Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Fish Shellfish Immunol ; 154: 109894, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260528

ABSTRACT

This study aimed to investigate the potential of Chinese herbs in treating aquatic diseases. More particularly, the antibacterial properties and mechanisms of Chinese herbs and their monomers against Saprolegnia parasitica were investigated. In vitro antibacterial testing revealed that Cortex pseudolaricis exhibited significant antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.98 mg/mL. The primary monomer responsible for this antibacterial effect was identified as pseudolaric acid B (PAB), with an MIC of 0.03 mg/mL. SEM and TEM analyses demonstrated that treatment with PAB resulted in structural damage to the cell wall and cell membrane of hyphae, leading to lysis of the cell wall and membrane of spores, organelle destruction, and vacuole formation within the cells. Analysis of the transcriptome and metabolome revealed that PAB disrupts amino acid, lipid, and nucleic acid metabolism in S. parasitica. This disruption impacts the biosynthesis and metabolism of various amino acids, including arginine, proline, glycine, serine, cysteine, methionine, glutamate, lysine, histidine, phenylalanine, tyrosine, and tryptophan. PAB also results in increased energy consumption and hindered energy generation in S. parasitica, as well as interference with the synthesis of membrane components such as DAG and phytosphingosine. Furthermore, PAB disrupts RNA, DNA, and ATP production in S. parasitica. Consequently, protein synthesis, energy supply, immune function and barrier structure in S. parasitica are weakened, and potentially leading to death. This study identifies potential antibacterial agents for environmentally friendly solutions for controlling fish saprolegniasis.

2.
Plants (Basel) ; 13(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39065502

ABSTRACT

Saprolegnia sp. is a pathogenic oomycete responsible for severe economic losses in aquaculture. To date, there is no treatment for its control that is effective and does not pose a threat to the environment and human health. In this research, two dihydrochalcones 1 and 2, and three chalcones 3-5, isolated from the resinous plant Adesmia balsamica, as well as their synthesized oxyalkylated derivatives 6-29 already reported and a new synthesized series of oxyalkylchalcones 30-35, were evaluated for their anti-saprolegnia activity and structure-activity relationship as potential control and treatment agents for strains of Saprolegnia parasitica and S. australis. Among the molecules tested, natural 2',4'-dihydroxychalcone (3) and new oxyalkylchalcone 34 were the most potent antisaprolegnia agents against both strains, even with better results than the commercial control bronopol. On the other hand, the structure-activity relationship study indicates that the contributions of steric and electrostatic fields are important to enhance the activity of the compounds, thus the presence of bulky substituents favors the activity.

3.
Microbiol Spectr ; 12(8): e0034824, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38888349

ABSTRACT

The phylum Oomycota contains economically important pathogens of animals and plants, including Saprolegnia parasitica, the causal agent of the fish disease saprolegniasis. Due to intense fish farming and banning of the most effective control measures, saprolegniasis has re-emerged as a major challenge for the aquaculture industry. Oomycete cells are surrounded by a polysaccharide-rich cell wall matrix that, in addition to being essential for cell growth, also functions as a protective "armor." Consequently, the enzymes responsible for cell wall synthesis provide potential targets for disease control. Oomycete cell wall biosynthetic enzymes are predicted to be plasma membrane proteins. To identify these proteins, we applied a quantitative (iTRAQ) mass spectrometry-based proteomics approach to the plasma membrane of the hyphal cells of S. parasitica, providing the first complete plasma membrane proteome of an oomycete species. Of significance is the identification of 65 proteins enriched in detergent-resistant microdomains (DRMs). In silico analysis showed that DRM-enriched proteins are mainly involved in molecular transport and ß-1,3-glucan synthesis, potentially contributing to pathogenesis. Moreover, biochemical characterization of the glycosyltransferase activity in these microdomains further supported their role in ß-1,3-glucan synthesis. Altogether, the knowledge gained in this study provides a basis for developing disease control measures targeting specific plasma membrane proteins in S. parasitica.IMPORTANCEThe significance of this research lies in its potential to combat saprolegniasis, a detrimental fish disease, which has resurged due to intensive fish farming and regulatory restrictions. By targeting enzymes responsible for cell wall synthesis in Saprolegnia parasitica, this study uncovers potential avenues for disease control. Particularly noteworthy is the identification of several proteins enriched in membrane microdomains, offering insights into molecular mechanisms potentially involved in pathogenesis. Understanding the role of these proteins provides a foundation for developing targeted disease control measures. Overall, this research holds promise for safeguarding the aquaculture industry against the challenges posed by saprolegniasis.


Subject(s)
Cell Membrane , Fish Diseases , Proteomics , Saprolegnia , Animals , Fish Diseases/parasitology , Proteomics/methods , Cell Membrane/metabolism , Cell Wall/metabolism , Cell Wall/chemistry , Proteome/analysis , Fishes/parasitology , Membrane Proteins/metabolism
5.
J Biomol Struct Dyn ; 42(1): 461-474, 2024.
Article in English | MEDLINE | ID: mdl-36995127

ABSTRACT

Saprolegnia parasitica is an oomycete responsible for a fish disease called saprolegniosis, which poses an economic and environmental burden on aquaculture production. In Saprolegnia, CHS5 of S. parasitica (SpCHS5) contains an N-terminal domain, a catalytic domain of the glycosyltransferase -2 family containing a GT-A fold, and a C-terminal transmembrane domain. No three-dimensional structure of SpCHS5 is reported yet disclosing the structural details of this protein. We have developed a structural model of full-length SpCHS5 and validated it by molecular dynamics simulation technique. From the 1 microsecond simulations, we retrieved the stable RoseTTAFold model SpCHS5 protein to explain characteristics and structural features. Furthermore, from the analysis of the movement of chitin in the protein cavity, we assumed that ARG 482, GLN 527, PHE 529, PHE 530, LEU 540, SER 541, TYR 544, ASN 634, THR 641, TYR 645, THR 641, ASN 772 residues as a main cavity lining site. In SMD analysis, we investigated the opening of the transmembrane cavity required for chitin translocation. The pulling of chitin from the internal cavity to the extracellular region was observed through steered molecular dynamics simulations. A comparison of the initial and final structures of chitin complex showed that there's a transmembrane cavity opening in the simulations. Overall, this present work will help us understand the structural and functional basis of CHS5 and design inhibitors against SpCHS5.Communicated by Ramaswamy H. Sarma.


Subject(s)
Saprolegnia , Animals , Saprolegnia/metabolism , Phospholipids , Chitin Synthase/metabolism
6.
J Invertebr Pathol ; 201: 107996, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783231

ABSTRACT

Host-associated microbial communities are an important determinant of individual fitness and have recently been highlighted as one of the factors influencing the success of invasive species. Invasive hosts introduce their microbes into the new environment, and then both the host and its associated microbes enter into a series of interactions with the native macroscopic and microscopic biota. As these processes are largely unexplored, we aimed to compare the exoskeletal microbial communities of co-occurring and phylogenetically related crayfish: the native narrow-clawed crayfish Pontastacus leptodactylus and the invasive signal crayfish Pacifastacus leniusculus from the recently invaded Korana River, Croatia. The results of high-throughput 16S rRNA sequencing showed that the exoskeletal microbiome of both species is very diverse, significantly influenced by the local environment and dominated by low abundance bacterial families from the phylum Proteobacteria. Furthermore, the exoskeletal microbiomes of the crayfish species differed significantly in the composition and abundance of Amplicon Sequence Variants (ASVs), suggesting that they are to some extent shaped by species-specific intrinsic factors, despite sharing a common habitat. However, over 95% of the bacterial genera associated with the exoskeleton were detected in the exoskeleton samples of both native and invasive crayfish. We paid particular attention to two known crayfish pathogens, Aphanomyces astaci and Saprolegnia parasitica, and find that both species carry low amounts of both pathogens. On the side, we find that a non-standard ddPCR protocol outperforms standard qPCR test for A. astaci under low concentration conditions. Taken together, our results indicate the possibility of bidirectional mixing and homogenisation of exoskeleton microbiome. As such, they can serve as a baseline in future detangling of the processes that act together to shape the microbiomes of co-occuring native and invasive congeners during biological invasions.


Subject(s)
Aphanomyces , Exoskeleton Device , Microbiota , Humans , Animals , Astacoidea/microbiology , Introduced Species , RNA, Ribosomal, 16S/genetics , Aphanomyces/genetics
7.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37777972

ABSTRACT

Saprolegnia oomycete infection causes serious economic losses and reduces fish health in aquaculture. Genomic selection based on thousands of DNA markers is a powerful tool to improve fish traits in selective breeding programs. Our goal was to develop a single nucleotide polymorphism (SNP) marker panel and to test its use in genomic selection for improved survival against Saprolegnia infection in European whitefish Coregonus lavaretus, the second most important farmed fish species in Finland. We used a double digest restriction site associated DNA (ddRAD) genotyping by sequencing method to produce a SNP panel, and we tested it analyzing data from a cohort of 1,335 fish, which were measured at different times for mortality to Saprolegnia oomycete infection and weight traits. We calculated the genetic relationship matrix (GRM) from the genome-wide genetic data, integrating it in multivariate mixed models used for the estimation of variance components and genomic breeding values (GEBVs), and to carry out Genome-Wide Association Studies for the presence of quantitative trait loci (QTL) affecting the phenotypes in analysis. We identified one major QTL on chromosome 6 affecting mortality to Saprolegnia infection, explaining 7.7% to 51.3% of genetic variance, and a QTL for weight on chromosome 4, explaining 1.8% to 5.4% of genetic variance. Heritability for mortality was 0.20 to 0.43 on the liability scale, and heritability for weight was 0.44 to 0.53. The QTL for mortality showed an additive allelic effect. We tested whether integrating the QTL for mortality as a fixed factor, together with a new GRM calculated excluding the QTL from the genetic data, would improve the accuracy estimation of GEBVs. This test was done through a cross-validation approach, which indicated that the inclusion of the QTL increased the mean accuracy of the GEBVs by 0.28 points, from 0.33 to 0.61, relative to the use of full GRM only. The area under the curve of the receiver-operator curve for mortality increased from 0.58 to 0.67 when the QTL was included in the model. The inclusion of the QTL as a fixed effect in the model increased the correlation between the GEBVs of early mortality with the late mortality, compared to a model that did not include the QTL. These results validate the usability of the produced SNP panel for genomic selection in European whitefish and highlight the opportunity for modeling QTLs in genomic evaluation of mortality due to Saprolegnia infection.


Saprolegnia infection causes serious economic losses and reduces fish health in aquaculture. We created a novel set of genetic markers to use in the selective breeding of European whitefish to reduce mortality due to the fungus. Using genetic markers, we estimated how much different fish traits are determined by genetic variation, and thus what potential traits have to be selected. We observed that resistance to infection was controlled by both a genetic variant with a major effect on mortality and by many other variants with a small effect distributed across the genome. We tested whether we could increase the precision of genomic breeding values used in the selective breeding by explicitly adding the major genetic variant to the analysis, and we observed an increase in precision in our results. We conclude that directly including information about the major genetic variant increases the precision of our predictions, rather than assuming that all genetic variants each explain a small amount of the genetic variation.


Subject(s)
Salmonidae , Saprolegnia , Humans , Animals , Saprolegnia/genetics , Genome-Wide Association Study/veterinary , Quantitative Trait Loci , Genomics/methods , Phenotype , Polymorphism, Single Nucleotide , Genotype
8.
J Fish Dis ; 46(8): 849-860, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37222173

ABSTRACT

Oomycete infections in farmed fish are one of the most significant disease issues in salmonid aquaculture worldwide. In the present study, Saprolegnia spp. in different farmed fish species in Finland were identified, and the molecular epidemiology of especially Saprolegnia parasitica was examined. We analysed tissue samples from suspected oomycete-infected salmonids of different life stages from a number of fish farms, as well as three wild salmonids. From collected oomycete isolates, the ITS1, 5.8S and ITS2 genomic regions were amplified, analysed phylogenetically and compared with corresponding sequences deposited in GenBank. Of the sequenced isolates, 91% were identified as S. parasitica. Isolates of yolk sac fry were identified as different Saprolegnia spp. Among the isolates from rainbow trout eggs Saprolegnia diclina dominated. In order to determine potential dominating clones among the S. parasitica, isolates were analysed using Multi Locus Sequence Typing (MLST). The results showed that one main clone contained the majority of the isolates. The MLST analysis showed four main sequence types (ST1-ST4) and 13 unique STs. This suggests that the Saprolegnia infections in farmed fish in Finland are not caused by different strains originating in the farm environment. Instead, one main clone of S. parasitica is present in Finnish fish farms.


Subject(s)
Fish Diseases , Oncorhynchus mykiss , Saprolegnia , Animals , Saprolegnia/genetics , Finland/epidemiology , Multilocus Sequence Typing , Fish Diseases/epidemiology , Oncorhynchus mykiss/genetics
9.
Microorganisms ; 10(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36363778

ABSTRACT

Saprolegnia parasitica induces heavy mortality in aquaculture. The detection of S. parasitica is often time consuming and uncertain, making it difficult to manage the disease. We validated a previously published real-time quantitative PCR (qPCR) assay to confirm the presence of S. parasitica in fish and in water using environmental DNA (eDNA) quantification. Analytical sensitivity and specificity of the assay was assessed in silico, in vitro and the qPCR assay was compared with microbiological cultivation methods to detect and quantify S. parasitica in water samples from a controlled fish exposure experiment and from fish farms. Furthermore, we compared the use of an agar cultivation method and the qPCR assay to detect S. parasitica directly from mucus samples taken from the fish surface. The analytical sensitivity and specificity of the qPCR assay were high. The qPCR assay detected 100% of S. parasitica-positive water samples. In a field study, the qPCR assay and a microwell plate (MWP) enumeration method correlated significantly. Furthermore, the qPCR assay could be used to confirm the presence of S. parasitica in skin mucus. Thus, the qPCR assay could complement diagnostic methods in specifically detecting saprolegniosis in fish and used as a surveillance method for S. parasitica pathogen in aquaculture environments.

10.
Mycobiology ; 50(5): 326-344, 2022.
Article in English | MEDLINE | ID: mdl-36404897

ABSTRACT

The fungal-like family Saprolegniaceae (Oomycota), also called "water mold," includes mostly aquatic saprophytes as well as notorious aquatic animal pathogens. Most studies on Saprolegniaceae have been biased toward pathogenic species that are important to aquaculture rather than saprotrophic species, despite the latter's crucial roles in carbon cycling of freshwater ecosystems. Few attempts have been made to study the diversity and ecology of Saprolegniaceae; thus, their ecological role is not well-known. During a survey of oomycetes between 2016 and 2021, we investigated the diversity and distribution of culturable Saprolegniaceae species in freshwater ecosystems of Korea. In the present study, members of Saprolegniaceae were isolated and identified at species level based on their cultural, morphological, and molecular phylogenetic analyses. Furthermore, substrate preference and seasonal dynamics for each were examined. Most of the species were previously reported as animal pathogens; however, in the present study, they were often isolated from other freshwater substrates, such as plant debris, algae, water, and soil sediment. The relative abundance of Saprolegniaceae was higher in the cold to cool season than that in the warm to hot season of Korea. This study enhances our understanding of the diversity and ecological attributes of Saprolegniaceae in freshwater ecosystems.

11.
Genes (Basel) ; 13(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-36140692

ABSTRACT

Saprolegniasis, which is caused by Saprolegnia parasitica, leads to considerable economic losses. Recently, we showed that metalaxyl, bronopol and copper sulfate are good antimicrobial agents for aquaculture. In the current study, the efficacies of metalaxyl, bronopol and copper sulfate are evaluated by in vitro antimicrobial experiments, and the mechanism of action of these three antimicrobials on S. parasitica is explored using transcriptome technology. Finally, the potential target genes of antimicrobials on S. parasitica are identified by protein-protein interaction network analysis. Copper sulfate had the best inhibitory effect on S. parasitica, followed by bronopol. A total of 1771, 723 and 2118 DEGs upregulated and 1416, 319 and 2161 DEGs downregulated S. parasitica after three drug treatments (metalaxyl, bronopol and copper sulfate), separately. Additionally, KEGG pathway analysis also determined that there were 17, 19 and 13 significantly enriched metabolic pathways. PPI network analysis screened out three important proteins, and their corresponding genes were SPRG_08456, SPRG_03679 and SPRG_10775. Our results indicate that three antimicrobials inhibit S. parasitica growth by affecting multiple biological functions, including protein synthesis, oxidative stress, lipid metabolism and energy metabolism. Additionally, the screened key genes can be used as potential target genes of chemical antimicrobial drugs for S. parasitica.


Subject(s)
Anti-Infective Agents , Fish Diseases , Saprolegnia , Alanine/analogs & derivatives , Animals , Copper Sulfate/pharmacology , Propylene Glycols , Saprolegnia/genetics , Transcriptome
12.
Front Microbiol ; 13: 926558, 2022.
Article in English | MEDLINE | ID: mdl-35910647

ABSTRACT

Proteus anguinus is a neotenic cave salamander, endemic to the Dinaric Karst and a symbol of world natural heritage. It is classified as "vulnerable" by the International Union for Conservation of Nature (IUCN) and is one of the EU priority species in need of strict protection. Due to inaccessibility of their natural underground habitat, scientific studies of the olm have been conducted mainly in captivity, where the amphibians are particularly susceptible to opportunistic microbial infections. In this report, we focused on the diversity of cultivable commensal fungi isolated from the skin of asymptomatic and symptomatic animals obtained from nature (20 specimens) and captivity (22 specimens), as well as from underground water of two karstic caves by direct water filtration and by exposure of keratin-based microbial baits and subsequent isolation from them. In total 244 fungal isolates were recovered from the animals and additional 153 isolates were obtained from water samples. Together, these isolates represented 87 genera and 166 species. Symptomatic animals were colonized by a variety of fungal species, most of them represented by a single isolate, including genera known for their involvement in chromomycosis, phaeohyphomycosis and zygomycosis in amphibians: Acremonium, Aspergillus, Cladosporium, Exophiala, Fusarium, Mucor, Ochroconis, Phialophora and Penicillium. One symptomatic specimen sampled from nature was infected by the oomycete Saprolegnia parasitica, the known causative agent of saprolegniosis. This is the first comprehensive report on cultivable skin mycobiome of this unique amphibian in nature and in captivity, with an emphasis on potentially pathogenic fungi and oomycetes.

13.
Biotechnol Rep (Amst) ; 35: e00758, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36034340

ABSTRACT

Saprolegnia parasitica is the most important pathogen under the genus, Saprolegnia which causes devastating oomycete diseases in freshwater fish. At present, the most common molecular method for identification of Saprolegnia species is sequencing of ribosomal DNA internal transcribed spacer (rDNA-ITS) region. In this study, a highly sensitive multiplex PCR targeting rDNA-ITS region and a hypothetical protein gene was developed using two sets of primer pair. In this PCR, two amplicons of different size of 750 bp and 365 bp are produced only in case of S. parasitica while other Saprolegnia species had single amplicon. This protocol could also differentiate Saprolegnia species from other fungus based on the size of rDNA-ITS region. The protocol does not require sequencing and can identify S. parasitica in a single reaction. Therefore, the multiplex PCR developed in this study may prove to be an easier, faster and cheaper molecular method for identification of S. parasitica.

14.
Front Vet Sci ; 9: 909570, 2022.
Article in English | MEDLINE | ID: mdl-35782554

ABSTRACT

Saprolegniosis is one of the most catastrophic oomycete diseases of freshwater fish caused by the members of the genus Saprolegnia. The disease is responsible for huge economic losses in the aquaculture industry worldwide. Until 2002, Saprolegnia infections were effectively controlled by using malachite green. However, the drug has been banned for use in aquaculture due to its harmful effect. Therefore, it has become important to find an alternate and safe anti-oomycete agent that is effective against Saprolegnia. In this study, we investigated the anti-oomycete activity of chlorhexidine gluconate (CHG) against Saprolegnia. Before in vitro evaluation, molecular docking was carried out to explore the binding of CHG with vital proteins of Saprolegnia, such as S. parasitica host-targeting protein 1 (SpHtp1), plasma membrane ATPase, and TKL protein kinase. In silico studies revealed that CHG binds with these proteins via hydrogen bonds and hydrophobic interactions. In an in vitro study, the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of CHG against S. parasitica were found to be 50 mg/L. Further, it was tested against S. australis, another species of Saprolegnia, and the MIC and MFC were found to be 100 and 200 mg/L, respectively. At 500 mg/L of CHG, there was complete inhibition of the radial growth of Saprolegnia hyphae. In propidium iodide (PI) uptake assay, CHG treated hyphae had bright red fluorescence of PI indicating the disruption of the cell membrane. The results of the present study indicated that CHG could effectively inhibit Saprolegnia and hence can be used for controlling Saprolegniasis in cultured fish.

15.
J Fish Dis ; 45(9): 1333-1342, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35661373

ABSTRACT

A controlled Saprolegnia parasitica infection model was used to challenge 1158 fish representing 105 pedigreed Atlantic salmon families to evaluate the possibility of selecting for Saprolegnia resistance in a commercial breeding programme. Fish were infected in five study tanks and observed for 40 days post-infection for lesion score and survival. Survival analysis of the top 10 resistant and bottom 10 susceptible families indicated that the hazard of dying following Saprolegnia infection was 1509% higher in susceptible families. In all fish, a 10 g increase in weight correlated with a 7.8% increase in the hazard of dying while sex did not affect mortality. Resistance to Saprolegnia was estimated to have a heritability of 0.25, indicating that selection is possible. Genetic and phenotypic correlations indicated that the 11-point scoring system, developed in this study to quantify Saprolegnia infection severity, had a high negative correlation with survival as days to mortality at ≥-0.922(±0.005), suggesting that the scoring method could help assess lesion development in studies where mortality is not the primary biological endpoint.


Subject(s)
Fish Diseases , Infections , Salmo salar , Saprolegnia , Animals , Fish Diseases/genetics , Fish Diseases/pathology , Infections/veterinary , Salmo salar/genetics , Saprolegnia/genetics
16.
J Fungi (Basel) ; 8(5)2022 May 22.
Article in English | MEDLINE | ID: mdl-35628794

ABSTRACT

Amphibians constitute the class of vertebrates with the highest proportion of threatened species, with infectious diseases being considered among the greatest causes for their worldwide decline. Aquatic oomycetes, known as "water molds", are fungus-like microorganisms that are ubiquitous in freshwater ecosystems and are capable of causing disease in a broad range of amphibian hosts. Various species of Achlya sp., Leptolegnia sp., Aphanomyces sp., and mainly, Saprolegnia sp., are responsible for mass die-offs in the early developmental stages of a wide range of amphibian populations through a disease known as saprolegniosis, aka, molding or a "Saprolegnia-like infection". In this context, the main objective of the present review was to bring together updated information about saprolegniosis in amphibians to integrate existing knowledge, identify current knowledge gaps, and suggest future directions within the saprolegniosis-amphibian research field. Based on the available literature and data, an integrated and critical interpretation of the results is discussed. Furthermore, the occurrence of saprolegniosis in natural and laboratory contexts and the factors that influence both pathogen incidence and host susceptibility are also addressed. The focus of this work was the species Saprolegnia sp., due to its ecological importance on amphibian population dynamics and due to the fact that this is the most reported genera to be associated with saprolegniosis in amphibians. In addition, integrated emerging therapies, and their potential application to treat saprolegniosis in amphibians, were evaluated, and future actions are suggested.

17.
Microorganisms ; 10(3)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35336096

ABSTRACT

Oomycete pathogens in freshwaters, such as Saprolegnia parasitica and Aphanomyces astaci, are responsible for fish/crayfish population declines in the wild and disease outbreaks in aquaculture. Although the formation of infectious zoospores in the laboratory can be triggered by washing their mycelium with natural water samples, the physico-chemical properties of the water that might promote sporulation are still unexplored. We washed the mycelia of A. astaci and S. parasitica with a range of natural water samples and observed differences in sporulation efficiency. The results of Partial Least Squares Regression (PLS-R) multivariate analysis showed that SAC (spectral absorption coefficient measured at 254 nm), DOC (dissolved organic carbon), ammonium-N and fluoride had the strongest positive effect on sporulation of S. parasitica, while sporulation of A. astaci was not significantly correlated with any of the analyzed parameters. In agreement with this, the addition of environmentally relevant concentrations of humic acid, an important contributor to SAC and DOC, to the water induced sporulation of S. parasitica but not of A. astaci. Overall, our results point to the differences in ecological requirements of these pathogens, but also present a starting point for optimizing laboratory protocols for the induction of sporulation.

18.
J Fungi (Basel) ; 7(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34829255

ABSTRACT

The contribution of fungi to the degradation of plant litter and transformation of dissolved organic matter (humic substances, in particular) in freshwater ecosystems has received increasing attention recently. However, the role of Saprolegniales as one of the most common eukaryotic organisms is rarely studied. In this study, we isolated and phylogenetically placed 51 fungal and 62 Saprolegniales strains from 12 German lakes. We studied the cellulo-, lignino-, and chitinolytic activity of the strains using plate assays. Furthermore, we determined the capacity of 10 selected strains to utilize 95 different labile compounds, using Biolog FF MicroPlates™. Finally, the ability of three selected strains to utilize maltose and degrade/produce humic substances was measured. Cladosporium and Penicillium were amongst the most prevalent fungal strains, while Saprolegnia, Achlya, and Leptolegnia were the most frequent Saprolegniales strains. Although the isolated strains assigned to genera were phylogenetically similar, their enzymatic activity and physiological profiling were quite diverse. Our results indicate that Saprolegniales, in contrast to fungi, lack ligninolytic activity and are not involved in the production/transformation of humic substances. We hypothesize that Saprolegniales and fungi might have complementary roles in interacting with dissolved organic matter, which has ecological implications for carbon cycling in freshwater ecosystems.

19.
Pathogens ; 10(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34451390

ABSTRACT

Saprolegnia infections are among the main parasitic diseases affecting farmed salmonids. The distribution and potential transfer of Saprolegnia spp. between farms and the natural environment has been scarcely investigated. Therefore, this work aimed to study the diversity and abundance of oomycete species in salmonid farms, tributary water, and effluent water systems. Four trout farms in Italy and two Atlantic salmon farms in Scotland were considered. In Italian farms, 532 isolates of oomycetes were obtained from fish and water, at upstream, inside, and downstream the farms. In Scottish farms, 201 oomycetes isolates were obtained from water outside the farm and from fish and water inside the farming units. Isolates were identified to the species level through amplification and sequencing of the ITS rDNA region. In Italy, S. parasitica was significantly more present in farmed than in wild fish, while in water it was more frequently isolated from the wild, particularly in effluent systems, not associated with more frequent isolation of S. parasitica in wild fish downstream the farm. In Scotland, S. parasitica was the most prevalent species isolated from fish, while isolates from water were mostly Pythium spp. with few S. parasitica isolates from upstream and downstream the farms.

20.
Plants (Basel) ; 10(8)2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34451721

ABSTRACT

Saprolegnia parasitica, the causative agent of saprolegniosis in fish, and Aphanomyces astaci, the causative agent of crayfish plague, are oomycete pathogens that cause economic losses in aquaculture. Since toxic chemicals are currently used to control them, we aimed to investigate their inhibition by essential oils of sage, rosemary, and bay laurel as environmentally acceptable alternatives. Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed that the essential oils tested were rich in bioactive volatiles, mainly monoterpenes. Mycelium and zoospores of A. astaci were more sensitive compared to those of S. parasitica, where only sage essential oil completely inhibited mycelial growth. EC50 values (i.e., concentrations of samples at which the growth was inhibited by 50%) for mycelial growth determined by the radial growth inhibition assay were 0.031-0.098 µL/mL for A. astaci and 0.040 µL/mL for S. parasitica. EC50 values determined by the zoospore germination inhibition assay were 0.007-0.049 µL/mL for A. astaci and 0.012-0.063 µL/mL for S. parasitica. The observed inhibition, most pronounced for sage essential oil, could be partly due to dominant constituents of the essential oils, such as camphor, but more likely resulted from a synergistic effect of multiple compounds. Our results may serve as a basis for in vivo experiments and the development of environmentally friendly methods to control oomycete pathogens in aquaculture.

SELECTION OF CITATIONS
SEARCH DETAIL