Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol Alcohol ; 59(5)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39053499

ABSTRACT

AIMS: Peripheral cortisol represents one biological measure of the hypothalamic-pituitary-adrenal (HPA) axis, a significant component of the stress system, which is altered by chronic alcohol consumption. However, whether heavy alcohol use affects the HPA axis differentially between the sexes and whether basal cortisol levels are a biomarker of prospective alcohol intake is unknown. METHODS: We recruited light moderate (LM) and binge-heavy (BH) drinkers of alcohol (n = 118). Repeated fasting morning cortisol levels were studied over a 2-hour period to assess basal levels while participants underwent a neuroimaging scan. RESULTS: Significantly higher average cortisol levels in BH compared to LM groups across four timepoints were observed (P < .018). Overall sex differences were observed with women showing higher initial cortisol levels at the first timepoint with a blunted decrease over the morning relative to men (P < .003). Average morning cortisol differentially predicted prospective future 30-day daily reports of alcohol consumption by sex and group, such that LM males had a positive significant relationship and BH males had a negative non-significant relationship between cortisol and drinking. CONCLUSIONS: Findings indicate that morning plasma cortisol is upregulated in the BH vs. LM group. Although females had higher initial morning cortisol levels, BH males showed a dysregulated negative relationship between stress and binge drinking in contrast to the LM group. Future work should further investigate the role of cortisol and other stress hormones as biomarkers of problematic drinking behaviors in men and women.


Subject(s)
Alcohol Drinking , Binge Drinking , Hydrocortisone , Sex Characteristics , Humans , Male , Female , Hydrocortisone/blood , Binge Drinking/blood , Adult , Prospective Studies , Alcohol Drinking/blood , Young Adult , Biomarkers/blood , Sex Factors , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Middle Aged
2.
Neurobiol Stress ; 25: 100540, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37323647

ABSTRACT

Background: Cortisol is a significant driver of the biological stress response that is potently activated by acute alcohol intake and increased with binge drinking. Binge drinking is associated with negative social and health consequences and risk of developing alcohol use disorder (AUD). Both cortisol levels and AUD are also associated with changes in hippocampal and prefrontal regions. However, no previous research has assessed structural gray matter volume (GMV) and cortisol concurrently to examine BD effects on hippocampal and prefrontal GMV and cortisol, and their prospective relationship to future alcohol intake. Methods: Individuals who reported binge drinking (BD: N = 55) and demographically matched non-binge moderate drinkers (MD: N = 58) were enrolled and scanned using high-resolution structural MRI. Whole brain voxel-based morphometry was used to quantify regional GMV. In a second phase, 65% of the sample volunteered to participate in prospective daily assessment of alcohol intake for 30 days post-scanning. Results: Relative to MD, BD showed significantly higher cortisol and smaller GMV in regions including hippocampus, dorsal lateral prefrontal cortex (dlPFC), prefrontal and supplementary motor, primary sensory and posterior parietal cortex (FWE, p < 0.05). GMV in bilateral dlPFC and motor cortices were negatively associated with cortisol levels, and smaller GMV in multiple PFC regions was associated with more subsequent drinking days in BD. Conclusion: These findings indicate neuroendocrine and structural dysregulation associated with BD relative to MD. Notably, BD-associated lower GMV regions were those involved in stress, memory and cognitive control, with lower GMV in cognitive control and motor regions also predicting higher levels of future alcohol intake in BD.

SELECTION OF CITATIONS
SEARCH DETAIL