Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 540
Filter
1.
Carbohydr Polym ; 344: 122488, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218536

ABSTRACT

The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.


Subject(s)
Polysaccharides , Seaweed , Sulfates , Seaweed/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Humans , Sulfates/chemistry , Animals
2.
Food Chem ; 461: 140832, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39181047

ABSTRACT

Bioactive components from Porphyra tenera (PT) have been reported to confer various health benefits. The role of PT in inflammatory bowel disease (IBD) has not been fully investigated. This study aimed to explore the anti-inflammatory properties of PT on dextran sodium sulfate (DSS)-treated mice. PT supplementation attenuated the severity of colitis in DSS-treated mice, evidenced by the reduction of disease activity index (DAI), restoration of colonic histological damage and suppression of abnormal inflammatory response. Sequencing analysis indicated that intake of PT alleviated DSS-induced gut microbiota dysbiosis, accompanied by reversing the generation of short-chain fatty acids (SCFAs) and bile acids (BAs). Overall, our findings demonstrated that supplementation of PT attenuated the severity of intestinal inflammation and ameliorated gut microbiota dysbiosis in a murine colitis model, which provided a rationale for further application of edible seaweeds for preventing inflammation-related disorders in humans.

3.
Prog Lipid Res ; 96: 101290, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094698

ABSTRACT

Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.

4.
BMC Microbiol ; 24(1): 293, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107684

ABSTRACT

There is an enormous diversity of life forms present in the extremely intricate marine environment. The growth and development of seaweeds in this particular environment are controlled by the bacteria that settle on their surfaces and generate a diverse range of inorganic and organic chemicals. The purpose of this work was to identify epiphytic and endophytic bacterial populations associated with ten common marine macroalgae from various areas along the Mediterranean Sea coast in Alexandria. This was done to target their distribution and possible functional aspects. Examine the effects of the algal habitat on the counting and phenotypic characterization of bacteria, which involves grouping bacteria based on characteristics such as shape, colour, mucoid nature, type of Gram stain, and their ability to generate spores. Furthermore, studying the physiological traits of the isolates under exploration provides insight into the optimum environmental circumstances for bacteria associated with the formation of algae. The majority of the bacterial isolates exhibited a wide range of enzyme activities, with cellulase, alginase, and caseinase being the most prevalent, according to the data. Nevertheless, 26% of the isolates displayed amylolytic activity, while certain isolates from Miami, Eastern Harbor, and Montaza lacked catalase activity. Geographical variations with the addition of algal extract may impact on the enumeration of the bacterial population, and this might have a relationship with host phylogeny. The most significant observation was that endophytic bacteria associated with green algae increased in all sites, while those associated with red algae increased in Abu Qir and Miami sites and decreased in Eastern Harbor. At the species level, the addition of algal extract led to a ninefold increase in the estimated number of epiphytic bacteria for Cladophora pellucida in Montaza. Notably, after adding algal extract, the number of presented endophytic bacteria associated with Codium sp. increased in Abu Qir while decreasing with the same species in Montaza. In addition to having the most different varieties of algae, Abu Qir has the most different bacterial isolates.


Subject(s)
Bacteria , Endophytes , Phylogeny , RNA, Ribosomal, 16S , Seaweed , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Egypt , Seaweed/microbiology , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/physiology , Mediterranean Sea , RNA, Ribosomal, 16S/genetics , Biodiversity , Seawater/microbiology , DNA, Bacterial/genetics , Ecosystem
5.
Mar Drugs ; 22(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39195456

ABSTRACT

This study explores the potential of producing bioethanol from seaweed biomass and reusing the residues as antioxidant compounds. Various types of seaweed, including red (Gelidium amansii, Gloiopeltis furcata, Pyropia tenera), brown (Saccharina japonica, Undaria pinnatifida, Ascophyllum nodosum), and green species (Ulva intestinalis, Ulva prolifera, Codium fragile), were pretreated with dilute acid and enzymes and subsequently processed to produce bioethanol with Saccharomyces cerevisiae BY4741. Ethanol production followed the utilization of sugars, resulting in the highest yields from red algae > brown algae > green algae due to their high carbohydrate content. The residual biomass was extracted with water, ethanol, or methanol to evaluate its antioxidant activity. Among the nine seaweeds, the A. nodosum bioethanol residue extract (BRE) showed the highest antioxidant activity regarding the 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity, ferric reducing antioxidant power (FRAP), and reactive oxygen species (ROS) inhibition of H2O2-treated RAW 264.7 cells. These by-products can be valorized, contributing to a more sustainable and economically viable biorefinery process. This dual approach not only enhances the utilization of marine resources but also supports the development of high-value bioproducts.


Subject(s)
Antioxidants , Biomass , Ethanol , Saccharomyces cerevisiae , Seaweed , Seaweed/chemistry , Seaweed/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Animals , Mice , Saccharomyces cerevisiae/metabolism , RAW 264.7 Cells , Biofuels , Reactive Oxygen Species/metabolism , Rhodophyta/chemistry , Rhodophyta/metabolism , Phaeophyceae/chemistry
6.
Environ Sci Pollut Res Int ; 31(39): 52017-52031, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39138726

ABSTRACT

The present study provides information on the effects of BPA on ROS production-related phenomena in the chlorophytes Ulva rigida and U. intestinalis, and on the mechanism they establish against BPA toxicity, at environmentally relevant concentrations (0.1-3 µg L-1). Up-regulated H2O2 generation seems to be a key factor causing oxidative damage. Interspecific differences, in terms of the mechanism and the temporal response to BPA toxicity were observed. BPA effects on U. rigida were more intense and appeared earlier (on 1D at 0.1 µg L-1) compared to U. intestinalis and mostly after 7D (LOEC: 0.3 µg L-1, Terminal time, Tt: 7D). In U. rigida, on 1-5D, the 'mosaic' type effect patterns ('models' 3A/3B) with 'unaffected' and 'affected' areas (dark content, positive H2DCF-DA staining signal/H2O2 production and chlorophyll autofluorescence signal loss) indicated a time-dependent manner. After 7D, only U. rigida cells with dark content formed aggregates, showing positive H2O2 production ('model' 4) or in some cells oxidative damages triggering retrograde signaling in the neighboring 'unaffected' areas ('model' 5). H2O2 overproduction (CTCF ratio) in U. rigida, on 1D at the lowest concentration and after 7D at 0.3-1/3 µg L-1, respectively, seems to stimulate (poly)phenolic production, in a dose- and time-dependent manner. U. intestinalis did not display severe BPA impact (i.e., 'models' 4, 5) at any exposures, although at a later time indicated a lower LOEC (0.1 µg L-1, Tt: 9D) than that in U. rigida. In U. intestinalis, H2O2 production does not appear to stimulate high (poly)phenolic amounts.


Subject(s)
Hydrogen Peroxide , Seaweed , Ulva , Ulva/drug effects , Phenols/toxicity , Up-Regulation , Benzhydryl Compounds/toxicity , Reactive Oxygen Species/metabolism
7.
Sci Rep ; 14(1): 18631, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128929

ABSTRACT

The complex interactions between epiphytic bacteria and marine macroalgae are still poorly understood, with limited knowledge about their community structure, interactions, and functions. This study focuses on comparing epiphytic prokaryotes community structure between three seaweed phyla; Chlorophyta, Rhodophyta, and Heterokontophyta in an easternmost rocky intertidal site of the Mediterranean Sea. By taking a snapshot approach and simultaneously collecting seaweed samples from the same habitat, we minimize environmental variations that could affect epiphytic bacterial assembly, thereby emphasizing host specificity. Through 16S rRNA gene amplicon sequencing, we identified that the microbial community composition was more similar within the same seaweed phylum host compared to seaweed host from other phyla. Furthermore, exclusive Amplicon Sequence Variants (ASVs) were identified for each algal phyla despite sharing higher taxonomic classifications across the other phyla. Analysis of niche breadth indices uncovers distinctive affinities and potential specialization among seaweed host phyla, with 39% of all ASVs identified as phylum specialists and 13% as generalists. Using taxonomy function prediction, we observed that the taxonomic variability does not significantly impact functional redundancy, suggesting resilience to disturbance. The study concludes that epiphytic bacteria composition is connected to host taxonomy, possibly influenced by shared morphological and chemical traits among genetically related hosts, implying a potential coevolutionary relationship between specific bacteria and their host seaweeds.


Subject(s)
Bacteria , Microbiota , RNA, Ribosomal, 16S , Seaweed , Mediterranean Sea , Seaweed/microbiology , Seaweed/genetics , Microbiota/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Phylogeny , Ecosystem
8.
Int J Biol Macromol ; 277(Pt 3): 134490, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111494

ABSTRACT

Fucoidan is a sulfated polysaccharide that occurs naturally in the cell wall of brown seaweeds and has substantial biological efficacy. Optimizing the extraction of fucoidan from different brown seaweeds was the primary goal of this research. The optimization of fucoidan extraction was applied on the brown macroalga Turbinaria turbinata using a Box-Behnken Design (BBD) to inspect the impacts of different pH (3, 5, 7), temperature (70, 80, 90 °C) and extraction duration (60, 120, 180 min) on both the yield and sulfate content of fucoidan. The optimized parameters recorded to maximize the fucoidan yield and its sulfate content were a pH of 3.44 and a temperature of 82.26 °C for 60 min. The optimal conditions obtained from BBD were used for fucoidan extraction from T. turbinata, Sargassum cinereum, Padina pavonica, and Dictyota dichotoma. The highest average of fucoidan yield was derived from P. pavonica (40.76 ± 4.04 % DW). FTIR, 1H NMR, and HPLC were used to characterize extracted fucoidan. The extracted fucoidan's Physical characteristics, biochemical composition, antioxidant potential, antitumor effect against breast cancer cells (MCF-7), and antimicrobial and anticoagulant activity were assessed. The extracted fucoidan from D. dichotoma, followed by that extracted from S. cinereum, which had the highest sulphate content, depicted the highest antioxidant, anticancer, and anticoagulant activities. Fucoidan has demonstrated a strong antimicrobial action against some pathogenic microorganisms; Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Candida albicans. The anticoagulant properties of fucoidan from D. dichotoma were stronger than those of fucoidan from S. cinereum, T. turbinata, and P. pavonica due to its higher sulphate content. These findings could be used for various biomedical applications to improve the pharmaceutical industry.


Subject(s)
Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , MCF-7 Cells , Hydrogen-Ion Concentration , Temperature , Seaweed/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Phaeophyceae/chemistry , Microbial Sensitivity Tests , Anticoagulants/pharmacology , Anticoagulants/chemistry , Anticoagulants/isolation & purification
9.
Front Microbiol ; 15: 1431131, 2024.
Article in English | MEDLINE | ID: mdl-39027100

ABSTRACT

In vitro studies were undertaken aiming to study the methane (CH4) mitigation potential of biowaste (BW) of Padina gymnospora at the graded inclusion of 0% (C), 2% (A2), 5% (A5), and 10% (A10) of the diet composed of straw and concentrate in 40:60 ratio. The chemical composition analysis revealed that the BW contained higher crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and ether extract (EE) than the PF (fresh seaweed, P. gymnospora). The concentration of cinnamic acid, sinapic acid, kaempferol, fisetin p-coumaric acid, ellagic acid, and luteolin in BW was 1.5-6-folds less than the PF. Inclusion of BW decreased (P < 0.0001) CH4 production by 34%, 38%, and 45% in A2, A5, and A10 treatments, respectively. A decrease (P < 0.0001) of 7.5%-8% in dry matter (DM) and organic matter (OM) digestibility was also recorded with the BW supplementation. The BW inclusion also decreased the numbers of total (P = 0.007), Entodinomorphs (P = 0.011), and Holotrichs (P = 0.004) protozoa. Metagenome data revealed the dominance of Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria, and Fibrobacter microbial phyla. At the phylum level, Euryarchaeota dominated the archaeal community, whereas Methanobrevibacter was most abundant at the genus level. It can be concluded that the inclusion of BW in straw and concentrate based diet by affecting rumen fermentation, protozoal numbers, and compositional shift in the archaeal community significantly decreased CH4 production. Utilization of biowaste of P. gymnospora as a CH4 mitigating agent will ensure its efficient utilization rather than dumping, which shall cause environmental pollution and health hazards.

10.
J Food Sci Technol ; 61(8): 1481-1491, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966793

ABSTRACT

Bioactive polysaccharides and oligosaccharides were successfully extracted from three distinct seaweeds: Sargassum sp., Graciallaria sp., and Ulva sp. utilizing various extraction techniques. The obtained polysaccharides and oligosaccharides were subjected to comprehensive characterization, and their potential antioxidant properties were assessed using a Hep G2 cell model. Analysis via FTIR spectroscopy unveiled the presence of sulfate groups in the polysaccharides and oligosaccharides derived from Sargassum sp. The antioxidant capabilities were assessed through various assays (DPPH, ABTS, Fe-ion chelation, and reducing power), revealing that SAR-OSC exhibited superior antioxidant activity than others. This was attributed to its higher phenolic content (24.6 µg/mg), FRAP value (36 µM Vitamin C/g of extract), and relatively low molecular weight (5.17 kDa). The study also investigated the protective effects of these polysaccharides and oligosaccharides against oxidative stress-induced damage in Hep G2 cells by measuring ROS production and intracellular antioxidant enzyme expressions (SOD, GPx, and CAT). Remarkably, SAR-OSC demonstrated the highest efficacy in protecting Hep G2 cells reducing ROS production and downregulating SOD, GPx, and CAT expressions. Current findings have confirmed that the oligosaccharides extracted by the chemical method show higher antioxidant activity, particularly SAR-OSC, and robust protective abilities in the Hep G2 cells.

11.
Methods Mol Biol ; 2827: 99-107, 2024.
Article in English | MEDLINE | ID: mdl-38985265

ABSTRACT

Marine macro-algae, commonly known as "seaweed," are used in everyday commodity products worldwide for food, feed, and biostimulant for plants and animals and continue to be one of the conspicuous components of world aquaculture production. However, the application of ANN in seaweeds remains limited. Here, we described how to perform ANN-based machine learning modeling and GA-based optimization to enhance seedling production for implications on commercial farming. The critical steps from seaweed seedling explant preparation, selection of independent variables for laboratory culture, formulating experimental design, executing ANN Modelling, and implementing optimization algorithm are described.


Subject(s)
Algorithms , Neural Networks, Computer , Seaweed , Seedlings , Seaweed/growth & development , Seedlings/growth & development , Regeneration , Aquaculture/methods , Machine Learning , Models, Genetic
12.
Int J Biol Macromol ; 277(Pt 2): 134226, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39074709

ABSTRACT

Polysaccharides from seaweeds or macroalgae are garnering significant interest from pharmaceutical and food industries due to their bioactivities and promising therapeutic effects. Among the diverse agal polysaccharides, fucoidan is a well-documented and stands out as a well-researched sulphated heteropolysaccharide found in brown seaweeds. It primarily consists of l-fucose and sulfate ester groups, along with other monosaccharides like xylose, mannose, uronic acid, rhamnose, arabinose, and galactose. Recent scientific investigations have unveiled the formidable inhibitory prowess of fucoidan against SARS-CoV-2, offering a promising avenue for therapeutic intervention in our current landscape. Moreover, fucoidan has demonstrated remarkable abilities in safeguarding the gastrointestinal tract, regulating angiogenesis, mitigating metabolic syndrome, and fortifying bone health. Despite the abundance of studies underscoring fucoidan's potential as a vital component sourced from nature, its exploitation remains constrained by inherent limitations. Thus, the primary objective of this article is to furnish a comprehensive discourse on the structural attributes, health-enhancing properties, safety parameters, and potential toxicity associated with fucoidan. Furthermore, the discourse extends to elucidating the practical applications and developmental prospects of fucoidan as a cornerstone in the realm of functional foods and nutraceuticals.


Subject(s)
Dietary Supplements , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Humans , Seaweed/chemistry , SARS-CoV-2/drug effects , Animals , COVID-19 Drug Treatment , COVID-19 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
13.
Foods ; 13(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063361

ABSTRACT

In recent years, the growing demand for algae in Western countries is due to their richness in nutrients and bioactive compounds, and their use as ingredients for foods, cosmetics, nutraceuticals, fertilizers, biofuels,, etc. Evaluation of the qualitative characteristics of algae involves assessing their physicochemical and nutritional components to determine their suitability for specific end uses, but this assessment is generally performed using destructive, expensive, and time-consuming traditional chemical analyses, and requires sample preparation. The hyperspectral imaging (HSI) technique has been successfully applied in food quality assessment and control and has the potential to overcome the limitations of traditional biochemical methods. In this study, the nutritional profile (proteins, lipids, and fibers) of seventeen edible macro- and microalgae species widely grown throughout the world were investigated using traditional methods. Moreover, a shortwave infrared (SWIR) hyperspectral imaging device and artificial neural network (ANN) algorithms were used to develop multi-species models for proteins, lipids, and fibers. The predictive power of the models was characterized by different metrics, which showed very high predictive performances for all nutritional parameters (for example, R2 = 0.9952, 0.9767, 0.9828 for proteins, lipids, and fibers, respectively). Our results demonstrated the ability of SWIR hyperspectral imaging coupled with ANN algorithms in quantifying biomolecules in algal species in a fast and sustainable way.

14.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062831

ABSTRACT

Globalization and climate change are both contributing to an increase in the number of potentially invasive algae in coastal areas. In terms of biodiversity and financial losses, the invasiveness of algae has become a significant issue in Orbetello Lagoon. Indeed, studies from the Tuscany Regional Agency for Environmental Protection show that the reduction in dissolved oxygen caused by algal diffusion is detrimental to fisheries and biodiversity. Considering that wakame and numerous other potentially invasive seaweeds are consumed as food in Asia, we assess the nutritional and nutraceutical qualities of two potentially invasive seaweeds: Valonia aegagrophila and Chaetomorpha linum. We found that both algae are a valuable source of proteins and essential amino acids. Even if the fat content accounts for less than 2% of the dried weight, its quality is high, due to the presence of unsaturated fatty acids. Both algae are rich in antioxidants pigments and polyphenols, which can be exploited as nutraceuticals. Most importantly, human gastrointestinal digestion increased the quantity of polyphenols and originated secondary metabolites with ACE inhibitory activity. Taken together, our data strongly promote the use of Valonia aegagrophila and Chaetomorpha linum as functional foods, with possible application in the treatment of hypertension and cardiovascular diseases.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antioxidants , Functional Food , Seaweed , Antioxidants/pharmacology , Antioxidants/chemistry , Seaweed/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Humans , Nutrients/analysis , Dietary Supplements , Polyphenols/analysis , Polyphenols/pharmacology , Polyphenols/chemistry , Nutritive Value
15.
Heliyon ; 10(13): e33407, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39050420

ABSTRACT

The efficiency of human immunodeficiency virus-1 (HIV-1) inhibition by sulfated polysaccharides isolated from the various families of red algae of the Far East Pacific coast were studied. The anti-HIV-1 activity of kappa and lambda-carrageenans from Chondrus armatus, original highly sulfated X-carrageenan with low content of 3,6-anhydrogalactose from Tichocarpus crinitus and i/κ-carrageenan with hybrid structure isolated from Ahnfeltiopsis flabelliformis was found. The antiviral action of these polysaccharides and its low-weight oligosaccharide was compared with commercial κ-carrageenan. Here we used the HIV-1-based lentiviral particles and evaluated that these carrageenans in non-toxic concentrations significantly suppress the transduction potential of lentiviral particles pseudotyped with different envelope proteins, targeting cells of neuronal or T-cell origin. The antiviral action of these carrageenans was confirmed using the chimeric replication competent Mo-MuLV (Moloney murine leukemia retrovirus) encoding marker eGFP protein. We found that X-carrageenans from T. crinitus and its low weight derivative and λ-carrageenan from C. armatus effectively suppress the infection caused by retrovirus. The obtained data suggest that the differences in the suppressive effect of carrageenans on the transduction efficiency of HIV-1 based lentiviral particles may be related to the structural features of the studied polysaccharides.

16.
Animal ; 18(6): 101189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850575

ABSTRACT

Laminaria digitata is a brown seaweed rich in prebiotic polysaccharides, mainly laminarin, but its alginate-rich cell wall could compromise nutrient access. Carbohydrase supplementation, such as individual alginate lyase and carbohydrases mixture (Rovabio® Excel AP), could enhance nutrient digestibility and prebiotic potential. This study aimed to evaluate the effect of these enzymes on nutrient digestibility and gut health of weaned piglets fed with 10% L. digitata. Diets did not affect growth performance (P > 0.05). The majority of the feed fractions had similar digestibility across all diets, but the supplementation of alginate lyase increased hemicellulose digestibility by 3.3% compared to the control group (P = 0.047). Additionally, we observed that algal zinc was more readily available compared to the control group, even without enzymatic supplementation (P < 0.001). However, the increased digestibility of some minerals, such as potassium, raises concerns about potential mineral imbalance. Seaweed groups had a higher abundance of beneficial bacteria in colon contents, such as Prevotella, Oscillospira and Catenisphaera. Furthermore, the addition of alginate lyase led to a lower pH in the colon (P < 0.001) and caecum (P < 0.001) of piglets, which is possibly a result of released fermentable laminarin, and is consistent with the higher proportion of butyric acid found in these intestinal compartments. L. digitata is a putative supplement to enhance piglet gut health due to its prebiotic polysaccharides. Alginate lyase supplementation further improves nutrient digestibility and prebiotic potential. These results suggest the potential use of L. digitata and these enzymatic supplements in commercial piglet-feeding practices.


Subject(s)
Animal Feed , Dietary Supplements , Digestion , Glycoside Hydrolases , Polysaccharide-Lyases , Animals , Male , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Diet/veterinary , Dietary Supplements/analysis , Digestion/drug effects , Edible Seaweeds , Gastrointestinal Microbiome/drug effects , Glycoside Hydrolases/metabolism , Laminaria/chemistry , Nutrients/metabolism , Polysaccharide-Lyases/metabolism , Prebiotics , Swine , Weaning
17.
Animals (Basel) ; 14(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891568

ABSTRACT

The dairy industry contributes significantly to anthropogenic methane emissions, which have an impact on global warming. This study aimed to investigate the effects of a dietary inclusion of brown seaweed Ascophyllum nodosum on enteric methane emissions (EMEs), hematological and blood biochemical profiles, and milk composition in dairy cows. Eighteen Holstein cows were divided into three groups: CON (non-supplemented cows), BS50 (50 mL of 10% A. nodosum), and BS100 (100 mL of 10% A. nodosum). In each cow, measurements of EME, dry matter intake (DMI), and milk yield (MY), as well as blood and milk sampling with respective analyzes, were performed before supplementation (P1), after 15 (P2) days, and after 30 (P3) days of supplementation. A. nodosum reduced (p < 0.05) methane production, methane yield, and methane intensity in both BS50 and BS100, and raised DMI (p < 0.05) only in BS50. Total bilirubin (p < 0.05) was higher in BS50 compared to CON cows in P2, and triacylglycerols were lower (p < 0.05) in BS50 than in CON cows in P3. Higher milk fat content was found in BS50 than in CON cows in P3. C16:0 proportions were higher (p < 0.05) in BS50 and BS100 than in CON cows, while C18:3n-3 was higher (p < 0.05) in BS100 than in BS50 and CON cows in P3. Dietary treatment with A. nodosum reduced EMEs and showed the potential to increase DMI and to improve energy status as well as milk composition in peak-lactating dairy cows.

18.
Mar Environ Res ; 199: 106541, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852493

ABSTRACT

Non-indigenous species (NIS) have the potential to colonize and become established in a wide range of coastal habitats. Species with broad environmental tolerances can quickly adapt to local conditions and expand their niches along environmental gradients, and even colonize habitats with extreme abiotic conditions. Here we report and document the distribution of eight marine NIS (four seaweed and four invertebrate species) found in tidepools along a 3000 km latitudinal gradient along the Pacific coast of Chile (18.4°S to 41.9°S). The seaweed NIS Codium fragile, Capreolia implexa, Schottera nicaeensis and Mastocarpus latissimus were mostly distributed towards high latitudes (i.e., more southerly locations), where temperatures in tidepools were low. The invertebrate NIS Anemonia alicemartinae, Ciona robusta, Bugula neritina and Bugulina flabellata were more common towards low latitudes, where high temperatures were registered in the tidepools. Across the intertidal gradient, seaweed NIS were mostly found in pools in the mid and low intertidal zone, while invertebrate NIS occurred mostly in pools from the mid and upper intertidal zones. The realized niche spaces of NIS (based on the Outlying Mean Index, OMI) in the study area were mainly influenced by environmental conditions of temperature and salinity (along the latitudinal and intertidal gradients), while other tidepool characteristics (depth, surface area, exposition, and complexity) only had minor effects. Five of the eight NIS exhibited a realized niche space coinciding with the average tidepool environmental conditions, while marginal niches were occupied by species with affinities for specific temperatures and salinities along the latitudinal and intertidal gradients. Our results indicate that physiological tolerances to environmental factors play a fundamental role in the distribution of seaweed and invertebrate NIS in tidepools along the Chilean coast. This study confirms that tidepools offer suitable conditions for some seaweed and invertebrate NIS, potentially facilitating their invasion into new natural habitats.


Subject(s)
Ecosystem , Introduced Species , Invertebrates , Seaweed , Animals , Chile , Seaweed/physiology , Invertebrates/physiology , Pacific Ocean , Temperature
19.
Sci Rep ; 14(1): 13698, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871780

ABSTRACT

Seaweed consumption has gained popularity due to its nutritional value and potential health benefits. However, concerns regarding the bioaccumulation of several trace elements highlight the need for comprehensive studies on exposure associated with seaweed consumption. To address this gap in knowledge, we carried out a feeding intervention study of three common edible seaweeds (Nori, Kombu, and Wakame) in 11 volunteers, aiming to elucidate the extent of both beneficial and harmful trace element exposure through seaweed consumption in humans. Concentrations of total arsenic, cobalt, copper, cadmium, iodine, molybdenum, selenium, and zinc were measured in urine samples before and following seaweed consumption. Elements concentrations were also measured in the seaweeds provided for the study. Descriptive analysis for each element were conducted and we used quantile g-computation approach to assess the association between the 8-element mixture and seaweed consumption. Differences in urine element concentrations and seaweed consumption were analyzed using generalized estimating equations (GEE). Urinary concentrations of iodine and total arsenic increased after seaweed consumption. When we analyze the 8-element mixture, the largest weight was observed for iodine after Kombu consumption while for total arsenic was observed after Wakame consumption. Similar results were observed when we compared the mean differences between the elements before and after seaweed consumption through the GEE. Seaweed consumption relates with increased urinary iodine and total arsenic concentrations, particularly after Kombu and Wakame consumption.


Subject(s)
Iodine , Seaweed , Trace Elements , Seaweed/chemistry , Seaweed/metabolism , Humans , Iodine/urine , Iodine/analysis , Trace Elements/urine , Trace Elements/analysis , Female , Male , Adult , Arsenic/urine , Arsenic/analysis , Middle Aged , Selenium/urine , Selenium/analysis
20.
Nat Prod Res ; : 1-3, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884119

ABSTRACT

Researchers are exploring brown algae as a source of potential treatments for Oral Squamous Cell Carcinoma (OSCC), a prevalent and aggressive form of oral cancer. Brown algae are rich in bioactive compounds, including polyphenols, carotenoids, fatty acids, and polysaccharides, which show promise in inhibiting cancer cell growth and inducing apoptosis. These compounds work through various mechanisms such as cell cycle arrest, apoptotic cell death, and inhibition of angiogenesis. Fucoxanthin and fucoidan, found in brown algae, have shown significant anti-OSCC properties by targeting specific pathways involved in cancer progression. Additionally, celecoxibloaded chitosan-fucoidan nanoparticles demonstrate potential in multiple pathways for OSCC treatment. Challenges in translating these findings into clinical applications include the need for further preclinical studies, efficient extraction methods, and clinical trials for safety and efficacy assessment. Despite challenges, brown algal compounds offer a promising avenue for developing novel and effective OSCC therapies, drawing from the ancient wisdom of the sea.

SELECTION OF CITATIONS
SEARCH DETAIL