Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(25): 37552-37563, 2024 May.
Article in English | MEDLINE | ID: mdl-38780848

ABSTRACT

The fouling phenomenon grabbed global attention and caused huge economic losses specifically in marine-related industries. Sessile behavior exposed the sponge to the risk of fouling. However, their bodies remained free from foulers, which were attributed to the chemical defense system. The objectives of this study were to determine the antibiofilm activity of the marine sponge, Stylissa carteri, and to characterize the isolated compound involved. The antibiofilm activity of S. carteri methanolic crude extract (MCE) and fractions was tested against biofilm-producing bacteria, Pseudomonas aeruginosa, using two different modes of crystal violet biofilm assays: preventive and detachment. Besides that, the disc-diffusion test was conducted to screen the antibacterial activity against gram-positive and gram-negative bacteria while a cytotoxicity assay was conducted on the HepG2 cell line. Bioassay-guided fractionation was carried out using vacuum liquid chromatography (VLC) and solid phase extraction using a C18 Sep-Pak Cartridge. The crystal compound was isolated and characterized through thin-layer chromatography (TLC), Fourier transform infrared (FTIR) spectroscopy, liquid chromatography-mass spectrometry (LCMS), and nuclear magnetic resonance (NMR) spectroscopy. The S. carteri MCE showed a promising result with a half-maximal inhibitory concentration (IC50) of 20.22 µg/mL in the preventive assay, while no IC50 was determined in the detachment assay since all inhibitions < 50%. The S. carteri MCE exhibited broad-spectrum antibacterial activity and displayed a non-cytotoxic effect. Fraction 4 from MCE of S. carteri (IC50 = 2.40 µg/mL) reduced the biofilm in the preventive assay at all concentrations and exhibited no antibacterial activity indicating the independence of antibiofilm from antibacterial properties. Based on the data obtained, an alkaloid named debromohymenialdisine (DBH) was identified from Fraction 4 of S. carteri MCE. In conclusion, S. carteri was able to reduce the establishment of the biofilm formed by P. aeruginosa and could serve as a prominent source of natural antifouling agents.


Subject(s)
Anti-Bacterial Agents , Biofilms , Porifera , Pseudomonas aeruginosa , Biofilms/drug effects , Porifera/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Humans
2.
Mar Drugs ; 18(5)2020 May 03.
Article in English | MEDLINE | ID: mdl-32375235

ABSTRACT

Bioactivity-guided isolation supported by LC-HRESIMS metabolic profiling led to the isolation of two new compounds, a ceramide, stylissamide A (1), and a cerebroside, stylissoside A (2), from the methanol extract of the Red Sea sponge Stylissa carteri. Structure elucidation was achieved using spectroscopic techniques, including 1D and 2D NMR and HRMS. The bioactive extract's metabolomic profiling showed the existence of various secondary metabolites, mainly oleanane-type saponins, phenolic diterpenes, and lupane triterpenes. The in vitro cytotoxic activity of the isolated compounds was tested against two human cancer cell lines, MCF-7 and HepG2. Both compounds, 1 and 2, displayed strong cytotoxicity against the MCF-7 cell line, with IC50 values at 21.1 ± 0.17 µM and 27.5 ± 0.18 µM, respectively. They likewise showed a promising activity against HepG2 with IC50 at 36.8 ± 0.16 µM for 1 and IC50 30.5 ± 0.23 µM for 2 compared to the standard drug cisplatin. Molecular docking experiments showed that 1 and 2 displayed high affinity to the SET protein and to inhibitor 2 of protein phosphatase 2A (I2PP2A), which could be a possible mechanism for their cytotoxic activity. This paper spreads light on the role of these metabolites in holding fouling organisms away from the outer surface of the sponge, and the potential use of these defensive molecules in the production of novel anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Ceramides/pharmacology , Cerebrosides/pharmacology , Porifera/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/metabolism , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/metabolism , Ceramides/chemistry , Ceramides/isolation & purification , Ceramides/metabolism , Cerebrosides/chemistry , Cerebrosides/isolation & purification , Cerebrosides/metabolism , Cisplatin/pharmacology , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Drug Screening Assays, Antitumor , Hep G2 Cells , Histone Chaperones/antagonists & inhibitors , Histone Chaperones/chemistry , Histone Chaperones/metabolism , Humans , Indian Ocean , Inhibitory Concentration 50 , MCF-7 Cells , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Molecular Structure , Secondary Metabolism
3.
Asian Pac J Cancer Prev ; 20(4): 1199-1206, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31030495

ABSTRACT

Objective: Despite advanced treatment options available, drug resistance develops in breast cancer (BC) patients requiring novel effective drugs. Stylissa carteri, a marine sponge predominantly living in Indonesia territories, has not been extensively studied as anti-cancer. Therefore, this study targeted to assess the anti-tumor activity of the ethanol extract of S. carteri in BC cells. Methods: S. carteri was collected from Pramuka Island, at Kepulauan Seribu National Park, Jakarta, Indonesia and extracted using ethanol. Different BC cells including MDA MB 231, MDA MB 468, SKBR3, HCC-1954 and MCF-7 cells were treated with this extract for cytotoxic analysis using MTT assay. Spheroid growth assay and apoptosis assay were conducted in HCC-1954 cells. In addition, cell migration analysis and synergistic activity with doxorubicin or paclitaxel were conducted in MDA MB 231 cells. This extract was subjected also for GC-MS analysis. Results: The results show that ethanol extract of S. carteri demonstrated a cytotoxic activity in BC cells. The IC50 of this extract was lower 15 µg/ml in MDA MB 231, MDA MB 468, SKBR3, and HCC-1954 cells. Moreover, this extract inhibited spheroids growth and induced apoptosis in HCC-1954 cells. It inhibited cell migration and demonstrated a synergistic activity with doxorubicin or paclitaxel on triggering cell death in MDA MB 231 cells. Furthermore, GC-MS analysis indicated that this extract contained 1,2-Benzenediol, Dibutyl phthalate and 9,12-Octadecadienoic acid, ethyl ester. Conclusion: Our preliminary data indicate a potential anti-tumor activity of ethanol extract of S. carteri in breast cancer cells.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Drug Synergism , Ethanol/chemistry , Porifera/chemistry , Alkaloids/isolation & purification , Animals , Apoptosis , Breast Neoplasms/drug therapy , Cell Movement , Doxorubicin/administration & dosage , Female , Humans , Paclitaxel/administration & dosage , Tumor Cells, Cultured
4.
Z Naturforsch C J Biosci ; 73(5-6): 199-210, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29353267

ABSTRACT

Fifteen pyrrole alkaloids were isolated from the Red Sea marine sponge Stylissa carteri and investigated for their biological activities. Four of them were dibrominated [(+) dibromophakelline, Z-3-bromohymenialdisine, (±) ageliferin and 3,4-dibromo-1H-pyrrole-2-carbamide], nine compounds were monobrominated [(-) clathramide C, agelongine, (+) manzacidin A, (-) 3-bromomanzacidin D, Z-spongiacidin D, Z-hymenialdisine, 2-debromostevensine, 2-bromoaldisine and 4-bromo-1H-pyrrole-2-carbamide)] and finally, two compounds were non-brominated derivatives viz., E-debromohymenialdisine and aldisine. The structure elucidations of isolated compounds were based on 1D & 2D NMR spectroscopic and MS studies, as well as by comparison with literature. In-vitro, Z-spongiacidin D exhibited a moderate activity on (ARK5, CDK2-CycA, CDK4/CycD1, VEGF-R2, SAK and PDGFR-beta) protein kinases. Moreover, Z-3-bromohymenialdisine showed nearly similar pattern. Furthermore, Z-hymenialdisine displayed a moderate effect on (ARK5 & VEGF-R2) and (-) clathramide C showed a moderate activity on AURORA-A protein kinases. While, agelongine, (+) manzacidin A, E-debromohymenialdisine and 3,4-dibromo-1H-pyrrole-2-carbamide demonstrated only marginal inhibitory activities. The cytotoxicity study was evaluated in two different cell lines. The most effective secondary metabolites were (+) dibromophakelline and Z-3-bromohymenialdisine on L5178Y. Finally, Z-hymenialdisine, Z-3-bromohymenialdisine and (±) ageliferin exhibited the highest cytotoxic activity on HCT116. No report about inhibition of AURORA-A and B by hymenialdisine/hymenialdisine analogs existed and no reported toxicity of ageliferin existed in literature.


Subject(s)
Alkaloids/isolation & purification , Porifera/chemistry , Pyrroles/isolation & purification , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Indian Ocean , Molecular Structure , Pyrroles/chemistry , Pyrroles/pharmacology
5.
Mar Genomics ; 29: 69-80, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27225825

ABSTRACT

Most existing coral reef studies have focused on a single biotope and a single domain (Archaea or Bacteria). Few coral reef studies have explored the archaeal and bacterial community simultaneously. In this study, we compare the diversity and composition of archaeal and bacterial communities in seawater and two closely related sponge species (Stylissa carteri and Stylissa massa) in the Berau reef system, Indonesia. A 16S rRNA gene barcoded pyrosequencing approach was used to test to what extent seawater, S. carteri and S. massa host compositionally distinct communities of Archaea and Bacteria. Proteobacteria dominated the bacterial communities of all three studied biotopes whereas Euryarchaeota was the most abundant archaeal phylum in seawater and Crenarchaeota the most abundant archaeal phylum in both Stylissa species. Biotopes explained 56% and 53% of the variation in archaeal and bacterial composition respectively and there was significant congruence between the composition of archaeal and bacterial communities. These results suggest that the processes that drive bacterial composition within the studied biotopes may be fundamentally similar to those that drive archaeal composition.


Subject(s)
Archaea/genetics , Bacteria/genetics , Coral Reefs , Microbiota , Porifera/microbiology , Animals , Biodiversity , Indonesia , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
6.
Mar Drugs ; 14(2)2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26861355

ABSTRACT

The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%-40% inhibition of HIV-1 at 3.1 µM and 13 µM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 µM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 µM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery.


Subject(s)
Alkaloids/pharmacology , Anti-HIV Agents/pharmacology , HIV-1/drug effects , Porifera/metabolism , Alkaloids/isolation & purification , Alkaloids/toxicity , Animals , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/toxicity , Cell Survival/drug effects , Chromatography, High Pressure Liquid/methods , HIV Infections/drug therapy , HIV Infections/virology , HIV Reverse Transcriptase/drug effects , Humans , Mass Spectrometry/methods , Secondary Metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL