as MLD (11 late infantile, 2 juvenile and 3 adult types), 2 MSD, 2 pseudodeficiency (PD) and the remaining 8 patients were diagnosed as having other leukodystrophies. Enzyme analysis showed that the age of onset of MLD did not correlate with residual ASA activity. Sequence analysis showed 11 mutations in ARSA, of which 4 were novel (p.Trp195GlyfsTer5, p.Gly298Asp, p.Arg301Leu, and p.Gly311Asp), and 2 mutations in SUMF1 causing multiple sulfatase deficiency, and confirmed the diagnosis of MLD in 2 presymptomatic relatives. All individuals with confirmed mutations had low ASA activity and urinary sulfatide excretion. Intra- and inter-familial variability was high for the same ARSA missense genotypes, indicating the contribution of other factors to disease expression. Imaging findings were evaluated through a modified brain MRI scoring system which indicated patients with protein-truncating mutations had more severe MRI findings and late-infantile disease onset. MRI findings were not specific for the diagnosis. Anti-sulfatide IgM was similar to control subjects, and IgG, elevated in multiple sulfatase deficiency. In conclusion, the knowledge on the biochemical, clinical and genetic basis of MLD was expanded, a modified diagnostic laboratory algorithm for MLD based on integrated evaluation of ASA activity, urinary sulfatide excretion and genetic tests was devised.

13.
Mol Genet Metab ; 130(4): 283-288, 2020 08.
Article in English | MEDLINE | ID: mdl-32620537

ABSTRACT

Multiple Sulfatase Deficiency (MSD) is an inborn error of metabolism caused by pathogenic variants in the SUMF1 gene encoding the formylglycine-generating enzyme (FGE) that activates all known sulfatases. FGE deficiency results in widespread tissue accumulation of multiple sulphated substrates. Through a systematic analysis of published cases, we retrieved 80 MSD cases and reviewed the disease clinical, biochemical, and genetic findings. Leukodystrophy, neurosensorial hearing loss, and ichthyosis were the most frequent findings at diagnosis. Of 51 reported pathogenic variants, 20 were likely gene disruptive and the remaining were missense variants. No correlations between class of variants and clinical severity or degree of enzyme deficiency were detected. However, cases harboring variants located at N-terminal always had severe neonatal presentations. Moreover, cases with neonatal onset showed the lowest overall survival rate compared to late-infantile and juvenile onsets. Using GnomAD, carrier frequency for pathogenic SUMF1 variants was estimated to be ~1/700 and the disease prevalence was approximately 1/2,000,000. In summary, MSD is an ultra-rare multisystem disorder with mainly neurologic, hearing and skin involvements. Although the collected data were retrospective and heterogenous, the quantitative data inform the disease natural history and are important for both counseling and design of future interventional studies.


Subject(s)
Multiple Sulfatase Deficiency Disease/diagnosis , Mutation , Sulfatases/deficiency , Sulfatases/genetics , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Multiple Sulfatase Deficiency Disease/enzymology , Multiple Sulfatase Deficiency Disease/genetics , Prognosis , Survival Rate , Systematic Reviews as Topic
14.
Mol Genet Genomic Med ; 8(9): e1167, 2020 09.
Article in English | MEDLINE | ID: mdl-32048457

ABSTRACT

BACKGROUND: Multiple sulfatase deficiency (MSD, MIM #272200) is an ultrarare congenital disorder caused by SUMF1 mutation and often misdiagnosed due to its complex clinical presentation. Impeded by a lack of natural history, knowledge gained from individual case studies forms the source for a reliable diagnosis and consultation of patients and parents. METHODS: We collected clinical records as well as genetic and metabolic test results from two MSD patients. The functional properties of a novel SUMF1 variant were analyzed after expression in a cell culture model. RESULTS: We report on two MSD patients-the first neonatal type reported in Israel-both presenting with this most severe manifestation of MSD. Our patients showed uniform clinical symptoms with persistent pulmonary hypertension, hypotonia, and dysmorphism at birth. Both patients were homozygous for the same novel SUMF1 mutation (c.1043C>T, p.A348V). Functional analysis revealed that the SUMF1-encoded variant of formylglycine-generating enzyme is highly instable and lacks catalytic function. CONCLUSION: The obtained results confirm genotype-phenotype correlation in MSD, expand the spectrum of clinical presentation and are relevant for diagnosis including the extremely rare neonatal severe type of MSD.


Subject(s)
Multiple Sulfatase Deficiency Disease/genetics , Mutation, Missense , Oxidoreductases Acting on Sulfur Group Donors/genetics , Phenotype , Cell Line, Tumor , Child, Preschool , Enzyme Stability , Homozygote , Humans , Infant , Male , Multiple Sulfatase Deficiency Disease/pathology , Oxidoreductases Acting on Sulfur Group Donors/metabolism
15.
Biotechnol Prog ; 36(3): e2974, 2020 05.
Article in English | MEDLINE | ID: mdl-31990124

ABSTRACT

Difficult-to-express (DTE) recombinant proteins such as multi-specific proteins, DTE monoclonal antibodies, and lysosomal enzymes have seen difficulties in manufacturability using Chinese hamster ovary (CHO) cells or other mammalian cells as production platforms. CHO cells are preferably used for recombinant protein production for their ability to secrete human-like recombinant proteins with posttranslational modification, resistance to viral infection, and familiarity with drug regulators. However, despite huge progress made in engineering CHO cells for high volumetric productivity, DTE proteins like recombinant lysosomal sulfatase represent one of the poorly understood proteins. Furthermore, there is growing interest in the use of microRNA (miRNA) to engineer CHO cells expressing DTE proteins to improve cell performance of relevant bioprocess phenotypes. To our knowledge, no research has been done to improve CHO cell production of DTE recombinant lysosomal sulfatase using miRNA. We identified miR-23a and miR-377 as miRNAs predicted to target SUMF1, an activator of sulfatases, using in silico prediction tools. Transient inhibition of CHO endogenous miR-23a/miR-377 significantly enhanced recombinant sulfatase enzyme-specific activity by ~15-21% compared to scramble without affecting cell growth. Though inhibition of miR-23a/miR-377 had no significant effect on the mRNA and protein levels of SUMF1, overexpression of miR-23a/377 caused ~30% and ~27-29% significant reduction in endogenous SUMF1 protein and mRNA expression levels, respectively. In summary, our data demonstrate the importance of using miRNA to optimize the CHO cell line secreting DTE recombinant lysosomal sulfatase.


Subject(s)
MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics , Sulfatases/biosynthesis , Animals , CHO Cells , Cell Proliferation , Cricetulus , Gene Expression Regulation, Enzymologic/genetics , Humans , Lysosomes/enzymology , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Sulfatases/genetics
16.
JIMD Rep ; 49(1): 48-52, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31497481

ABSTRACT

Multiple sulfatase deficiency (MSD) is an ultra-rare lysosomal storage disorder (LSD). Mutations in the SUMF1 gene encoding the formylglycine generating enzyme (FGE) result in an unstable FGE protein with reduced enzymatic activity, thereby affecting the posttranslational activation of newly synthesized sulfatases. Complete absence of FGE function results in the most severe clinical form of MSD with neonatal onset and rapid deterioration. We report on a preterm infant presenting with hydrops fetalis, lung hypoplasia, and dysmorphism as major clinical signs. The patient died after 6 days from an intraventricular hemorrhage followed by multi-organ failure. MSD was caused by a homozygous SUMF1 stop mutation (c.191C>A, p.Ser64Ter). FGE protein and sulfatase activities were absent in patient fibroblasts. Hydrops fetalis is a rare symptom of LSDs and should be considered in the differential diagnosis in combination with dysmorphism. The diagnostic set up should include measurements of glycosaminoglycan excretion and lysosomal enzyme activities, among them at least two sulfatases, and molecular confirmation.

17.
Methods Mol Biol ; 2012: 63-81, 2019.
Article in English | MEDLINE | ID: mdl-31161504

ABSTRACT

Use of the formylglycine generating enzyme (FGE)-a copper-dependent posttranslational protein modifier-represents a particularly elegant method taken directly from nature of introducing a unique amino acid into the larger context of a protein. Formylglycine (fGly) is a crucial component of the active site of sulfatases, where it directly participates in the breakdown of sulfate ester substrates. In the context of bioconjugation this aldehyde containing amino acid can be an invaluable reactive handle for the chemical conjugation of molecules. Here we describe a detailed method for generating formylglycine-containing proteins in a mammalian system developed specifically for the production of antibody-drug conjugates (ADCs) but applicable to a wide range of proteins.


Subject(s)
Oxidoreductases Acting on Sulfur Group Donors/chemistry , Proteins/chemistry , Staining and Labeling , Amino Acid Sequence , Amino Acids/chemistry , Consensus Sequence , Humans , Immunoconjugates/chemistry , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Protein Processing, Post-Translational , Structure-Activity Relationship
18.
Biochem Biophys Res Commun ; 509(2): 521-528, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30598261

ABSTRACT

Cystic fibrosis transmembrane regulator (CFTR) is a cyclic AMP-dependent Cl- channel, and its dysfunction, due to CFTR gene mutations, causes the lethal inherited disorder cystic fibrosis (CF). To date, widespread dysregulation of certain coding genes in CF airway epithelial cells is well studied and considered as the driver of pulmonary abnormality. However, the involvement of non-coding genes, novel classes of functional RNAs with little or no protein-coding capacity, in the regulation of CF-associated gene dysregulation is poorly understood. Here, we utilized integrative analyses of human transcriptome array (HTA) and characterized 99 coding and 91 non-coding RNAs that are dysregulated in CFTR-defective CF bronchial epithelial cell line CFBE41o-. Among these genes, the expression level of linc-SUMF1-2, an intergenic non-coding RNA (lincRNA) whose function is unknown, was inversely correlated with that of WT-CFTR and consistently higher in primary human CF airway epithelial cells (DHBE-CF). Further integrative analyses under linc-SUMF1-knockdown condition determined MXRA5, SEMA5A, CXCL10, AK022877, CTGF, MYC, AREG and LAMB3 as both CFTR- and linc-SUMF1-2-dependent dysregulated gene sets in CF airway epithelial cells. Overall, our analyses reveal linc-SUMF1-2 as a dysregulated non-coding gene in CF as well as CFTR-linc-SUMF1-2 axis as a novel regulatory pathway involved in CF-associated gene dysregulation.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Epithelial Cells/metabolism , Gene Expression Regulation , RNA, Long Noncoding/genetics , Transcriptome , Bronchi/cytology , Bronchi/metabolism , Cell Line , Epithelial Cells/cytology , Humans
19.
Insect Sci ; 26(2): 251-262, 2019 Apr.
Article in English | MEDLINE | ID: mdl-28857510

ABSTRACT

Six new cell lines were established from embryonic tissues of the diamondback moth, Plutella xylostella (L.). The cell lines showed differential characteristics, including growth in attachment or in suspension, susceptibility to a baculovirus infection and expression of genes involved in the glucosinolate detoxification pathway in P. xylostella larvae. Five of the cell lines grew attached to the culture flask and one cell line grew unattached as a suspension cell line. The cell lines had population doubling times ranging from 18 to 23 h. Among five of the P. xylostella cell lines examined for infection of a nucleopolyhedrovirus from Autographa californica, AcMNPV, four cell lines were highly susceptible to AcMNPV infection, but one was only semi-permissive to AcMNPV infection. The production of two recombinant proteins, a ß-galactosidase of bacterial origin and a secreted alkaline phosphatase of eukaryotic origin, in the P. xylostella cell lines was examined in comparison with that in the cell line Sf9 which is commonly used for recombinant protein production. In the P. xylostella cell lines, expression of three important midgut genes involved in the glucosinolate detoxification pathway, including the glucosinolate sulfatase genes GSS1 and GSS2 and the sulfatase modifying factor gene SUMF1, was detected. The P. xylostella cell lines developed in this study could be useful in in vitro research systems for studying insec-virus interactions and complex molecular mechanisms in glucosinolate detoxification and insect-plant interactions.


Subject(s)
Cell Line/cytology , Moths/cytology , Animals , Cell Line/metabolism , Cell Line/virology , Moths/metabolism , Moths/virology , Nucleopolyhedroviruses
20.
J Child Neurol ; 33(13): 820-824, 2018 11.
Article in English | MEDLINE | ID: mdl-30124108

ABSTRACT

Multiple sulfatase deficiency is an autosomal recessive lysosomal storage disorder due to a deficiency in formylglycine-generating enzyme, which is encoded by the Sulfatase Modifying Factor 1 ( SUMF1) gene. Clinically, the disorder is variable. The most common characteristics are developmental regression, intellectual disability, ichthyosis, and periventricular white matter disease. Herein, we report 6 Saudi patients with multiple sulfatase deficiency caused by a novel homozygous missense mutation in the SUMF1 gene (NM_182760.3; c.785A>G [p.Gln262Arg]). The patients are 2 females and 4 males between 5 and 13 years of age, with an age of onset of 1 to 3 years. All patients are consanguineous and suffer from developmental regression, intellectual disability, ichthyosis, and periventricular white matter disease. This cohort differs from previous cohorts because of the absence of organomegaly and skeletal abnormalities.


Subject(s)
Multiple Sulfatase Deficiency Disease/genetics , Mutation/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics , Adolescent , Brain/diagnostic imaging , Child , Child, Preschool , Cohort Studies , Consanguinity , Electroencephalography , Female , Humans , Ichthyosis/complications , Ichthyosis/genetics , Intellectual Disability/etiology , Magnetic Resonance Imaging , Male , Multiple Sulfatase Deficiency Disease/complications , Multiple Sulfatase Deficiency Disease/diagnostic imaging , Saudi Arabia , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL