Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
Plant Mol Biol ; 114(5): 89, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168922

ABSTRACT

Sesuvium portulacastrum L., a perennial facultative halophyte, is extensively distributed across tropical and subtropical coastal regions. Its limited cold tolerance significantly impacts both the productivity and the geographical distribution of this species in higher-latitude areas. In this study, we employed RNA-Seq technology to delineate the transcriptomic alterations in Sesuvium plants exposed to low temperatures, thus advancing our comprehension of the molecular underpinnings of this physiological adaptation and root formation. Our findings demonstrated differential expression of 10,805, 16,389, and 10,503 genes in the low versus moderate temperature (LT vs. MT), moderate versus high temperature (MT vs. HT), and low versus high temperature (LT vs. HT) comparative analyses, respectively. Notably, the gene categories "structural molecule activity", "ribosome biogenesis", and "ribosome" were particularly enriched among the LT vs. HT-specific differentially expressed genes (DEGs). When synthesizing the insights from these three comparative studies, the principal pathways associated with the cold response mechanism were identified as "carbon fixation in photosynthetic organisms", "starch and sucrose metabolism", "plant hormone signal transduction", "glycolysis/gluconeogenesis", and "photosynthesis". In addition, we elucidated the involvement of auxin signaling pathways, adventitious root formation (ARF), lateral root formation (LRF), and novel genes associated with shoot system development in root formation. Subsequently, we constructed a network diagram to investigate the interplay between hormone levels and pivotal genes, thereby clarifying the regulatory pathways of plant root formation under low-temperature stress and isolating key genes instrumental in root development. This study has provided critical insights into the molecular mechanisms that facilitate the adaptation to cold stress and root formation in S. portulacastrum.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Roots , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Cold Temperature , Transcriptome , Cold-Shock Response/genetics , Stress, Physiological/genetics , Signal Transduction/genetics
2.
Front Plant Sci ; 15: 1387102, 2024.
Article in English | MEDLINE | ID: mdl-38916037

ABSTRACT

Sesuvium portulacastrum L. is a flowering succulent halophyte in the ice plant family Aizoaceae. There are various ecotypes distributed in sandy coastlines and salty marshlands in tropical and subtropical regions with the common name of sea purslane. These plants are tolerant to salt, drought, and flooding stresses and have been used for the stabilization of sand dunes and the restoration of coastal areas. With the increased salinization of agricultural soils and the widespread pollution of toxic metals in the environment, as well as excessive nutrients in waterbodies, S. portulacastrum has been explored for the desalination of saline soils and the phytoremediation of metals from contaminated soils and nitrogen and phosphorus from eutrophic water. In addition, sea purslane has nutraceutical and pharmaceutical value. Tissue analysis indicates that many ecotypes are rich in carbohydrates, proteins, vitamins, and mineral nutrients. Native Americans in Florida eat it raw, pickled, or cooked. In the Philippines, it is known as atchara after being pickled. S. portulacastrum contains high levels of ecdysteroids, which possess antidiabetic, anticancer, and anti-inflammatory activities in mammals. In this review article, we present the botanical information, the physiological and molecular mechanisms underlying the tolerance of sea purslane to different stresses, its nutritional and pharmaceutical value, and the methods for its propagation and production in saline soils and waterbodies. Its adaptability to a wide range of stressful environments and its role in the production of valuable bioactive compounds suggest that S. portulacastrum can be produced in saline soils as a leafy vegetable and is a valuable genetic resource that can be used for the bioremediation of soil salinity and eutrophic water.

3.
J Pharm Bioallied Sci ; 16(Suppl 2): S1270-S1273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882817

ABSTRACT

Sesuvium portulacastrum, a coastal medicinal plant with traditional uses has shown promising biological activities including anti-inflammatory, antioxidant and antimicrobial properties. However, the mechanisms of action active ingredients of this plant have not been studied. Aim of the current study is to investigate the anticancer activity of Sesuvium portulacastrum using in vitro and in silico analysis. The in vitro assays included NO radical scavenging activity, total phenolic and flavonoid content determination. The data were analysed by one-way-ANOVA and p<0.05 was considered as statistically significant. The phytochemical analysis showed the presence of tannins, steroids, terpenoids and phenols. Antioxidant activity of S. portulacastrum showed the dose dependent effect of nitric oxide radical scavenging activity. In silico analysis showed a better binding affinity with IR, IRS1 and Akt molecules which demonstrated the action of bioactive compound of S. portulacastrum against IRS-1/AKT signalling pathway.

4.
Physiol Mol Biol Plants ; 30(2): 269-285, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38623159

ABSTRACT

The plant Sesuvium portulacastrum L., commonly referred to as sea purslane, is a perennial halophytic species with significant potential for development in marine ecological restoration. However, its growth is limited in high-latitude regions with lower temperatures due to its subtropical nature. Furthermore, literature on its cold tolerance is scarce. This study, therefore, focused on sea purslane plants naturally overwintering in Ningbo (29°77'N), investigating their morphological, histological, rooting, and physiological responses to low temperatures (7 °C, 11 °C, 15 °C, and 19 °C). The findings indicated an escalation in cold damage severity with decreasing temperatures. At 7 °C, the plants failed to root and subsequently perished. In contrast, at 11 °C, root systems developed, while at 15 °C and 19 °C, the plants exhibited robust growth, outperforming the 11 °C group in terms of leaf number and root length significantly (P < 0.05). Histological analyses showed a marked reduction in leaf thickness under cold stress (P < 0.05), with disorganized leaf structure observed in the 7 °C group, whereas it remained stable at higher temperatures. No root primordia were evident in the vascular cambium of the 7 and 11 °C groups, in contrast to the 15 and 19 °C groups. Total chlorophyll content decreased with temperature, following the order: 19 °C > 15 °C > 11 °C > 7 °C. Notably, ascorbic acid levels were significantly higher in the 7 and 11 °C groups than in the 15 and 19 °C groups. Additionally, the proline concentration in the 7 °C group was approximately fourfold higher than in the 19 °C group. Activities of antioxidant enzymes-superoxide dismutase, peroxidase, and catalase-were significantly elevated in the 7 and 11 °C groups compared to the 15 and 19 °C groups. Moreover, the malondialdehyde content in the 7 °C group (36.63 ± 1.75 nmol/g) was significantly higher, about 5.5 and 9.6 times, compared to the 15 °C and 19 °C groups, respectively. In summary, 7 °C is a critical threshold for sea purslane stem segments; below this temperature, cellular homeostasis is disrupted, leading to an excessive accumulation of lipid peroxides and subsequent death due to an inability to neutralize excess reactive oxygen species. At 11 °C, although photosynthesis is impaired, self-protective mechanisms such as enhanced antioxidative systems and osmoregulation are activated. However, root development is compromised, resulting in stunted growth. These results contribute to expanding the geographic distribution of sea purslane and provide a theoretical basis for its ecological restoration in high-latitude mariculture. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01429-6.

5.
Front Plant Sci ; 14: 1277762, 2023.
Article in English | MEDLINE | ID: mdl-38089796

ABSTRACT

Introduction: Salt stress is a major constraint affecting crop productivity worldwide. Investigation of halophytes could provide valuable information for improving economically important crops to tolerate salt stress and for more effectively using halophytes to remediate saline environments. Sesuvium portulacastrum L. is a halophyte species widely distributed in tropical and subtropical coastal regions and can absorb a large amount of sodium (Na). This study was to analyze S. portulacastrum responses to salt stress at morphological, physiological, proteomic, and metabolomic levels and pursue a better understanding of mechanisms behind its salt tolerance. Methods: The initial experiment evaluated morphological responses of S. portulacastrum to different concentrations of NaCl in a hydroponic system, and subsequent experiments compared physiological, proteomic, and metabolomic changes in S. portulacastrum after being exposed to 0.4 M NaCl for 24 h as immediate salt stress (IS) to 14 days as adaptive salt stress (AS). Through these analyses, a working model to illustrate the integrative responses of S. portulacastrum to salt stress was proposed. Results: Plants grown in 0.4 M NaCl were morphologically comparable to those grown in the control treatment. Physiological changes varied in control, IS, and AS plants based on the measured parameters. Proteomic analysis identified a total of 47 and 248 differentially expressed proteins (DEPs) in leaves and roots, respectively. KEGG analysis showed that DEPs, especially those occurring in roots, were largely related to metabolic pathways. Root metabolomic analysis showed that 292 differentially expressed metabolites (DEMs) occurred in IS plants and 371 in AS plants. Among them, 20.63% of upregulated DEMs were related to phenolic acid metabolism. Discussion: Based on the integrative analysis of proteomics and metabolomics, signal transduction and phenolic acid metabolism appeared to be crucial for S. portulacastrum to tolerate salt stress. Specifically, Ca2+, ABA, and JA signalings coordinately regulated salt tolerance in S. portulacastrum. The stress initially activated phenylpropanoid biosynthesis pathway through Ca2+ signal transduction and increased the content of metabolites, such as coniferin. Meanwhile, the stress inhibited MAPK signaling pathway through ABA and JA signal transduction, which promoted Na sequestration into the vacuole to maintain ROS homeostasis and enhanced S. portulacastrum tolerance to salt stress.

6.
BMC Plant Biol ; 23(1): 658, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38124056

ABSTRACT

BACKGROUND: The Aizoaceae family's Sesuvium sesuvioides (Fenzl) Verdc is a medicinal species of the Cholistan desert, Pakistan. The purpose of this study was to determine the genomic features and phylogenetic position of the Sesuvium genus in the Aizoaceae family. We used the Illumina HiSeq2500 and paired-end sequencing to publish the complete chloroplast sequence of S. sesuvioides. RESULTS: The 155,849 bp length cp genome sequence of S. sesuvioides has a 36.8% GC content. The Leucine codon has the greatest codon use (10.6%), 81 simple sequence repetitions of 19 kinds, and 79 oligonucleotide repeats. We investigated the phylogeny of the order Caryophyllales' 27 species from 23 families and 25 distinct genera. The maximum likelihood tree indicated Sesuvium as a monophyletic genus, and sister to Tetragonia. A comparison of S. sesuvioides, with Sesuvium portulacastrum, Mesembryanthemum crystallinum, Mesembryanthemum cordifolium, and Tetragonia tetragonoides was performed using the NCBI platform. In the comparative investigation of genomes, all five genera revealed comparable cp genome structure, gene number and composition. All five species lacked the rps15 gene and the rpl2 intron. In most comparisons with S. sesuvioides, transition substitutions (Ts) were more frequent than transversion substitutions (Tv), producing Ts/Tv ratios larger than one, and the Ka/Ks ratio was lower than one. We determined ten highly polymorphic regions, comprising rpl22, rpl32-trnL-UAG, trnD-GUC-trnY-GUA, trnE-UUC-trnT-GGU, trnK-UUU-rps16, trnM-CAU-atpE, trnH-GUG-psbA, psaJ-rpl33, rps4-trnT-UGU, and trnF-GAA-ndhJ. CONCLUSION: The whole S. sesuvioides chloroplast will be examined as a resource for in-depth taxonomic research of the genus when more Sesuvium and Aizoaceae species are sequenced in the future. The chloroplast genomes of the Aizoaceae family are well preserved, with little alterations, indicating the family's monophyletic origin. This study's highly polymorphic regions could be utilized to build realistic and low-cost molecular markers for resolving taxonomic discrepancies, new species identification, and finding evolutionary links among Aizoaceae species. To properly comprehend the evolution of the Aizoaceae family, further species need to be sequenced.


Subject(s)
Aizoaceae , Genome, Chloroplast , Humans , Phylogeny , Pakistan , Genomics , Genome, Chloroplast/genetics , Codon
7.
Mol Biol Rep ; 50(11): 9731-9738, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37819497

ABSTRACT

BACKGROUND: Sesuvium portulacastrum is a facultative halophyte capable of thriving in a saline environment. Despite molecular studies conducted to unravel its salt adaptation mechanism, there is a paucity of information on the role of salt-responsive orthologs and microRNAs (miRNAs) in this halophyte. Here, we searched the orthology to identify salt-responsive orthologs and miRNA targets of Sesuvium using the Arabidopsis genome. METHODS: The relative fold change of orthologs, conserved miRNAs, and miRNA targets of Sesuvium was analyzed under 100 mM (LS) and 250 mM NaCl (HS) treatment at 24 h using qRT-PCR. The comparison between the expression of Sesuvium orthologs and Arabidopsis orthologs (Arabidopsis eFP browser database) was used to identify differentially expressed genes. RESULTS: Upon salt treatment, we found that SpCIPK3 (1.95-fold in LS and 2.90-fold in HS) in Sesuvium roots, and SpNHX7 (1.61-fold in LS and 6.39-fold in HS) and, SpSTPK2 (2.54-fold in LS and 7.65-fold in HS) in Sesuvium leaves were upregulated in a salt concentration-specific manner. In Arabidopsis, these genes were either downregulated or did not show significant variation, implicating its significance in the halophytic nature of Sesuvium. Furthermore, miRNAs like miR394a, miR396a, and miR397a exhibited a negative correlation with their targets-Frigida interacting protein 1, Cysteine proteinases superfamily protein, and Putative laccase, respectively under different salt treatments. CONCLUSION: The study revealed that the high salt tolerance in Sesuvium is associated with distinct transcriptional reprogramming, hence, to gain holistic mechanistic insights, global-scale profiling is required.


Subject(s)
Aizoaceae , Arabidopsis , MicroRNAs , Salt Tolerance/genetics , Arabidopsis/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Aizoaceae/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
8.
Genes (Basel) ; 14(7)2023 06 25.
Article in English | MEDLINE | ID: mdl-37510241

ABSTRACT

We conducted a study to examine the growth and physiological changes in 12 different ecotypes of Sesuvium portulacastrum collected from Hainan Island in China. These ecotypes were subjected to different concentrations (0, 200, 400, and 600 mmol/L) of sodium chloride (NaCl) salt stress for 14 days. We also analyzed the expression of metabolic genes related to stress response. Under low salt stress, indicators such as plant height in region K (0 mmol/L: 45% and highest at 200 mmol/L: 80%), internode length (0 mmol/L: 0.38, 200 mmol/L: 0.87, 400 mmol/L: 0.25, and 600 mmol/L: 1.35), as well as leaf area, relative water content, fresh weight, and dry weight exhibited an overall increasing trend with the increase in salt concentration. However, as the salt concentration increased, these indicators showed a decreasing trend. Proline and malondialdehyde contents increased with higher salt concentrations. When the NaCl concentration was 400 mmol/L, MDA content in the leaves was highest in the regions E (196.23%), F (94.28%), J (170.10%), and K (136.08%) as compared to the control group, respectively. Most materials demonstrated a significant decrease in chlorophyll a, chlorophyll b, and total chlorophyll content compared to the control group. Furthermore, the ratio of chlorophyll a to chlorophyll b (Rab) varied among different materials. Using principal component analysis, we identified three ecotypes (L from Xinglong Village, Danzhou City; B from Shuigoupo Village, Lingshui County; and J from Haidongfang Park, Dongfang City) that represented high, medium, and low salt tolerance levels, respectively, based on the above growth and physiological indexes. To further investigate the expression changes of related genes at the transcriptional level, we employed qRT-PCR. The results showed that the relative expression of SpP5CS1, SpLOX1, and SpLOX1 genes increased with higher salt concentrations, which corresponded to the accumulation of proline and malondialdehyde content, respectively. However, the relative expression of SpCHL1a and SpCHL1b did not exhibit a consistent pattern. This study contributes to our understanding of the salt tolerance mechanism in the true halophyte S. portulacastrum, providing a solid theoretical foundation for further research in this field.


Subject(s)
Aizoaceae , Ecotype , Chlorophyll A , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Salt Stress/genetics , Gene Expression , Aizoaceae/metabolism , Proline/metabolism
9.
Int J Biol Macromol ; 237: 124222, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36990407

ABSTRACT

Sesuvium portulacastrum is a typical halophyte. However, few studies have investigated its salt-tolerant molecular mechanism. In this study, metabolome, transcriptome, and multi-flux full-length sequencing analysis were conducted to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs) of S. portulacastrum samples under salinity. The complete-length transcriptome of S. portulacastrum was developed, which contained 39,659 non-redundant unigenes. RNA-seq results showed that 52 DEGs involved in lignin biosynthesis may be responsible for S. portulacastrum salt tolerance. Furthermore, 130 SDMs were identified, and the salt response could be attributed to the p-coumaryl alcohol-rich in lignin biosynthesis. The co-expression network that was constructed after comparing the different salt treatment processes showed that the p-Coumaryl alcohol was linked to 30 DEGs. Herein, 8 structures genes, i.e., Sp4CL, SpCAD, SpCCR, SpCOMT, SpF5H, SpCYP73A, SpCCoAOMT, and SpC3'H were identified as significant factors in regulating lignin biosynthesis. Further investigation revealed that 64 putative transcription factors (TFs) may interact with the promoters of the above-mentioned genes. Together, the data revealed a potential regulatory network comprising important genes, putative TFs, and metabolites involved in the lignin biosynthesis of S. portulacastrum roots under salt stress, which could serve as a rich useful genetic resource for breeding excellent salt-tolerant plants.


Subject(s)
Aizoaceae , Lignin , Lignin/metabolism , Plant Breeding , Salt Stress , Salt-Tolerant Plants/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant
10.
Plants (Basel) ; 12(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36771762

ABSTRACT

Through metabolic analysis, the present research seeks to reveal the defense mechanisms activated by a heavy metals-resistant plant, Sesuvium portulacastrum L. In this regard, shifting metabolisms in this plant were investigated in different heavy metals-contaminated experimental sites, which were 50, 100, 500, 1000, and 5000 m away from a man-fabricated sewage dumping lake, with a wide range of pollutant concentrations. Heavy metals contaminations in contaminated soil and their impact on mineral composition and microbial population were also investigated. The significant findings to emerge from this research were the modifications of nitrogen and carbon metabolisms in plant tissues to cope with heavy metal toxicity. Increased plant amylase enzymes activity in contaminated soils increased starch degradation to soluble sugars as a mechanism to mitigate stress impact. Furthermore, increased activity of sucrose phosphate synthase in contaminated plants led to more accumulation of sucrose. Moreover, no change in the content of sucrose hydrolyzing enzymes (vacuolar invertase and cytosolic invertase) in the contaminated sites can suggest the translocation of sucrose from shoot to root under stress. Similarly, although this study demonstrated a high level of malate in plants exposed to stress, caution must be applied in suggesting a strong link between organic acids and the activation of defense mechanisms in plants, since other key organic acids were not affected by stress. Therefore, activation of other defense mechanisms, especially antioxidant defense molecules including alpha and beta tocopherols, showed a greater role in protecting plants from heavy metals stress. Moreover, the increment in the content of some amino acids (e.g., glycine, alanine, glutamate, arginine, and ornithine) in plants under metal toxicity can be attributed to a high level of stress tolerance. Moreover, strategies in the excitation of the synthesis of the unsaturated fatty acids (oleic and palmitoleic) were involved in enhancing stress tolerance, which was unexpectedly associated with an increase in the accumulation of palmitic and stearic (saturated fatty acids). Taken together, it can be concluded that these multiple mechanisms were involved in the response to stress which may be cooperative and complementary with each other in inducing resistance to the plants.

11.
Front Plant Sci ; 13: 973419, 2022.
Article in English | MEDLINE | ID: mdl-36212287

ABSTRACT

Soil salinity is an important environmental problem that seriously affects plant growth and crop productivity. Phytoremediation is a cost-effective solution for reducing soil salinity and potentially converting the soils for crop production. Sesuvium portulacastrum is a typical halophyte which can grow at high salt concentrations. In order to explore the salt tolerance mechanism of S. portulacastrum, rooted cuttings were grown in a hydroponic culture containing ½ Hoagland solution with or without addition of 400 mM Na for 21 days. Root and leaf samples were taken 1 h and 21 days after Na treatment, and RNA-Seq was used to analyze transcript differences in roots and leaves of the Na-treated and control plants. A large number of differentially expressed genes (DEGs) were identified in the roots and leaves of plants grown under salt stress. Several key pathways related to salt tolerance were identified through KEGG analysis. Combined with physiological data and expression analysis, it appeared that cyclic nucleotide gated channels (CNGCs) were implicated in Na uptake and Na+/H+ exchangers (NHXs) were responsible for the extrusion and sequestration of Na, which facilitated a balance between Na+ and K+ in S. portulacastrum under salt stress. Soluble sugar and proline were identified as important osmoprotectant in salt-stressed S. portulacastrum plants. Glutathione metabolism played an important role in scavenging reactive oxygen species. Results from this study show that S. portulacastrum as a halophytic species possesses a suite of mechanisms for accumulating and tolerating a high level of Na; thus, it could be a valuable plant species used for phytoremediation of saline soils.

12.
Front Plant Sci ; 13: 995855, 2022.
Article in English | MEDLINE | ID: mdl-36212296

ABSTRACT

Sesuvium portulacastrum has a strong salt tolerance and can grow in saline and alkaline coastal and inland habitats. This study investigated the physiological and molecular responses of S. portulacastrum to high salinity by analyzing the changes in plant phytohormones and antioxidant activity, including their differentially expressed genes (DEGs) under similar high-salinity conditions. High salinity significantly affected proline (Pro) and hydrogen peroxide (H2O2) in S. portulacastrum seedlings, increasing Pro and H2O2 contents by 290.56 and 83.36%, respectively, compared to the control. Antioxidant activities, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), significantly increased by 83.05, 205.14, and 751.87%, respectively, under high salinity. Meanwhile, abscisic acid (ABA) and gibberellic acid (GA3) contents showed the reverse trend of high salt treatment. De novo transcriptome analysis showed that 36,676 unigenes were matched, and 3,622 salt stress-induced DEGs were identified as being associated with the metabolic and biological regulation processes of antioxidant activity and plant phytohormones. POD and SOD were upregulated under high-salinity conditions. In addition, the transcription levels of genes involved in auxin (SAURs and GH3), ethylene (ERF1, ERF3, ERF114, and ABR1), ABA (PP2C), and GA3 (PIF3) transport or signaling were altered. This study identified key metabolic and biological processes and putative genes involved in the high salt tolerance of S. portulacastrum and it is of great significance for identifying new salt-tolerant genes to promote ecological restoration of the coastal strand.

13.
Antibiotics (Basel) ; 11(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35052945

ABSTRACT

Plant-based removal of nitrogen (N) and phosphorus (P) from water bodies is an important method for remediation of aquaculture wastewater. In order to acquire knowledge as to how antibiotic residues in wastewater might affect the microbial community and plant uptake of N and P, this study investigated N and P removal by a coastal plant Sesuvium portulacastrum L. grown in aquaculture wastewater treated with 0, 1, 5, or 50 mg/L sulfonamide antibiotics (sulfadiazine, SD) for 28 days and compared the microbial community structure between the water and rhizosphere. Results showed that SD significantly decreased N removal rates from 87.5% to 22.1% and total P removal rates from 99.6% to 85.5%. Plant fresh weights, root numbers, and moisture contents as well as activities of some enzymes in leaves were also reduced. SD changed the microbial community structure in water, but the microbial community structure in the rhizosphere was less affected by SD. The microbial diversity in water was higher than that in the rhizosphere, indicating microbial community differences. Our results showed that the commonly used antibiotic, SD, in aquaculture can inhibit plant growth, change the structure of microbial community, and reduce the capacity of S. portulacastrum plants to remove N and P from wastewater, and also raised alarm about detrimental effects of antibiotic residues in phytoremediation of wastewater.

15.
Plant Physiol Biochem ; 170: 234-248, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34920320

ABSTRACT

Sesuvium portulacastrum is a true halophyte and shows an optimal development under moderate salinity with large amounts of salt ions in its leaves. However, the specific proteins in response to salt ions are remained unknown. In this study, comparative physiological and proteomic analyses of different leaves subject to NaCl, KCl, NaNO3 and KNO3 were performed. Chlorophyll content was decreased under the above four kinds of salt treatments. Starch and soluble sugar contents changed differently under different salt treatments. A total of 53 differentially accumulated proteins (DAPs) were identified by mass spectrometry. Among them, 13, 25, 26 and 25 DAPs were identified after exposure to KCl, NaCl, KNO3, and NaNO3, respectively. These DAPs belong to 47 unique genes, and 37 of them are involved in protein-protein interactions. These DAPs displayed different expression patterns after treating with different salt ions. Functional annotation revealed they are mainly involved in photosynthesis, carbohydrate and energy metabolism, lipid metabolism, and biosynthesis of secondary metabolites. Genes and proteins showed different expression profiles under different salt treatments. Enzyme activity analysis indicated P-ATPase was induced by KCl, NaCl and NaNO3, V-ATPase was induced by KCl and NaCl, whereas V-PPase activity was significantly increased after application of KNO3, but sharply inhibited by NaCl. These results might deepen our understanding of responsive mechanisms in the leaves of S. portulacastrum upon different salt ions.


Subject(s)
Aizoaceae , Salt-Tolerant Plants , Ions , Plant Leaves , Proteomics , Salinity , Sodium Chloride/pharmacology
16.
Int J Phytoremediation ; 23(12): 1270-1278, 2021.
Article in English | MEDLINE | ID: mdl-33678091

ABSTRACT

Sodium salt contamination in the fresh water due to industrial effluents, underground rock salts and inland aquaculture is a major concern needs to be remediated, and subsequently recycled as sustainable bioeconomic strategy. Treatment of saline wastewater requires efficient, cost-effective, rapid, and green technologies, so as to mitigate the negative impacts of salinity on agricultural land. Green technology of phytodesalination is proposed to reduce salinity in the wastewater using salt tolerant plant species. present study was designed with an aim to investigate the sodium (Na+) removal capacity of salt tolerant and high biomass producing macrophytes on synthetic saline wastewater. Sesuvium portulacastrum (sea purslane), Pluchea indica (Indian camphorweed), Typha angustifolia (narrow leaf cattail) and Heliconia psittacorum (heliconia) were collected, cultivated in the greenhouse, subsequently treated with 0 (control) and 217 mM NaCl (salt stress) for 4 weeks. Overall growth performance, physiological change and Na+ removal rate in root and leaf tissues of the candidate plant species were measured. Plants were able to maintain their growth and physiological abilities except for shoot height in T. angustifolia (reduced by 13.7%) and chlorophyll content in S. portulacastrum (reduced by 64%). Major accumulation of Na+ was recorded in the shoots of S. portulacastrum and P. indica (halophytic plant species) and the roots of T. angustifolia and H. psittacorum (glycophytic plant species). Since T. angustifolia and H. psittacorum have high plant biomass, they showed higher Na+ removal efficiency at 4.4% and 5.7%, respectively; whereas due to lower plant biomass, S. portulacastrum and P. indica resulted in the removal of only 0.6 and 0.8% Na+ from the batch, respectively. Based on the information from this investigation, the selected candidate plant species can further be studied in the constructed wetland together with the controlled environments including optimized flowrate, vertical or horizontal flow system, plant densities and Na-removal rate in relation to swamp habitat.Novelty statement: T. angustifolia and H. psittacorum have high plant biomass, they showed higher Na+ removal efficiency at 4.4% and 5.7%, respectively; whereas due to lower plant biomass, S. portulacastrum and P. indica resulted in removal of only 0.6 and 0.8% Na+ from the batch. Based on the information from this investigation, the selected candidate plant species can further be studied in the constructed wetland together with the controlled environments including optimized flowrate, vertical or horizontal flow system, plant densities and Na-removal rate in relation to swamp habitat.


Subject(s)
Aizoaceae , Biodegradation, Environmental , Salinity , Salt-Tolerant Plants , Sodium
17.
Bioresour Technol ; 325: 124602, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33486413

ABSTRACT

This study investigated an Iron-carbon (Fe-C) micro-electrolysis method to enhance nitrogen removal of Sesuvium portulacastrum constructed wetlands (CWs) when treating mariculture effluents. The main objective was to investigate the effects of Fe-C on nitrogen purification performance and microbial characteristics of Sesuvium portulacastrum CWs. Results showed that the presence of Fe-C and Sesuvium portulacastrum could improve nitrogen removal efficiency by 20-30% and 15-30%, respectively. CWs with 33% v/v Fe-C addition performed well on nitrogen removal: TAN, 41.49 ± 13.64%; NO2--N, 13.32%; NO3--N, 60.02 ± 6.17%; TIN, 63.40 ± 12.11%. Microbial analysis revealed that Fe-C altered the microbial communities, and improved the abundance of denitrification related genera. Based on microbial enzyme activities and genes abundance, the anammox and denitrification processes were promoted by Fe-C in CWs. These findings indicate that Sesuvium portulacastrum CWs with 33% v/v Fe-C represents an effective nitrogen removal for mariculture wastewater with insufficient carbon source.


Subject(s)
Aizoaceae , Wetlands , Carbon , Denitrification , Iron , Nitrogen , Waste Disposal, Fluid
18.
Mitochondrial DNA B Resour ; 5(3): 3112-3113, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-33458077

ABSTRACT

The complete mitochondrial genome of mangrove associated plant: Sesuvium portulacastrum was analyzed in this paper, which is the first for the genus within the family Aizoaceae. The mitogenome sequence is 392,221 bp in length containing six ribosomal RNA genes, 27 transfer RNA genes, and 36 protein-coding genes. Gene nad1, nad2 and nad5 are the trans-splicing genes. One intron is found in gene ccmFc, two introns are found in genes nad4 and rps3, and four introns are found in gene nad7. Phylogenetic analysis using the maximum likelihood method positioned S. portulacastrum within the monophyletic clades of the family Aizoaceae.

19.
Biotechnol Rep (Amst) ; 23: e00352, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31293906

ABSTRACT

In a halophyte, Sesuvium portulacastrum (L.) L., we have applied Fourier Transform InfraRed (FT-IR) spectroscopy to detect the corresponding changes associated with salt-induced physiological changes under long- term treatment with 0, 100 and 500 mM NaCl. FT-IR profiles showed changes in chemical composition and functional groups of proteins, lipids and carbohydrates due to salt treatments, evident as differential FT-IR profiles in both roots and leaves specific to these metabolites. Further, the Principle Component Analysis (PCA) was applied to identify the main sources of variation in FT-IR data due to differential treatment. In PCA, the PC1 showed 85.55% and PC2 showed 18.18% variability in data and confirmed differential response of root and leaves to salt treatment in Sesuvium. The results suggest that FT-IR spectrometry can be used to study stress-induced metabolic changes in plants in relation to their salt tolerance.

20.
BMC Plant Biol ; 19(1): 74, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30764771

ABSTRACT

BACKGROUND: Na+ extrusion from cells is important for plant growth in high saline environments. SOS1 (salt overly sensitive 1), an Na+/H+ antiporter located in the plasma membrane (PM), functions in toxic Na+ extrusion from cells using energy from an electrochemical proton gradient produced by a PM-localized H+-ATPase (AHA). Therefore, SOS1 and AHA are involved in plant adaption to salt stress. RESULTS: In this study, the genes encoding SOS1 and AHA from the halophyte Sesuvium portulacastrum (SpSOS1 and SpAHA1, respectively) were introduced together or singly into Arabidopsis plants. The results indicated that either SpSOS1 or SpAHA1 conferred salt tolerance to transgenic plants and, as expected, Arabidopsis plants expressing both SpSOS1 and SpAHA1 grew better under salt stress than plants expressing only SpSOS1 or SpAHA1. In response to NaCl treatment, Na+ and H+ in the roots of plants transformed with SpSOS1 or SpAHA1 effluxed faster than wild-type (WT) plant roots. Furthermore, roots co-expressing SpSOS1 and SpAHA1 had higher Na+ and H+ efflux rates than single SpSOS1/SpAHA1-expressing transgenic plants, resulting in the former amassing less Na+ than the latter. As seen from comparative analyses of plants exposed to salinity stress, the malondialdehyde (MDA) content was lowest in the co-transgenic SpSOS1 and SpAHA1 plants, but the K+ level was the highest. CONCLUSION: These results suggest SpSOS1 and SpAHA1 coordinate to alleviate salt toxicity by increasing the efficiency of Na+ extrusion to maintain K+ homeostasis and protect the PM from oxidative damage induced by salt stress.


Subject(s)
Aizoaceae/genetics , Arabidopsis/genetics , Proton-Translocating ATPases/metabolism , Sodium-Hydrogen Exchangers/metabolism , Aizoaceae/physiology , Arabidopsis/physiology , Cell Membrane/metabolism , Gene Expression , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plants, Genetically Modified , Proton-Translocating ATPases/genetics , Salt Tolerance , Salt-Tolerant Plants , Sodium/metabolism , Sodium-Hydrogen Exchangers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL