Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.067
Filter
1.
Diabetol Metab Syndr ; 16(1): 156, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982515

ABSTRACT

BACKGROUND: This study investigates myocardial structural changes in stable coronary artery disease (CAD) patients with type 2 diabetes (T2D) using cardiac magnetic resonance (CMR) strain and T1 mapping. METHODS: A total of 155 stable CAD patients underwent CMR examination, including left ventricular (LV) morphology and function assessment, late gadolinium enhancement (LGE), and feature tracking (CMR-FT) for LV global longitudinal, circumferential, and radial strain. T1 mapping with extracellular volume (ECV) evaluation was also performed. RESULTS: Among the enrolled patients, 67 had T2D. Diabetic patients exhibited impaired LV strain and higher ECV compared to non-diabetics. Multivariate analysis identified T2D as an independent predictor of increased ECV and decreased strain. CONCLUSIONS: CMR-based strain and T1 mapping highlighted impaired myocardial contractility, elevated ECV, and potential interstitial fibrosis in diabetic patients with stable CAD. This suggests a significant impact of diabetes on myocardial health beyond CAD, emphasizing the importance of a comprehensive assessment in these individuals. TRIAL REGISTRATION: http://www.controlled-trials.com/ISRCTN09454308.

2.
Comput Biol Med ; 178: 108753, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897148

ABSTRACT

The Instantaneous Signal Loss Simulation (InSiL) model is a promising alternative to the classical mono-exponential fitting of the Modified Look-Locker Inversion-recovery (MOLLI) sequence in cardiac T1 mapping applications, which achieves better accuracy and is less sensitive to heart rate (HR) variations. Classical non-linear least squares (NLLS) estimation methods require some parameters of the model to be fixed a priori in order to give reliable T1 estimations and avoid outliers. This introduces further bias in the estimation, reducing the advantages provided by the InSiL model. In this paper, a novel Bayesian estimation method using a hierarchical model is proposed to fit the parameters of the InSiL model. The hierarchical Bayesian modeling has a shrinkage effect that works as a regularizer for the estimated values, by pulling spurious estimated values toward the group-mean, hence reducing greatly the number of outliers. Simulations, physical phantoms, and in-vivo human cardiac data have been used to show that this approach estimates accurately all the InSiL parameters, and achieve high precision estimation of the T1 compared to the classical MOLLI model and NLLS InSiL estimation.

3.
Front Immunol ; 15: 1391280, 2024.
Article in English | MEDLINE | ID: mdl-38840918

ABSTRACT

Background: Currently, there is a lack of an objective quantitative measure to comprehensively evaluate the inflammatory activity of axSpA, which poses certain challenges in accurately assessing the disease activity. Objective: To explore the value of combined-parameter models of sacroiliac joints (SIJs) MRI relaxometry and peripheral blood Mucosal-associated invariant T (MAIT) cells in evaluating the inflammatory activity of axial spondyloarthritis (axSpA). Methods: This retrospective clinical study included 88 axSpA patients (median age 31.0 (22.0, 41.8) years, 21.6% females) and 20 controls (median age 28.0 (20.5, 49.5) years, 40.0% females). The axSpA group was classified into active subgroup (n=50) and inactive subgroup (n=38) based on ASDAS-CRP. All participants underwent SIJs MRI examination including T1 and T2* mapping, and peripheral blood flow cytometry analysis of MAIT cells (defined as CD3+Vα7.2+CD161+) and their activation markers (CD69). The T1 and T2* values, as were the percentages of MAIT cells and CD69+MAIT cells were compared between different groups. Combined-parameter models were established using logistic regression, and ROC curves were employed to evaluate the diagnostic efficacy. Results: The T1 values of SIJs and %CD69+MAIT cells in the axSpA group and its subgroup were higher than the control group (p<0.05), while %MAIT cells were lower than the control group (p<0.05). The T1 values and %CD69+MAIT cells correlated positively, while %MAIT cells correlated negatively, with the ASDAS-CRP (r=0.555, 0.524, -0.357, p<0.001). Between the control and axSpA groups, and between the inactive and active subgroups, the combined-parameter model T1 mapping+%CD69+MAIT cells has the best efficacy (AUC=0.959, 0.879, sensibility=88.6, 70%, specificity=95.0, 94.7%, respectively). Conclusion: The combined-parameter model T1 mapping+%CD69+MAIT cells allows a more accurate evaluation of the level of inflammatory activity.


Subject(s)
Axial Spondyloarthritis , Magnetic Resonance Imaging , Mucosal-Associated Invariant T Cells , Humans , Female , Mucosal-Associated Invariant T Cells/immunology , Male , Adult , Magnetic Resonance Imaging/methods , Axial Spondyloarthritis/diagnostic imaging , Axial Spondyloarthritis/immunology , Retrospective Studies , Middle Aged , Young Adult , Sacroiliac Joint/diagnostic imaging , Sacroiliac Joint/pathology , Inflammation/immunology , Inflammation/diagnostic imaging , Biomarkers
4.
Heart Fail Clin ; 20(3): 295-305, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844300

ABSTRACT

Cardiac magnetic resonance represents the gold standard imaging technique to assess cardiac volumes, wall thickness, mass, and systolic function but also to provide noninvasive myocardial tissue characterization across almost all cardiac diseases. In patients with cardiac amyloidosis, increased wall thickness of all heart chambers, a mildly reduced ejection fraction and occasionally pleural and pericardial effusion are the characteristic morphologic anomalies. The typical pattern after contrast injection is represented by diffuse areas of late gadolinium enhancement, which can be focal and patchy in very early stages, circumferential, and subendocardial in intermediate stages or even diffuse transmural in more advanced stages.


Subject(s)
Amyloidosis , Cardiomyopathies , Humans , Amyloidosis/diagnostic imaging , Cardiomyopathies/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Contrast Media , Magnetic Resonance Imaging/methods , Myocardium/pathology , Stroke Volume/physiology
5.
Curr Med Imaging ; 20(1): e15734056259418, 2024.
Article in English | MEDLINE | ID: mdl-38918998

ABSTRACT

BACKGROUND: Accurately predicting the hepatocellular carcinoma (HCC) grade may facilitate the rational selection of treatment strategies. The diagnostic efficacy of the combination of Gadolinium ethoxybenzy diethylenetriamine pentaacetic (Gd-EOB-DTPA) enhancement T1 mapping and apparent diffusion coefficient (ADC) values in predicting HCC grade needs further validation. OBJECTIVES: This study aimed to assess the capacity of Gd-EOB-DTPA-enhanced T1 mapping and ADC values, both individually and in combination, to discriminate between different grades of HCC. MATERIALS AND METHODS: From July 2017 to February 2020, 96 patients (male, 83; mean age, 53.67 years; age range, 29-71 years) clinically diagnosed with HCC were included in the present study. All patients underwent Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI, including T1 mapping sequence) before surgery or biopsy. All the patients were categorized into 3 groups according to the pathological results (including 24 cases of well-differentiated HCCs, 59 cases of moderately differentiated HCCs, 13 cases of and poorly differentiated HCCs). The mean Gd-EOB-DTPA enhanced T1 values (ΔT1=[(T1pre-T1post)/T1pre]×100%) and ADC values between different grading groups of HCC were calculated and compared. The area under the characteristics curve (AUC), the diagnostic threshold, sensitivity, and specificity of ΔT1 and ADC for differential diagnosis were analyzed. RESULTS: Mean ΔT1 was 58% for well-differentiated HCCs, 50% for moderately-differentiated HCCs, and 43% for poorly-differentiated HCCs. ΔT1 showed statistical differences between the groups (P<0.001). The mean ADC values of the 3 groups were 1.11×10-3 mm2/s, 0.91×10-3 mm2/s, and 0.80×10-3mm2/s, respectively. ADC showed statistical differences between the groups (P<0.001). In discriminating well- differentiated group from the moderately differentiated group, the AUC of ΔT1 was 0.751 (95% CI: 0.642, 0.859), the AUC of ADC was 0.782 (95% CI: 0.671, 0.894), the AUC of combined model was 0.811 (95% CI: 0.709, 0.914). In discriminating the poorly differentiated group from the moderately differentiated group, the AUC of ΔT1 was 0.768 (95% CI: 0.634, 0.902), the AUC of ADC was 0.754 (95% CI: 0.603, 0.904), and the AUC of the combined model was 0.841 (95% CI: 0.729, 0.953). CONCLUSION: Gd-EOB-DTPA enhanced T1 mapping, and ADC values have complementary effects on the sensitivity and specificity for identifying different HCC grades. A combined model of Gd-EOB-DTPA-enhanced MRI T1 mapping and ADC values could improve diagnostic performance for predicting HCC grades.

.


Subject(s)
Carcinoma, Hepatocellular , Contrast Media , Gadolinium DTPA , Liver Neoplasms , Neoplasm Grading , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Middle Aged , Male , Female , Aged , Adult , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Retrospective Studies , Sensitivity and Specificity , ROC Curve
6.
Eur J Radiol ; 177: 111589, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38941821

ABSTRACT

PURPOSE: To assess T1 mapping performance in distinguishing between benign and malignant breast lesions and to explore its correlation with histopathologic features in breast cancer. METHODS: This study prospectively enrolled 103 participants with a total of 108 lesions, including 25 benign and 83 malignant lesions. T1 mapping, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) were performed. Two radiologists independently outlined the ROIs and analyzed T1 and apparent diffusion coefficient (ADC) values for each lesion, assessing interobserver reliability with the intraclass correlation coefficient (ICC). T1 and ADC values were compared between benign and malignant lesions, across different histopathological characteristics (histological grades, estrogen, progesterone and HER2 receptors expression, Ki67, N status). Receiver operating characteristic (ROC) analysis and Pearson correlation coefficient (ρ) were performed. RESULTS: T1 values showed statistically significant differences between benign and malignant groups (P < 0.001), with higher values in the malignant (1817.08 ms ± 126.64) compared to the benign group (1429.31 ms ± 167.66). In addition, T1 values significantly increased in the ER (-) group (P = 0.001). No significant differences were found in T1 values among HER2, Ki67, N status, and histological grades groups. Furthermore, T1 values exhibited a significant correlation (ρ) with ER (P < 0.01) and PR (P = 0.03). The AUC for T1 value in distinguishing benign from malignant lesions was 0.69 (95 % CI: 0.55 - 0.82, P = 0.005), and for evaluating ER status, it was 0.75 (95 % CI: 0.62 - 0.87, P = 0.002). CONCLUSIONS: T1 mapping holds the potential as an imaging biomarker to assist in the discrimination of benign and malignant breast lesions and assessing the ER expression status in breast cancer.

7.
Abdom Radiol (NY) ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926174

ABSTRACT

PURPOSE: To characterize T1 relaxation times of the pancreas, liver, and spleen in children with and without abdominal pathology. METHODS: This retrospective study included pediatric patients (< 18-years-old). T1 mapping was performed with a Modified Look-Locker Inversion Recovery sequence. Patients were grouped based on review of imaging reports and electronic medical records. The Kruskal-Wallis test with Dunn's multiple comparison was used to compare groups. RESULTS: 220 participants were included (mean age: 11.4 ± 4.2 years (1.5 T); 10.9 ± 4.5 years (3 T)). Pancreas T1 (msec) was significantly different between subgroups at 1.5 T (p < 0.0001). Significant pairwise differences included: normal (median: 583; IQR: 561-654) vs. acute pancreatitis (731; 632-945; p = 0.0024), normal vs. chronic pancreatitis (700; 643-863; p = 0.0013), and normal vs. acute + chronic pancreatitis (1020; 897-1099; p < 0.0001). Pancreas T1 was also significantly different between subgroups at 3 T (p < 0.0001). Significant pairwise differences included: normal (779; 753-851) vs. acute pancreatitis (1087; 910-1259; p = 0.0012), and normal vs. acute + chronic pancreatitis (1226; 1025-1367; p < 0.0001). Liver T1 was significantly different between subgroups only at 3 T (p = 0.0011) with pairwise differences between normal (818, 788-819) vs. steatotic (959; 848-997; p = 0.0017) and normal vs. other liver disease (882; 831-904; p = 0.0455). Liver T1 was weakly correlated with liver fat fraction at 1.5 T (r = 0.39; 0.24-0.52; p < 0.0001) and moderately correlated at 3 T (r = 0.64; 0.49-0.76; p < 0.0001). There were no significant differences in splenic T1 relaxation times between subgroups. CONCLUSION: Pancreas T1 relaxation times are higher at 1.5 T and 3 T in children with pancreatitis and liver T1 relaxation times are higher in children with steatotic and non-steatotic chronic liver disease at 3 T.

8.
J Cardiovasc Dev Dis ; 11(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921681

ABSTRACT

BACKGROUND: Extracellular volume fraction (ECV), measured with contrast-enhanced magnetic resonance imaging (CE-MRI), has been utilized to study myocardial fibrosis, but its role in peripheral artery disease (PAD) remains unknown. We hypothesized that T1 mapping and ECV differ between PAD patients and matched controls. METHODS AND RESULTS: A total of 37 individuals (18 PAD patients and 19 matched controls) underwent 3.0T CE-MRI. Skeletal calf muscle T1 mapping was performed before and after gadolinium contrast with a motion-corrected modified look-locker inversion recovery (MOLLI) pulse sequence. T1 values were calculated with a three-parameter Levenberg-Marquardt curve fitting algorithm. ECV and T1 maps were quantified in five calf muscle compartments (anterior [AM], lateral [LM], and deep posterior [DM] muscle groups; soleus [SM] and gastrocnemius [GM] muscles). Averaged peak blood pool T1 values were obtained from the posterior and anterior tibialis and peroneal arteries. T1 values and ECV are heterogeneous across calf muscle compartments. Native peak T1 values of the AM, LM, and DM were significantly higher in PAD patients compared to controls (all p < 0.028). ECVs of the AM and SM were significantly higher in PAD patients compared to controls (AM: 26.4% (21.2, 31.6) vs. 17.3% (10.2, 25.1), p = 0.046; SM: 22.7% (19.5, 27.8) vs. 13.8% (10.2, 19.1), p = 0.020). CONCLUSIONS: Native peak T1 values across all five calf muscle compartments, and ECV fractions of the anterior muscle group and the soleus muscle were significantly elevated in PAD patients compared with matched controls. Non-invasive T1 mapping and ECV quantification may be of interest for the study of PAD.

9.
Article in English | MEDLINE | ID: mdl-38912832

ABSTRACT

AIMS: To evaluate different cardiovascular magnetic resonance (CMR) parameters for the differentiation of light chain amyloidosis (AL) and transthyretin-related amyloidosis (ATTR). METHODS AND RESULTS: In total, 75 patients, 53 with cardiac amyloidosis (20 patients with AL (66±12 years, 14 males [70%]) and 33 patients with ATTR (78±5 years, 28 males [88%])) were retrospectively analyzed regarding CMR parameters such as T1 and T2 mapping, extracellular volume (ECV), and late gadolinium enhancement (LGE) distribution patterns, and myocardial strain, and compared to a control cohort with other causes of left ventricular hypertrophy (LVH; 22 patients (53±16 years, 17 males [85%])). One way-ANOVA and receiver operating characteristic analysis were used for statistical analysis. ECV was the single best parameter to differentiate between cardiac amyloidosis and controls (area under the curve [AUC]: 0.97, 95% confidence intervals [CI]: 0.89-0.99, p<.0001, cutoff: >30%). T2 mapping was the best single parameter to differentiate between AL and ATTR amyloidosis (AL: 63±4 ms, ATTR: 58±2 ms, p<.001, AUC: 0.86, 95% CI: 0.74-0.94, cutoff: >61 ms). Subendocardial LGE was predominantly observed in AL patients (10/20 [50%] vs. 5/33 [15%]; p=.002). Transmural LGE was predominantly observed in ATTR patients (23/33 [70%] vs. 2/20 [10%]; p<.001). The diagnostic performance of T2 mapping to differentiate between AL and ATTR amyloidosis was further increased with the inclusion of LGE patterns (AUC: 0.96, 95% CI: 0.86-0.99]; p=.05). CONCLUSION: ECV differentiates cardiac amyloidosis from other causes of LVH. T2 mapping combined with LGE differentiates AL from ATTR amyloidosis with high accuracy on a patient level.

10.
Magn Reson Med ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872384

ABSTRACT

PURPOSE: To develop and validate a highly efficient motion compensated free-breathing isotropic resolution 3D whole-heart joint T1/T2 mapping sequence with anatomical water/fat imaging at 0.55 T. METHODS: The proposed sequence takes advantage of shorter T1 at 0.55 T to acquire three interleaved water/fat volumes with inversion-recovery preparation, no preparation, and T2 preparation, respectively. Image navigators were used to facilitate nonrigid motion-compensated image reconstruction. T1 and T2 maps were jointly calculated by a dictionary matching method. Validations were performed with simulation, phantom, and in vivo experiments on 10 healthy volunteers and 1 patient. The performance of the proposed sequence was compared with conventional 2D mapping sequences including modified Look-Locker inversion recovery and T2-prepared balanced steady-SSFP sequence. RESULTS: The proposed sequence has a good T1 and T2 encoding sensitivity in simulation, and excellent agreement with spin-echo reference T1 and T2 values was observed in a standardized T1/T2 phantom (R2 = 0.99). In vivo experiments provided good-quality co-registered 3D whole-heart T1 and T2 maps with 2-mm isotropic resolution in a short scan time of about 7 min. For healthy volunteers, left-ventricle T1 mean and SD measured by the proposed sequence were both comparable with those of modified Look-Locker inversion recovery (640 ± 35 vs. 630 ± 25 ms [p = 0.44] and 49.9 ± 9.3 vs. 54.4 ± 20.5 ms [p = 0.42]), whereas left-ventricle T2 mean and SD measured by the proposed sequence were both slightly lower than those of T2-prepared balanced SSFP (53.8 ± 5.5 vs. 58.6 ± 3.3 ms [p < 0.01] and 5.2 ± 0.9 vs. 6.1 ± 0.8 ms [p = 0.03]). Myocardial T1 and T2 in the patient measured by the proposed sequence were in good agreement with conventional 2D sequences and late gadolinium enhancement. CONCLUSION: The proposed sequence simultaneously acquires 3D whole-heart T1 and T2 mapping with anatomical water/fat imaging at 0.55 T in a fast and efficient 7-min scan. Further investigation in patients with cardiovascular disease is now warranted.

11.
Neuroradiology ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880824

ABSTRACT

BACKGROUND AND PURPOSE: Quantitative T1 mapping can be an essential tool for assessing tissue injury in multiple sclerosis (MS). We introduce T1-REQUIRE, a method that converts a single high-resolution anatomical 3D T1-weighted Turbo Field Echo (3DT1TFE) scan into a parametric T1 map that could be used for quantitative assessment of tissue damage. We present the accuracy and feasibility of this method in MS. METHODS: 14 subjects with relapsing-remitting MS and 10 healthy subjects were examined. T1 maps were generated from 3DT1TFE images using T1-REQUIRE, which estimates T1 values using MR signal equations and internal tissue reference T1 values. Estimated T1 of lesions, white, and gray matter regions were compared with reference Inversion-Recovery Fast Field Echo T1 values and analyzed via correlation and Bland-Altman (BA) statistics. RESULTS: 159 T1-weighted (T1W) hypointense MS lesions and 288 gray matter regions were examined. T1 values for MS lesions showed a Pearson's correlation of r = 0.81 (p < 0.000), R2 = 0.65, and Bias = 4.18%. BA statistics showed a mean difference of -53.95 ms and limits of agreement (LOA) of -344.20 and 236.30 ms. Non-lesional normal-appearing white matter had a correlation coefficient of r = 0.82 (p < 0.000), R2 = 0.67, Bias = 8.78%, mean difference of 73.87 ms, and LOA of -55.67 and 203.41 ms. CONCLUSIONS: We demonstrate the feasibility of retroactively derived high-resolution T1 maps from routinely acquired anatomical images, which could be used to quantify tissue pathology in MS. The results of this study will set the stage for testing this method in larger clinical studies for examining MS disease activity and progression.

12.
Magn Reson Med ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923032

ABSTRACT

PURPOSE: To develop a practical method to enable 3D T1 mapping of brain metabolites. THEORY AND METHODS: Due to the high dimensionality of the imaging problem underlying metabolite T1 mapping, measurement of metabolite T1 values has been currently limited to a single voxel or slice. This work achieved 3D metabolite T1 mapping by leveraging a recent ultrafast MRSI technique called SPICE (spectroscopic imaging by exploiting spatiospectral correlation). The Ernst-angle FID MRSI data acquisition used in SPICE was extended to variable flip angles, with variable-density sparse sampling for efficient encoding of metabolite T1 information. In data processing, a novel generalized series model was used to remove water and subcutaneous lipid signals; a low-rank tensor model with prelearned subspaces was used to reconstruct the variable-flip-angle metabolite signals jointly from the noisy data. RESULTS: The proposed method was evaluated using both phantom and healthy subject data. Phantom experimental results demonstrated that high-quality 3D metabolite T1 maps could be obtained and used for correction of T1 saturation effects. In vivo experimental results showed metabolite T1 maps with a large spatial coverage of 240 × 240 × 72 mm3 and good reproducibility coefficients (< 11%) in a 14.5-min scan. The metabolite T1 times obtained ranged from 0.99 to 1.44 s in gray matter and from 1.00 to 1.35 s in white matter. CONCLUSION: We successfully demonstrated the feasibility of 3D metabolite T1 mapping within a clinically acceptable scan time. The proposed method may prove useful for both T1 mapping of brain metabolites and correcting the T1-weighting effects in quantitative metabolic imaging.

13.
Magn Reson Med ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923009

ABSTRACT

PURPOSE: Quantitative T1 mapping has the potential to replace biopsy for noninvasive diagnosis and quantitative staging of chronic liver disease. Conventional T1 mapping methods are confounded by fat and B 1 + $$ {B}_1^{+} $$ inhomogeneities, resulting in unreliable T1 estimations. Furthermore, these methods trade off spatial resolution and volumetric coverage for shorter acquisitions with only a few images obtained within a breath-hold. This work proposes a novel, volumetric (3D), free-breathing T1 mapping method to account for multiple confounding factors in a single acquisition. THEORY AND METHODS: Free-breathing, confounder-corrected T1 mapping was achieved through the combination of non-Cartesian imaging, magnetization preparation, chemical shift encoding, and a variable flip angle acquisition. A subspace-constrained, locally low-rank image reconstruction algorithm was employed for image reconstruction. The accuracy of the proposed method was evaluated through numerical simulations and phantom experiments with a T1/proton density fat fraction phantom at 3.0 T. Further, the feasibility of the proposed method was investigated through contrast-enhanced imaging in healthy volunteers, also at 3.0 T. RESULTS: The method showed excellent agreement with reference measurements in phantoms across a wide range of T1 values (200 to 1000 ms, slope = 0.998 (95% confidence interval (CI) [0.963 to 1.035]), intercept = 27.1 ms (95% CI [0.4 54.6]), r2 = 0.996), and a high level of repeatability. In vivo imaging studies demonstrated moderate agreement (slope = 1.099 (95% CI [1.067 to 1.132]), intercept = -96.3 ms (95% CI [-82.1 to -110.5]), r2 = 0.981) compared to saturation recovery-based T1 maps. CONCLUSION: The proposed method produces whole-liver, confounder-corrected T1 maps through simultaneous estimation of T1, proton density fat fraction, and B 1 + $$ {B}_1^{+} $$ in a single, free-breathing acquisition and has excellent agreement with reference measurements in phantoms.

14.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38730562

ABSTRACT

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Subject(s)
Brain , Crowdsourcing , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Phantoms, Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Brain Mapping/methods , Male , Female , Adult , Algorithms
15.
Curr Probl Cardiol ; 49(7): 102609, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697332

ABSTRACT

BACKGROUND: The cardiotoxic effects of anthracyclines therapy are well recognized, both in the short and long term. Echocardiography allows monitoring of cancer patients treated with this class of drugs by serial assessment of left ventricle ejection fraction (LVEF) as a surrogate of systolic function. However, changes in myocardial function may occur late in the process when cardiac damage is already established. Novel cardiac magnetic resonance (CMR) parametric techniques, like native T1 mapping and extra-cellular volume (ECV), may detect subclinical myocardial damage in these patients, recognizing early signs of cardiotoxicity before development of overt cancer therapy-related cardiac dysfunction (CTRCD) and prompting tailored therapeutic and follow-up strategies to improve outcome. METHODS AND RESULTS: We conducted a systematic review and a meta-analysis to investigate the difference in CMR derived native T1 relaxation time and ECV values, respectively, in anthracyclines-treated cancer patients with preserved EF versus healthy controls. PubMed, Embase, Web of Science and Cochrane Central were searched for relevant studies. A total of 6 studies were retrieved from 1057 publications, of which, four studies with 547 patients were included in the systematic review on T1 mapping and five studies with 481 patients were included in the meta-analysis on ECV. Three out of the four included studies in the systematic review showed higher T1 mapping values in anthracyclines treated patients compared to healthy controls. The meta-analysis demonstrated no statistically significant difference in ECV values between the two groups in the main analysis (Hedges´s g =3.20, 95% CI -0.72-7.12, p =0.11, I2 =99%), while ECV was significantly higher in the anthracyclines-treated group when sensitivity analysis was performed. CONCLUSIONS: Higher T1 mapping and ECV values in patients exposed to anthracyclines could represent early biomarkers of CTRCD, able to detect subclinical myocardial changes present before the development of overt myocardial dysfunction. Our results highlight the need for further studies to investigate the correlation between anthracyclines-based chemotherapy and changes in CMR mapping parameters that may guide future tailored follow-up strategies in this group of patients.


Subject(s)
Anthracyclines , Antibiotics, Antineoplastic , Cardiotoxicity , Stroke Volume , Ventricular Function, Left , Humans , Anthracyclines/adverse effects , Anthracyclines/therapeutic use , Stroke Volume/drug effects , Stroke Volume/physiology , Cardiotoxicity/etiology , Cardiotoxicity/diagnosis , Ventricular Function, Left/drug effects , Ventricular Function, Left/physiology , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/therapeutic use , Neoplasms/drug therapy , Magnetic Resonance Imaging, Cine/methods , Adult
16.
Article in English | MEDLINE | ID: mdl-38759116

ABSTRACT

OBJECTIVES: Measures of right heart size and function are prognostic in systemic sclerosis-associated pulmonary hypertension (SSc-PH), but the importance of myocardial tissue characterisation remains unclear. We aimed to investigate the predictive potential and interaction of cardiovascular magnetic resonance (CMR) myocardial tissue characterisation and right heart size and function in SSc-PH. METHODS: A retrospective, single-centre, observational study of 148 SSc-PH patients confirmed by right heart catheterization who underwent clinically-indicated CMR including native myocardial T1 and T2 mapping from 2016 to 2023 was performed. RESULTS: Sixty-six (45%) patients died during follow-up (median 3.5 years, range 0.1-7.3). Patients who died were older (65 vs 60 years, p= 0.035) with more dilated (RVEDVi and RVESVi, p< 0.001), hypertrophied (RVMi, p= 0.013) and impaired (RVEF, p< 0.001) right ventricles, more dilated right atria (RAi, p= 0.043) and higher native myocardial T1 (p< 0.001).After adjustment for age, RVESVi (p = 0.0023) and native T1 (p = 0.0024) were independent predictors of all-cause mortality. Both RVESVi and native T1 remained independently predictive after adjusting for age and PH subtype (RVESVi p < 0.001, T1 p = 0.0056). Optimal prognostic thresholds for RVESVi and native T1 were ≤38 mL/m2 and ≤1119 ms, respectively (p < 0.001). Patients with RVESVi ≤ 38 mL/m2 and native T1 ≤ 1119 ms had significantly better outcomes than all other combinations (p < 0.001). Furthermore, patients with RVESVi > 38mL/m2 and native T1 ≤ 1119 ms had significantly better survival than patients with RVESVi > 38mL/m2 and native T1 > 1119ms (p = 0.017). CONCLUSION: We identified prognostically relevant CMR metrics and thresholds for patients with SSc-PH. Assessing myocardial tissue characterisation alongside RV function confers added value in SSc-PH and may represent an additional treatment target.

17.
Pediatr Cardiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771376

ABSTRACT

The abnormal hemodynamics in Fontan circulation due to persistently increased systemic venous pressure results in hepatic venous congestion and Fontan-associated liver disease. Combined assessment of cardiac and liver fibrosis and cardiac remodeling using multiparametric MRI in this context have not been fully explored. To evaluate cardiac and liver fibrosis and cardiac remodeling using multiparametric MRI in patients who have undergone Fontan procedures. Thirty-eight patients and 23 controls underwent cardiac and liver MRI examinations in a 3.0-T scanner. Mann-Whitney, Fisher exact test, and Spearman's correlation were applied to evaluate myocardial volumes, function, native cardiac and liver T1 mapping, ECVs and liver stiffness. The mean native cardiac T1 value (p = 0.018), cardiac ECV (p < 0.001), liver native T1 (p < 0.001), liver ECV (p < 0.001), and liver stiffness (p < 0.001) were higher in patients than controls. The indexed end-diastolic volume (EDVi) correlated with the myocardial ECV (r = 0.356; p = 0.033), native liver T1 (r = 0.571; p < 0.001), and with liver stiffness (r = 0.391; p = 0.015). In addition, liver stiffness correlated with liver ECV (r = 0.361; p = 0.031) and native liver T1 (r = 0.458; p = 0.004). An association between cardiac remodeling and cardiac and liver fibrosis were found in this population. The usefulness of MRI to follow cardiac and liver involvement in these patients is critical to improve treatment strategies and to prevent the need for combined liver and heart transplantation.

18.
NMR Biomed ; : e5175, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757789

ABSTRACT

Magnetic resonance imaging (MRI) and cognitive profiles in patients with mild traumatic brain injury (mTBI) are often discordant. Conventional MRI seldom captures the full extent of pathological changes in the normal-appearing white matter (NAWM). The divided subtracted inversion recovery (dSIR) technique may enhance T1 differences in NAWM, making them easily visible. We aimed to implement dSIR on a clinical scanner and tested results in mTBI patients. To produce dSIR images, Inversion Recovery-Turbo Spin Echo sequences were modified using six different inversion times (TI) on a 3-T scanner in healthy participants and patients with mTBI. The multiple TIs determined normal white (TIshort) and gray matter (TIlong) nulling points in healthy subjects, which were used to create dSIR images. In one patient, the protocol was repeated at 3 months to identify changes after rehabilitation. Diffusion tensor imaging (DTI)-derived mean diffusivity (MD) and fractional anisotropy (FA) maps were aligned to dSIR images to ensure that signal was not artefactual. Ten healthy participants (five females; age 24 ± 3 [95% CI: 21, 26] years) were included. TIshort and TIlong were set at 450 and 750 ms, respectively. In both patients (one male, age 17 years; one female, age 14 years), dSIR images revealed areas with increased T1 in the NAWM not visible on conventional MRI. dSIR-based hyperintensities corresponded to elevated MD and reduced FA. Substantial changes were found at follow-up with improvement in DTI-based parameters. dSIR images enhance subtle changes in the NAWM of patients with mTBI by amplifying their intrinsic T1 signal.

19.
J Magn Reson Imaging ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708838

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is associated with increased, and early cardiovascular disease risk. Changes in hemodynamics within the left ventricle (LV) respond to cardiac remodeling. The LV hemodynamics in nondialysis CKD patients are not clearly understood. PURPOSE: To use four-dimensional blood flow MRI (4D flow MRI) to explore changes in LV kinetic energy (KE) and the relationship between LV KE and LV remodeling in CKD patients. STUDY TYPE: Retrospective. POPULATION: 98 predialysis CKD patients (Stage 3: n = 21, stage 4: n = 21, and stage 5: n = 56) and 16 age- and sex-matched healthy controls. FIELD STRENGTH/SEQUENCE: 3.0 T/balanced steady-state free precession (SSFP) cine sequence, 4D flow MRI with a fast field echo sequence, T1 mapping with a modified Look-Locker SSFP sequence, and T2 mapping with a gradient recalled and spin echo sequence. ASSESSMENT: Demographic characteristics (age, sex, height, weight, blood pressure, heart rate, aortic regurgitation, and mitral regurgitation) and laboratory data (eGFR, Creatinine, hemoglobin, ferritin, transferrin saturation, potassium, and carbon dioxide bonding capacity) were extracted from patient records. Myocardial T1, T2, LV ejection fraction, end diastolic volume (EDV), end systolic volume, LV flow components (direct flow, delayed ejection, retained inflow, and residual volume) and KE parameters (peak systolic, systolic, diastolic, peak E-wave, peak A-wave, E/A ratio, and global) were assessed. The KE parameters were normalized to EDV (KEiEDV). Parameters were compared between disease stage in CKD patients, and between CKD patients and healthy controls. STATISTICAL TESTS: Differences in clinical and imaging parameters between groups were compared using one-way ANOVA, Kruskal Walls and Mann-Whitney U tests, chi-square test, and Fisher's exact test. Pearson or Spearman's correlation coefficients and multiple linear regression analysis were used to compare the correlation between LV KE and other clinical and functional parameters. A P-value of <0.05 was considered significant. RESULTS: Compared with healthy controls, peak systolic (24.76 ± 5.40 µJ/mL vs. 31.86 ± 13.18 µJ/mL), systolic (11.62 ± 2.29 µJ/mL vs. 15.27 ± 5.10 µJ/mL), diastolic (7.95 ± 1.92 µJ/mL vs. 13.33 ± 5.15 µJ/mL), peak A-wave (15.95 ± 4.86 µJ/mL vs. 31.98 ± 14.51 µJ/mL), and global KEiEDV (9.40 ± 1.64 µJ/mL vs. 14.02 ± 4.14 µJ/mL) were significantly increased and the KEiEDV E/A ratio (1.16 ± 0.67 vs. 0.69 ± 0.53) was significantly decreased in CKD patients. As the CKD stage progressed, both diastolic KEiEDV (10.45 ± 4.30 µJ/mL vs. 12.28 ± 4.85 µJ/mL vs. 14.80 ± 5.06 µJ/mL) and peak E-wave KEiEDV (15.30 ± 7.06 µJ/mL vs. 14.69 ± 8.20 µJ/mL vs. 19.33 ± 8.29 µJ/mL) increased significantly. In multiple regression analysis, global KEiEDV (ß* = 0.505; ß* = 0.328), and proportion of direct flow (ß* = -0.376; ß* = -0.410) demonstrated an independent association with T1 and T2 times. DATA CONCLUSION: 4D flow MRI-derived LV KE parameters show altered LV adaptations in CKD patients and correlate independently with T1 and T2 mapping that may represent myocardial fibrosis and edema. TECHNICAL EFFICACY: Stage 3.

20.
Pediatr Pulmonol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695557

ABSTRACT

RATIONALE: Lung T1 MRI is a potential method to assess cystic fibrosis (CF) lung disease that is safe, quick, and widely available, but there are no data in children with mild CF lung disease. OBJECTIVE: Assess the ability of lung T1 MRI to detect abnormalities in children with mild CF lung disease. METHODS: We performed T1 MRI, multiple breath washout (MBW), chest computed tomography (CT), and spirometry in a cohort of 45 children with mild CF lung disease (6-11 years of age). MAIN RESULTS: Despite mean normal ppFEV1 values, the majority of children with CF in this study exhibited mild lung disease evident in lung clearance index (LCI) measured by MBW, chest CT Brody scores, and percent normal lung perfusion (%NLP) measured by T1 MRI. The %NLP correlated with chest CT Brody scores, as did LCI, but %NLP and LCI did not correlate with each other. Analysis of the Brody subscores showed that %NLP and LCI largely correlated with different Brody subscores. CONCLUSIONS: T1 MRI can detect mild CF lung disease in children and correlates with chest CT findings. The %NLP from T1 MRI and LCI correlate with different chest CT Brody subscores, suggesting they provide complementary information about CF lung disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...