Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Article in English | MEDLINE | ID: mdl-39055483

ABSTRACT

In this study, serological screening for Toxoplasma gondii, Trichinella spp., and SARS-CoV-2 in domestic cats was conducted, aiming to identify their exposure to the mentioned pathogens and to assess the risk of potential human infection. In total, serum samples from 481 (310 owned and 171 shelter cats) were collected in Bratislava from September 2020 to September 2021, a period that included the initial outbreak wave of the COVID-19 pandemic. The study showed a 37.4% (135/441) seroprevalence of T. gondii with a slightly lower seropositivity in shelter cats (35.9%; 61/170) than in owned cats (38.4%; 104/271), but this difference was not statistically significant. Overall, the seroprevalence of Trichinella spp. was 2.0% (9/441), with animals from shelters being positive but not significantly more often (2.9%; 5/170) than owned cats (1.5%; 4/271). SARS-CoV-2 antibodies were detected in 2.7% (13/481) of cat sera (2.9% in shelter cats; 2.6% in owned cats). Among ten samples positive by virus neutralisation assay, two were positive for the B.1 variant. The presence of the SARS-CoV-2 virus in buccal and rectal swabs (n = 239) was not detected. The seroprevalence of almost 40% for T. gondii in cats suggests a non-negligible risk of human infection. The study confirmed the possibility of Trichinella spp. infection in cats, and thus the possibility of infection spreading between the sylvatic and synanthropic cycle via this animal species. The presented results also showed that the SARS-CoV-2 virus is likely to circulate in cat populations in Slovakia, not only in cats that may have been in contact with infected persons, but also in shelter cats.

2.
Environ Technol ; : 1-14, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016240

ABSTRACT

Pollution in urban environments is a major health concern for humans as well as the local wildlife and aquatic species. Anthropogenic waste and discharge from storm drainage accumulate nutrients and environmental contaminants in local water systems. Locating contaminated sites using water samples over the vast landscape is a daunting task. Crayfish thrive in urban environments and have been used for biomonitoring pollutants. This study aimed to use crayfish as sentinels to monitor for elements in local environments. In this study, crayfish were used to measure metals and metalloids in lotic environments using ICP-OES analysis of abdominal and exoskeletal tissue. Using cluster analysis, geographical zones of trace element accumulation were determined. Eighteen total elements were analysed providing baseline data on local genera, biometric data, and element concentrations averaging 267.3 mg/kg Mn in the exoskeleton and with Zn averaging 6.88 mg/kg being significantly higher in the abdomen. Correlations of elements with biometric data allowed for internal analyses of elements. The elements As, Cr, Hg, Ni, and Tl demonstrated equivalent concentrations in both tissues. The crayfish locations with high abundance of elements allowed for the determination of contaminated areas with higher accumulations being areas of active urban development. These analyses gave measurable results of metal and metalloid to pinpoint potential sources of pollutants. Since crayfish are consumed globally as a food source, these methods can be used to determine the risk of toxic metals being passed through the food chain to the public.

3.
Environ Res ; 260: 119607, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39002628

ABSTRACT

The expansion of the human population and the escalating use of chemical products pose a considerable threat to aquatic biodiversity. Consequently, there is an imperative need for the implementation of non-lethal, cost-effective, and easily deployable biomonitoring tools. In this context, fish and their behavior as biomarkers have gained prominence in monitoring of freshwater ecosystems. The aim of this study was to assess the state of art in the use of behavioral biomarkers in ecotoxicology, emphasizing their role as informative tools for global environmental monitoring. Through a systematic literature search, ninety-two articles focusing on the evaluation of behavioral changes in freshwater fish in response to pollution were identified. The most prevalent keywords were "behavior" (7%) and "zebrafish" (6%). Experiments were conducted in countries with expansive territories, such as the United States (18%) and Brazil (17%). Exotic species were primarily employed (58%), with Danio rerio (26%) being the most frequently studied species. Among pollutants, pesticides (32%) and medicines (25%) were the most frequently studied, while locomotion (38%) and social behaviors (18%) were the most frequently evaluated behaviors. Across these studies, authors consistently reported significant changes in the behavior of fish exposed to contaminants, including decreased swimming speed and compromised feeding efficiency. The review findings affirm that evaluating behavioral biomarkers in freshwater fish offers an informative, non-lethal, cost-effective, and easily implementable approach to understanding pollution impacts on freshwater ecosystems. Although few studies on behavioral biomarkers were available to date, the number has rapidly increased in recent years. Furthermore, a variety of novel approaches and study models are being included. Research into behavioral biomarkers is crucial for understanding and managing environmental risks in freshwater ecosystems. Nevertheless, further studies are needed to enhance our understanding of behavioral toxicity indicators, considering factors such as life stage, sex, and breeding season in the tested species.


Subject(s)
Behavior, Animal , Biomarkers , Environmental Monitoring , Fishes , Fresh Water , Water Pollutants, Chemical , Animals , Fresh Water/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Behavior, Animal/drug effects , Environmental Monitoring/methods , Ecosystem
4.
Sci Total Environ ; 931: 172939, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38701928

ABSTRACT

Southern hemisphere humpback whale (Megaptera novaeangliae, SHHW) breeding populations follow a high-fidelity Antarctic krill (Euphausia superba) diet while feeding in distinct sectors of the Southern Ocean. Their capital breeding life history requires predictable ecosystem productivity to fuel migration and migration-related behaviours. It is therefore postulated that populations feeding in areas subject to the strongest climate change impacts are more likely to show the first signs of a departure from a high-fidelity krill diet. We tested this hypothesis by investigating blubber fatty acid profiles and skin stable isotopes obtained from five SHHW populations in 2019, and comparing them to Antarctic krill stable isotopes sampled in three SHHW feeding areas in the Southern Ocean in 2019. Fatty acid profiles and δ13C and δ15N varied significantly among all five populations, however, calculated trophic positions did not (2.7 to 3.1). Similarly, fatty acid ratios, 16:1ω7c/16:0 and 20:5ω3/22:6ω3 were above 1, showing that whales from all five populations are secondary heterotrophs following an omnivorous diet with a diatom-origin. Thus, evidence for a potential departure from a high-fidelity Antarctic krill diet was not seen in any population. δ13C of all populations were similar to δ13C of krill sampled in productive upwelling areas or the marginal sea-ice zone. Consistency in trophic position and diet origin but significant fatty acid and stable isotope differences demonstrate that the observed variability arises at lower trophic levels. Our results indicate that, at present, there is no evidence of a divergence from a high-fidelity krill diet. Nevertheless, the characteristic isotopic signal of whales feeding in productive upwelling areas, or in the marginal sea-ice zone, implies that future cryosphere reductions could impact their feeding ecology.


Subject(s)
Diet , Euphausiacea , Humpback Whale , Animals , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Antarctic Regions , Fatty Acids/analysis , Climate Change
5.
Conserv Biol ; : e14287, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745504

ABSTRACT

In a warming Arctic, circumpolar long-term monitoring programs are key to advancing ecological knowledge and informing environmental policies. Calls for better involvement of Arctic peoples in all stages of the monitoring process are widespread, although such transformation of Arctic science is still in its infancy. Seabirds stand out as ecological sentinels of environmental changes, and priority has been given to implement the Circumpolar Seabird Monitoring Plan (CSMP). We assessed the representativeness of a pan-Arctic seabird monitoring network focused on the black-legged kittiwake (Rissa tridactyla) by comparing the distribution of environmental variables for all known versus monitored colonies. We found that with respect to its spatiotemporal coverage, this monitoring network does not fully embrace current and future environmental gradients. To improve the current scheme, we designed a method to identify colonies whose inclusion in the monitoring network will improve its ecological representativeness, limit logistical constraints, and improve involvement of Arctic peoples. We thereby highlight that inclusion of study sites in the Bering Sea, Siberia, western Russia, northern Norway, and southeastern Greenland could improve the current monitoring network and that their proximity to local populations might allow increased involvement of local communities. Our framework can be applied to improve existing monitoring networks in other ecoregions and sociological contexts.


Una red de monitoreo participativa y ecológica para las aves marinas del Ártico Resumen En un Ártico cada vez más cálido, los programas circumpolares de monitoreo a largo plazo son importantes para potenciar el conocimiento ecológico e informar las políticas ambientales. Existe un llamado generalizado para involucrar de mejor manera a los pueblos árticos en el proceso de monitoreo, aunque dicha transformación de la ciencia ártica todavía está en desarrollo. Las aves marinas resaltan como centinelas del cambio ambiental y se ha priorizado implementar el Plan Circumpolar de Monitoreo de Aves Marinas (CSMP). Comparamos la distribución de las variables ambientales de todas las colonias conocidas de la gaviota tridáctila (Rissa tridactyla) contra las colonias monitoreadas para evaluar la representación de una red pan­ártica de monitoreo enfocada en esta especie. Encontramos que esta red de monitoreo no considera del todo los gradientes ambientales actuales y futuros con respecto a la cobertura espaciotemporal. Para mejorar el esquema actual, diseñamos un método para identificar las colonias cuya inclusión en la red de monitoreo mejorará su representación ecológica, limitará las restricciones logísticas e incrementará la participación de los pueblos árticos. Por lo tanto, resaltamos que la inclusión de los sitios de estudio en el Mar de Bering, Siberia, Rusia occidental, el norte de Noruega y el sureste de Groenlandia mejorarían la red actual de monitoreo. También destacamos que la proximidad de los sitios de estudio con las poblaciones locales podría permitir una mayor participación de estas. Nuestro marco puede aplicarse para mejorar las redes de monitoreo existentes en otros contextos socioecológicos y ecoregiones.

6.
Toxics ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38787106

ABSTRACT

Bottlenose dolphins (Tursiops spp.) inhabit bays, sounds, and estuaries (BSEs) throughout the southeast region of the U.S.A. and are sentinel species for human and ecosystem-level health. Dolphins are vulnerable to the bioaccumulation of contaminants through the coastal food chain because they are high-level predators. Currently, there is limited information on the spatial dynamics of mercury accumulation in these dolphins. Total mercury (THg) was measured in dolphin skin from multiple populations across the U.S. Southeast Atlantic and Gulf of Mexico coasts, and the influence of geographic origin, sex, and age class was investigated. Mercury varied significantly among sampling sites and was greatest in dolphins in St. Joseph Bay, Florida Everglades, and Choctawhatchee Bay (14,193 ng/g ± 2196 ng/g, 10,916 ng/g ± 1532 ng/g, and 7333 ng/g ± 1405 ng/g wet mass (wm), respectively) and lowest in dolphins in Charleston and Skidaway River Estuary (509 ng/g ± 32.1 ng/g and 530 ng/g ± 58.4 ng/g wm, respectively). Spatial mercury patterns were consistent regardless of sex or age class. Bottlenose dolphin mercury exposure can effectively represent regional trends and reflect large-scale atmospheric mercury input and local biogeochemical processes. As a sentinel species, the bottlenose dolphin data presented here can direct future studies to evaluate mercury exposure to human residents in St. Joseph Bay, Choctawhatchee Bay, and Florida Coastal Everglades, as well as additional sites with similar geographical, oceanographic, or anthropogenic parameters. These data may also inform state and federal authorities that establish fish consumption advisories to determine if residents in these locales are at heightened risk for mercury toxicity.

7.
Environ Sci Technol ; 58(23): 10195-10206, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38800846

ABSTRACT

Concentrations of 33 PFASs were determined in 20 Eurasian otters, sampled 2015-2019, along a transect away from a factory, which used PFOA in PTFE manufacture. Despite cessation of usage in 2012, PFOA concentrations remained high near the factory (>298 µg/kg ww <20 km from factory) and declined with increasing distance (<57 µg/kg ww >150 km away). Long-chain legacy PFASs dominated the Σ33PFAS profile, particularly PFOS, PFOA, PFDA, and PFNA. Replacement compounds, PFECHS, F-53B, PFBSA, PFBS, PFHpA, and 8:2 FTS, were detected in ≥19 otters, this being the first report of PFBSA and PFECHS in the species. Concentrations of replacement PFASs were generally lower than legacy compounds (max: 70.3 µg/kg ww and 4,640 µg/kg ww, respectively). Our study underscores the utility of otters as sentinels for evaluating mitigation success and highlights the value of continued monitoring to provide insights into the longevity of spatial associations with historic sources. Lower concentrations of replacement, than legacy, PFASs likely reflect their lower bioaccumulation potential, and more recent introduction. Continued PFAS use will inevitably lead to increased environmental and human exposure if not controlled. Further research is needed on fate, toxicity, and bioaccumulation of replacement compounds.


Subject(s)
Environmental Monitoring , Otters , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Fresh Water , Fluorocarbons/analysis
8.
J Hazard Mater ; 472: 134617, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38749247

ABSTRACT

The worldwide mangrove shorelines are experiencing considerable contamination from microplastics (MPs). Finding an effective sentinel species in the mangrove ecosystem is crucial for early warning of ecological and human health risks posed by coastal microplastic pollution. This study collected 186 specimens of the widely distributed mangrove clam (Geloina expansa, Solander, 1786) from 18 stations along the Leizhou Peninsula, the largest mangrove coast in Southern China. This study discovered that mangrove mud clams accumulated a relatively high abundance of MPs (2.96 [1.61 - 6.03] items·g-1) in their soft tissue, wet weight, as compared to previously reported levels in bivalves. MPs abundance is significantly (p < 0.05 or 0.0001) influenced by coastal urban development, aquaculture, and shell size. Furthermore, the aggregated MPs exhibit a significantly high polymer risk index (Level III, H = 353.83). The estimated annual intake risk (EAI) from resident consumption, as calculated via a specific questionnaire survey, was at a moderate level (990 - 2475, items·g -1·Capita -1). However, the EAI based on suggested nutritional standards is very high, reaching 113,990 (79,298 - 148,681), items·g -1·Capita -1. We recommend utilizing the mangrove mud clam as sentinel species for the monitoring of MPs pollution changing across global coastlines.


Subject(s)
Bivalvia , Environmental Monitoring , Microplastics , Sentinel Species , Water Pollutants, Chemical , Animals , Microplastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , China , Humans , Aquaculture
9.
Environ Pollut ; 349: 123936, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38588972

ABSTRACT

Antibiotic resistance genes originating from human activity are considered important environmental pollutants. Wildlife species can act as sentinels for coastal environmental contamination and in this study we used qPCR array technology to investigate the variety and abundance of antimicrobial resistance genes (ARGs), mobile genetic elements (MGEs) and integrons circulating within seal populations both near to and far from large human populations located around the Scottish and northwest English coast. Rectal swabs were taken from 50 live grey seals and nine live harbour seals. Nucleic acids were stabilised upon collection, enabling extraction of sufficient quality and quantity DNA for downstream analysis. 78 ARG targets, including genes of clinical significance, four MGE targets and three integron targets were used to monitor genes within 22 sample pools. 30 ARGs were detected, as well as the integrons intl1 and intl2 and tnpA transposase. Four ß-lactam, nine tetracycline, two phenicol, one trimethoprim, three aminoglycoside and ten multidrug resistance genes were detected as well as mcr-1 which confers resistance to colistin, an important drug of last resort. No sulphonamide, vancomycin, macrolide, lincosamide or streptogramin B (MLSB) resistance genes were detected. Resistance genes were detected in all sites but the highest number of ARGs (n = 29) was detected in samples derived from grey seals on the Isle of May, Scotland during the breeding season, and these genes also had the highest average abundance in relation to the 16S rRNA gene. This pilot study demonstrates the effectiveness of a culture-independent workflow for global analysis of ARGs within the microbiota of live, free-ranging, wild animals from habitats close to and remote from human habitation, and highlights seals as a valuable indicator species for monitoring the presence, abundance and land-sea transference of resistance genes within and between ecosystems.


Subject(s)
Feces , Animals , Feces/microbiology , Scotland , Environmental Monitoring/methods , Seals, Earless/genetics , Anti-Bacterial Agents/pharmacology , Bays , Drug Resistance, Bacterial/genetics , Phoca/genetics , Phoca/microbiology , Genes, Bacterial , Drug Resistance, Microbial/genetics , Integrons/genetics
10.
Environ Pollut ; 347: 123777, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38490523

ABSTRACT

Plastic ingestion presents many potential avenues of risk for wildlife. Understanding which species and environments are most exposed to plastic pollution is a critical first step in investigating the One Health implications of plastic exposure. The objectives of this study were the following: 1) Utilize necropsy as part of ongoing passive disease surveillance to investigate ingested mesoplastics in birds collected in Ontario and Nunavut, and examine the relationships between bird-level factors and ingested debris; 2) evaluate microplastic ingestion compared to ingested mesodebris in raptors; and 3) identify potential sentinel species for plastic pollution monitoring in understudied freshwater and terrestrial (inland) environments. Between 2020 and 2022, 457 free-ranging birds across 52 species were received for postmortem examination. The upper gastrointestinal tracts were examined for mesoplastics and other debris (>2 mm) using standard techniques. Twenty-four individuals (5.3%) retained mesodebris and prevalence varied across species, with foraging technique, food type, and foraging substrate all associated with different metrics of debris ingestion. The odds of ingesting any type of anthropogenic mesodebris was nine times higher for non-raptorial species than for raptors. For a subset of raptors (N = 54) across 14 species, the terminal portion of the distal intestinal tract was digested with potassium hydroxide and microparticles were assessed using stereo-microscopy. Although only one of 54 (1.9%) raptors included in both analyses retained mesodebris in the upper gastrointestinal tract, 24 (44.4%) contained microparticles in the distal intestine. This study demonstrates that a variety of Canadian bird species ingest anthropogenic debris in inland systems, and suggests that life history and behaviour are associated with ingestion risk. For raptors, the mechanisms governing exposure and ingestion of mesoplastics appear to be different than those that govern microplastics. Herring gulls (Larus argentatus) and ring-billed gulls (Larus delawarensis) are proposed as ideal sentinels for plastic pollution monitoring in inland systems.


Subject(s)
Charadriiformes , Plastics , Animals , Birds , Eating , Environmental Monitoring/methods , Fresh Water , Microplastics , Ontario , Plastics/analysis
11.
Environ Monit Assess ; 196(4): 399, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532156

ABSTRACT

Plankton plays a very crucial role in bioaccumulation and transfer of metals in the marine food web and represents a suitable bioindicator of the occurrence of trace and rare earth elements in the ecosystem. Trace elements and REEs were analyzed by ICP-MS in phytoplankton samples from the northwestern Mediterranean Sea. Metal concentrations in phytoplankton were found strongly influenced by seasons and depth of collection (- 30 m, - 50 m). Principal component analysis (PCA) has shown that Al, As, Cr, Cu, Ga, and Sn concentrations were related to summer and autumn in samples collected at 30 m depth, while Fe, Mn, Ni, V, and Zn levels related strongly with summer and spring at 50 m depth. Fe, Al, and Zn were the most represented elements in all samples (mean values respectively in the ranges 4.2-8.2, 9.6-13, and 1.0-4.4 mg kg-1) according to their widespread presence in the environment and in the earth crust. Principal component analysis (PCA) performed on REEs showed that mostly all lanthanides' concentrations strongly correlate with summer and autumn seasons (- 30 m depth); the highest ∑REE concentration (75 µg kg-1) was found in winter. Phytoplankton REE normalized profile was comparable to those of other marine biota collected in the same area according to the suitability of lanthanides as geological tracers.


Subject(s)
Lanthanoid Series Elements , Metals, Rare Earth , Trace Elements , Ecosystem , Phytoplankton , Environmental Monitoring , Metals, Rare Earth/analysis , Trace Elements/analysis , Lanthanoid Series Elements/analysis , Italy
12.
Article in English | MEDLINE | ID: mdl-38374502

ABSTRACT

Environmental contaminants endanger human health and non-target organisms such as crocodiles (Crocodylus acutus) that live in aquatic bodies surrounding agricultural areas. Due to their intrinsic characteristics, these organisms could be bioaccumulating and transmitting organochlorine pesticides (OCs) to their eggs. The objectives of this study were to determine the OCs in infertile eggs of C. acutus from Sinaloa and their correlation with the morphometric characteristics (MC), and to perform a preliminary estimate of the ecological risk due to the presence of pesticides using the PERPEST model. In June 2022, 76 infertile eggs (Ie) were collected: 57 from wild areas (Wa) and 19 from a crocodile farm (CSMf). Determination of OC in Ie was performed according to the USEPA method 8081b, modified. The observed percentages of Ie in Wa were 31.48% and 21.33% in CSMf. Twenty OCs were detected in the Ie, where dieldrin recorded the highest average concentration in Wa (6542.6 ng/g), and endosulfan-II in the CSMf (2172.8 ng/g). Bad negative and positive correlations were observed between OCs and MC, standing out the correlations between endosulfan-II and %Ie (-0.688) in the Wa, Cedritos drain, and between endrin and the weight of Ie (0.786) of the CSMf. The evaluation of the ecological risks of the aquatic environment due to the presence of OCs follow the sequence cyclodienes > aromatic > alicyclic hydrocarbons. A potential risk to the endocrine health of the species C. acutus was observed. Crocodiles are excellent biological models for monitoring the effects of OCs.

13.
Mar Pollut Bull ; 200: 116085, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325203

ABSTRACT

The use of sentinel species in monitoring programs for toxic metals such as mercury (Hg) is essential to understand these pollutants' impact on the environment. For this purpose, it is essential to use organisms that have a lifespan compatible with the residence time of Hg in the oceans, and preferably with a wide geographical distribution, such as sea turtles. Here, we assess the regional variability of Hg concentrations using carapace scutes of four sea turtle species along the foraging and spawning area in the northeast coastline of Brazil. Mercury concentrations in samples showed no relationship with the environmental Hg levels (obtained from literature). Rather, Hg concentrations varied according to species-specific biological, and ecological traits. Characteristics such as the ontogenetic shift in the diet of Chelonia mydas, capital breeding in females, depth of foraging in oceanic waters, and selectivity of food items, such as in Eretmochelys imbricata, significantly influenced Hg concentrations.


Subject(s)
Environmental Pollutants , Mercury , Turtles , Water Pollutants, Chemical , Animals , Female , Mercury/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis
14.
J Wildl Dis ; 60(2): 285-297, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38345465

ABSTRACT

Lead (Pb) is a toxic nonessential metal, known mainly for causing poisoning of humans and wild birds. However, little is known about Pb exposure and its associated health effects in wild mammals. We conducted a global systematic literature review to identify peer-reviewed studies published on Pb exposure in wild mammalian species and the health effects they identified. In total, 183 studies, conducted in 35 countries and published over 62 yr (1961-2022), were included in the review. Only 6% (11/183) of the studies were conducted in developing countries. Although 153 mammalian species were studied, most studies focused on species that are easy to access (i.e., hunted species and small mammals that are easy to trap). Therefore, carnivores and scavengers were less frequently studied than herbivores and omnivores. Despite all studies reporting Pb concentrations, only 45 (25%) studies investigated health effects and, of these 45 studies, only 28 (62%) found any health effect in 57 species. All health effects were negative and ranged from subclinical effects to fatality. Methodologies of Pb sampling and quantification and reporting of results varied widely across the studies, making both Pb concentrations and health effects difficult to compare and evaluate. Thus, there is a need for more research on Pb exposure and its health effects on wild mammals, especially as carnivores and scavengers could be used as sentinels for ecosystem health.


Subject(s)
Ecosystem , Lead , Humans , Animals , Lead/toxicity , Birds , Mammals , Animals, Wild
15.
Sci Total Environ ; 916: 170358, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38272074

ABSTRACT

Rare Earth Elements (REEs) are strategical elements playing a crucial role in the industry, especially in producing high-tech materials. Therefore, REEs are new contaminants of emerging concerns. However, due to the lack of exposure data on REE occurrence in environmental matrices, especially in European countries, it is still tricky to establish environmental background levels to assess the ecotoxicological risk related to REEs exposure. The present study aimed to evaluate the liver concentrations of REEs in domestic dogs (Canis lupus familiaris) and Apennine wolves (Canis lupus italicus) living in the Abruzzo region, Italy. Moreover, for the scope of the present study, the dog's group was divided according to their sex, age, lifestyle, and diet. Wolves were categorized concerning their sex and genetic characteristics. Liver samples from dogs and wolves were collected during diagnostic necropsies from carcasses, sample mineralization was performed by a microwave digestion system with a single reaction chamber, and simultaneous determination of the presence of REEs was performed by Inductively Coupled Plasma Mass Spectrometer (Q-ICP-MS) using standard mode for all rare earth elements except scandium (Sc) which was acquired in kinetic energy discrimination (KED) mode. Hepatic concentrations of REEs were statistically significantly higher in wolves compared to dogs. Moreover, significant differences in REEs concentrations arose also from the genetic type of wolf, since "pure wolves" had higher liver concentrations of REEs compared to wolf-dog hybrids. Female and adult dogs also showed elevated REEs compared to male and juvenile dogs, while no significant differences were demonstrated for dogs' diet and lifestyle. The results of the present study confirm the exposure of domestic and wild carnivores to REEs, showing also the ability of REEs to accumulate in carnivore livers, suggesting the potential role of this species as an alternative bioindicator.


Subject(s)
Metals, Rare Earth , Wolves , Animals , Male , Female , Wolves/genetics , Metals, Rare Earth/analysis , Italy , Europe , Environmental Biomarkers
16.
Glob Chang Biol ; 30(1): e17045, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014477

ABSTRACT

Understanding the drivers and consequences of global environmental change is crucial to inform predictions of effects on ecosystems. We used the mammal community of Bialowieza Forest, the last lowland near-primeval forest in temperate Europe, as a sentinel of global change. We analyzed changes in stable carbon (δ13 C) and nitrogen (δ15 N) isotope values of hair in 687 specimens from 50 mammal species across seven decades (1946-2011). We classified mammals into four taxonomic-dietary groups (herbivores, carnivores, insectivores, and bats). We found a significant negative trend in hair δ15 N for the mammal community, particularly strong for herbivores. This trend is consistent with temporal patterns in nitrogen deposition from (15 N depleted) industrial fertilizers and fossil fuel emissions. It is also in line with global-scale declines in δ15 N reported in forests and other unfertilized, non-urban terrestrial ecosystems and with local decreases in N foliar concentrations. The global depletion of 13 C content in atmospheric CO2 due to fossil fuel burning (Suess effect) was detected in all groups. After correcting for this effect, the hair δ13 C trend became non-significant for both community and groups, except for bats, which showed a strong decline in δ13 C. This could be related to an increase in the relative abundance of freshwater insects taken by bats or increased use of methane-derived carbon in food webs used by bats. This work is the first broad-scale and long-term mammal isotope ecology study in a near-primeval forest in temperate Europe. Mammal communities from natural forests represent a unique benchmark in global change research; investigating their isotopic temporal variation can help identify patterns and early detections of ecosystem changes and provide more comprehensive and integrative assessments than single species approaches.


Subject(s)
Chiroptera , Ecosystem , Animals , Forests , Nitrogen/analysis , Carbon , Mammals , Isotopes , Fossil Fuels
17.
Life (Basel) ; 13(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38137936

ABSTRACT

Maintenance of the health of our oceans is critical for the survival of the oceanic food chain upon which humanity is dependent. Zooplanktonic copepods are among the most numerous multicellular organisms on earth. As the base of the primary consumer food web, they constitute a major biomass in oceans, being an important food source for fish and functioning in the carbon cycle. The potential impact of climate change on copepod populations is an area of intense study. Omics technologies offer the potential to detect early metabolic alterations induced by the stresses of climate change. One such omics approach is lipidomics, which can accurately quantify changes in lipid pools serving structural, signal transduction, and energy roles. We utilized high-resolution mass spectrometry (≤2 ppm mass error) to characterize the lipidome of three different species of copepods in an effort to identify lipid-based biomarkers of copepod health and viability which are more sensitive than observational tools. With the establishment of such a lipid database, we will have an analytical platform useful for prospectively monitoring the lipidome of copepods in a planned long-term five-year ecological study of climate change on this oceanic sentinel species. The copepods examined in this pilot study included a North Atlantic species (Calanus finmarchicus) and two species from the Gulf of Mexico, one a filter feeder (Acartia tonsa) and one a hunter (Labidocerca aestiva). Our findings clearly indicate that the lipidomes of copepod species can vary greatly, supporting the need to obtain a broad snapshot of each unique lipidome in a long-term multigeneration prospective study of climate change. This is critical, since there may well be species-specific responses to the stressors of climate change and co-stressors such as pollution. While lipid nomenclature and biochemistry are extremely complex, it is not essential for all readers interested in climate change to understand all of the various lipid classes presented in this study. The clear message from this research is that we can monitor key copepod lipid families with high accuracy, and therefore potentially monitor lipid families that respond to environmental perturbations evoked by climate change.

18.
Vet World ; 16(10): 2110-2119, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38023277

ABSTRACT

Background and Aim: Leptospirosis is considered a neglected tropical zoonosis in low-income countries due to surveillance system limitations and non-specificity of symptoms. Humans become infected through direct contact with carrier animals or indirectly through Leptospira-contaminated environments. Conventionally, equines have been considered an uncommon source of leptospirosis, but recent publications in Latin America suggest that their role in the maintenance and dispersion of the bacteria could be more relevant than expected, as horses are susceptible to a wide variety of zoonotic Leptospira spp. from domestic and wild animals with which they share the environment. A systematic review of the published literature was conducted to compile the available information on Leptospira spp. in Ecuador, with a special focus on equine leptospirosis, to better understand the epidemiology of the bacterium and identify possible knowledge gaps. Materials and Methods: A systematic review of the published literature was conducted in PubMed, SciELO and Web of Science databases to compile the available information on Leptospira spp. in Ecuador, with a special focus on equine leptospirosis, to better understand the epidemiology of the bacterium. We used a combination of the terms (Leptospira OR Leptospirosis) AND Ecuador, without restrictions on language or publication date. Results: Our literature review reveals that published scientific information is very scarce. Eighteen full-text original scientific articles related to Leptospira or leptospirosis cases in Ecuador were included in the systematic review. Most of the studies reported data obtained from one of the four regions (Coast), and specifically from only one of the 24 Provinces of Ecuador (Manabí), which evidence a large information bias at the geographical level. Furthermore, only the studies focused on humans included clinical signs of leptospirosis and there is only one study that analyzes the presence of Leptospira spp. in water or soil as a risk factor for pathogen transmission. Finally, only one study investigated Leptospira in horses. Conclusion: Since sentinel species can provide useful data on infectious diseases when epidemiologic al information is lacking, and horses could be considered excellent sentinel species to reveal circulating serovars, we propose developing a nationwide surveillance system using horses. This cost-effective epidemiological survey method provides a baseline for implementing specific prevention and control programs in Ecuador and neighboring developing countries.

19.
Trop Life Sci Res ; 34(3): 113-127, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37860093

ABSTRACT

Hematological evaluation of fish is essential to the assessment of their physiological status. This study describes the morphometric analysis and comparison of blood cell characteristics in Zanarchopterus sp., Gerres filamentosus Cuvier, 1829 and Leiognathus decorus (De Vis, 1884). The species were collected at two locations off the coast of Trang Province, Thailand. A comparative hematological evaluation was made to assess the effects of environmental conditions on the blood of the fish. Ten individuals of each species were collected from a seagrass bed at Libong Island, where human activities are increasing, and from a secluded sandy beach. Their blood samples were analysed using the blood smear technique. Erythrocytes of all the studied fishes were either elliptical or oval. The morphometric data from both locations showed that erythrocytes were of similar size, except for those of Zanarchopterus sp. Fish from both stations showed several types of leukocytes, including neutrophils and lymphocytes.The highest proportion of leukocytes was made up of lymphocytes, followed by neutrophils. However, monocytes were only observed in fish from Libong Island and the erythrocytic nuclei of fish collected from Libong Island were both reniform and lobate. Our results show the potential of hematological evaluation as an early warning signal of environmental impacts on aquatic animals. The determination of baseline parameters could provide a tool for the monitoring of environmental quality.

20.
Biol Lett ; 19(10): 20230332, 2023 10.
Article in English | MEDLINE | ID: mdl-37788715

ABSTRACT

Alarm signals have evolved to communicate pertinent threats to conspecifics, but heterospecifics may also use alarm calls to obtain social information. In birds, mixed-species flocks are often structured around focal sentinel species, which produce reliable alarm calls that inform eavesdropping heterospecifics about predation risk. Prior research has shown that Neotropical species innately recognize the alarm calls of a Nearctic sentinel species, but it remains unclear how generalizable or consistent such innate signal recognition of alarm-calling species is. We tested for the responses to the alarm calls of a Neotropical sentinel forest bird species, the dusky-throated antshrike (Thamnomanes ardesiacus), by naive resident temperate forest birds across three continents during the winter season. At all three sites, we found that approaches to the Neotropical antshrike alarm calls were similarly frequent to the alarm calls of a local parid sentinel species (positive control), while approaches to the antshrike's songs and to non-threatening columbid calls (negative controls) occurred significantly less often. Although we only tested one sentinel species, our findings indicate that temperate forest birds can recognize and adaptively respond globally to a foreign and unfamiliar tropical alarm call, and suggest that some avian alarm calls transcend phylogenetic histories and individual ecological experiences.


Subject(s)
Passeriformes , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Phylogeny , Forests , Passeriformes/physiology , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL