Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.468
Filter
1.
Handb Clin Neurol ; 202: 55-74, 2024.
Article in English | MEDLINE | ID: mdl-39111918

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) is a multistep procedure aimed at eradicating the immune system and replacing it with a new one reconstituted from hematopoietic stem cells which in autologous HSCT (AHSCT) have previously been harvested from the same individual. Over the last two decades, AHSCT has been developed as a treatment option for people affected by aggressive multiple sclerosis (MS), and it exerts a long-standing effect on new inflammation-driven disease activity. The rationale for the use of AHSCT in MS will be discussed, starting from the first observations on experimental models. The mechanisms and kinetics of repopulation (i.e., quantitative recovery) and reconstitution (i.e., qualitative changes) of the immune cell populations will be explored, focusing on immune reconstitution of the T and B cells compartments and briefly covering changes in the innate immune system. Finally, potential immunologic markers of response to treatment will be reviewed. Insights into the supposed mechanism(s) of action of AHSCT will be provided, discussing the leading hypothesis of the "rebuilding" of a newly tolerant immune system, and examining the apparent paradox of the long-standing control of disease activity despite a relatively short-term immunosuppressive effect of the procedure.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immune Reconstitution , Multiple Sclerosis , Transplantation, Autologous , Humans , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Autologous/methods , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Animals
2.
Int J Biol Macromol ; : 134203, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098669

ABSTRACT

This study aimed to investigate the potential alleviating effect of Epimedium polysaccharide (EP) on intestinal inflammation aggravated by Porphyromonas gingivalis (Pg). P. gingivalis, an oral pathogen, may play a role in intestinal inflammation, highlighting the necessity to explore substances capable of inhibiting its pathogenicity. Initially, in vitro screening experiments utilizing co-culturing and quantitative polymerase chain reaction revealed that EP significantly inhibited the growth of P. gingivalis and the levels of virulence genes, including Kgp and RgpA. Subsequent mouse experiments demonstrated that EP notably ameliorated Pg-aggravated weight loss, disease activity index, histopathological lesions, and disruption of intestinal barrier integrity, evidenced by a reduction in tight junction protein levels. Flow cytometry analysis further illustrated that EP attenuated Pg-induced Th17 differentiation and Th17-related cytokines, such as IL-17 and IL-6. Additionally, 16S rRNA amplicon sequencing analysis elucidated that EP significantly mitigated Pg-induced gut microbiota dysbiosis, enriching potentially beneficial microbes, including Akkermansia and Bifidobacterium. The metabolomic analysis provided further insight, indicating that EP intervention altered the accumulation of relevant intestinal metabolites and exhibited correlations with disease indicators. In conclusion, our research suggested that EP holds promise as a prospective therapeutic agent for alleviating P. gingivalis-aggravated intestinal inflammation.

3.
J Adv Res ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39107200

ABSTRACT

INTRODUCTION: Autoimmune uveitis (AU) is a prevalent ocular autoimmune disease leading to significant visual impairment. However, underlying pathogenesis of AU required to develop more efficient therapy remain unclear. METHODS: We isolated peripheral blood mononuclear cells (PBMCs) from AU patients and performed single-cell RNA sequencing (scRNA-seq). Besides, experimental autoimmune uveitis (EAU) model was established and treated with histone deacetylase inhibitor (HDACi) Belinostat or vehicle. We extracted immune cells from Blank, EAU, and HDACi-treated EAU mice and used scRNA-seq, flow cytometry, siRNA, specific inhibitors, and adoptive transfer experiments to explore the role of HDACs and its downstream potential molecular mechanisms in the immune response of EAU and AU. RESULTS: We found highly expressed histone deacetylases (HDACs) family in AU patients and identified it as a key factor related to CD4+ effector T cell differentiation in the pathogenesis of AU. Our further studies showed that targeted inhibition of HDACs effectively alleviated EAU, restored its Th17/Treg balance, and reduced inflammatory gene expression, especially in CD4+ T cells. Post-HDACs inhibition, Treg proportions increased with enhanced immunomodulatory effects. Importantly, HDACs exhibited a positive promoting role on Th17 cells. Based on scRNA-seq screening and application of knock-down siRNAs and specific inhibitors in vitro and vivo, we identified CDK6 as a key downstream molecule regulated by HDAC1/3/6 through acetyl-histone H3/p53/p21 axis, which is involved in Th17 pathogenicity and EAU development. Additionally, HDACs-regulated CDK6 formed a positive loop with ID2, inducing PIM1 upregulation, promoting Th17 cell differentiation and pathogenicity, and correlates with AU progression. CONCLUSION: Based on the screening of clinical samples and downstream molecular functional validation experiments, we revealed a driving role for HDACs and the HDACs-regulated CDK6/ID2 axis in Th17 cell differentiation and pathogenicity in AU, proposing a promising therapeutic strategy.

4.
FASEB J ; 38(15): e23851, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39108204

ABSTRACT

Targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) with specific antibody offers long-term benefits for cancer immunotherapy but can cause severe adverse effects in the heart. This study aimed to investigate the role of anti-CTLA-4 antibody in pressure overload-induced cardiac remodeling and dysfunction. Transverse aortic constriction (TAC) was used to induce cardiac hypertrophy and heart failure in mice. Two weeks after the TAC treatment, mice received anti-CTLA-4 antibody injection twice a week at a dose of 10 mg/kg body weight. The administration of anti-CTLA-4 antibody exacerbated TAC-induced decline in cardiac function, intensifying myocardial hypertrophy and fibrosis. Further investigation revealed that anti-CTLA-4 antibody significantly elevated systemic inflammatory factors levels and facilitated the differentiation of T helper 17 (Th17) cells in the peripheral blood of TAC-treated mice. Importantly, anti-CTLA-4 mediated differentiation of Th17 cells and hypertrophic phenotype in TAC mice were dramatically alleviated by the inhibition of interleukin-17A (IL-17A) by an anti-IL-17A antibody. Furthermore, the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100, also reversed anti-CTLA-4-mediated cardiotoxicity in TAC mice. Overall, these results suggest that the administration of anti-CTLA-4 antibody exacerbates pressure overload-induced heart failure by activating and promoting the differentiation of Th17 cells. Targeting the CXCR4/Th17/IL-17A axis could be a potential therapeutic strategy for mitigating immune checkpoint inhibitors-induced cardiotoxicity.


Subject(s)
CTLA-4 Antigen , Heart Failure , Mice, Inbred C57BL , Th17 Cells , Animals , Th17 Cells/immunology , Th17 Cells/metabolism , Mice , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/antagonists & inhibitors , Heart Failure/etiology , Heart Failure/metabolism , Male , Interleukin-17/metabolism , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Cell Differentiation , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/etiology
5.
Int Immunopharmacol ; 138: 112597, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38955025

ABSTRACT

BACKGROUND: Guillain-Barré syndrome (GBS) is an auto-inflammatory peripheral nerve disease. Dendritic cell-mediated T cell polarization is of pivotal importance in demyelinating lesions of peripheral nerves and nerve roots. However, the regulatory function of VX-509 (Decernotinib)-modified tolerogenic dendritic cells (VX-509-tolDCs) during immune remodeling following GBS remains unclear. Here, we used experimental autoimmune neuritis (EAN) as a model to investigate these aspects of GBS. METHODS: DCs were treated with varying concentrations of VX-509 (0.25, 1, and 4 µM) or served as a control using 10-8 M 1,25-(OH)2D3. Flow cytometry was employed to assess the apoptosis, phenotype, and capacity to induce T cell responses of the treated DCs. In the in vivo experiments, EAN mice received administration of VX-509-tolDCs or 1,25-(OH)2D3-tolDCs via the tail vein at a dose of 1x106 cells/mouse on days 5, 9, 13, and 17. RESULTS: VX-509 inhibited the maturation of DCs and promoted the development of tolDCs. The function of antigen-specific CD4 + T cells ex vivo was influenced by VX-509-tolDCs. Furthermore, the adoptive transfer of VX-509-tolDCs effectively alleviated inflammatory demyelinating lesions in EAN by promoting Th17/Treg (T helper 17 and regulatory T cells) rebalance. CONCLUSION: The adoptive transfer of VX-509-tolDCs alleviated inflammatory demyelinating lesions in a mouse model of GBS, known as the EAN mouse, by partially restoring the balance between Treg and Th17 cells.


Subject(s)
Dendritic Cells , Mice, Inbred C57BL , Neuritis, Autoimmune, Experimental , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Dendritic Cells/immunology , Dendritic Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Neuritis, Autoimmune, Experimental/immunology , Neuritis, Autoimmune, Experimental/drug therapy , Mice , Immune Tolerance/drug effects , Cells, Cultured , Female , Disease Models, Animal , Male , Humans
6.
Allergy ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021347

ABSTRACT

BACKGROUND: Galectin-9 (Gal-9) has been implicated in allergic and autoimmune diseases, but its role and relevance in chronic spontaneous urticaria (CSU) are unclear. OBJECTIVES: To characterize the role and relevance of Gal-9 in the pathogenesis of CSU. METHODS: We assessed 60 CSU patients for their expression of Gal-9 on circulating eosinophils and basophils as well as T cell expression of the Gal-9 receptor TIM-3, compared them with 26 healthy controls (HCs), and explored possible links with disease features including disease activity (urticaria activity score, UAS), total IgE, basophil activation test (BAT), and response to omalizumab treatment. We also investigated potential drivers of Gal-9 expression by eosinophils and basophils. RESULTS: Our CSU patients had markedly increased rates of circulating Gal-9+ eosinophils and basophils and high numbers of lesional Gal-9+ cells. High rates of blood Gal-9+ eosinophils/basophils were linked to high disease activity, IgE levels, and BAT negativity. Serum levels of TNF-α were positively correlated with circulating Gal-9+ eosinophils/basophils, and TNF-α markedly upregulated Gal-9 on eosinophils. CSU patients who responded to omalizumab treatment had more Gal-9+ eosinophils/basophils than non-responders, and omalizumab reduced blood levels of Gal-9+ eosinophils/basophils in responders. Gal-9+ eosinophils/basophils were negatively correlated with TIM-3+TH17 cells. CONCLUSION: Our findings demonstrate a previously unrecognized involvement of the Gal-9/TIM-3 pathway in the pathogenesis CSU and call for studies that explore its relevance.

7.
Cell Metab ; 36(8): 1726-1744.e10, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38986617

ABSTRACT

The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.


Subject(s)
Glutathione , Interleukin-22 , Interleukins , Mitochondria , Th17 Cells , Animals , Interleukins/metabolism , Mitochondria/metabolism , Glutathione/metabolism , Th17 Cells/metabolism , Th17 Cells/immunology , Mice , Signal Transduction , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Citrobacter rodentium , Intestines/pathology , Intestines/immunology , Inflammation/metabolism , Inflammation/pathology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/pathology , Mice, Knockout , TOR Serine-Threonine Kinases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
8.
Front Transplant ; 3: 1336563, 2024.
Article in English | MEDLINE | ID: mdl-38993777

ABSTRACT

Introduction: Sensitization to donor human leukocyte antigen (HLA) molecules prior to transplantation is a significant risk factor for delayed access to transplantation and to long-term outcomes. Memory T cells and their cytokines play a pivotal role in shaping immune responses, thereby increasing the risk of allograft rejection among highly sensitized patients. This study aims to elucidate the precise contribution of different CD4+ memory T cell subsets to alloreactivity in highly sensitized (HS) kidney transplant recipients. Methods and results: Stimulation of peripheral blood mononuclear cells (PBMC) with various polyclonal stimulating agents to assess non-specific immune responses revealed that HS patients exhibit elevated immune reactivity even before kidney transplantation, compared to non-sensitized (NS) patients. HS patients' PBMC displayed higher frequencies of CD4+ T cells expressing IFNγ, IL4, IL6, IL17A, and TNFα and secreted relatively higher levels of IL17A and IL21 upon stimulation with PMA/ionomycin. Additionally, PBMC from HS patients stimulated with T cell stimulating agent phytohemagglutinin (PHA) exhibited elevated expression levels of IFNγ, IL4 and, IL21. On the other hand, stimulation with a combination of resiquimod (R848) and IL2 for the activation of memory B cells demonstrated higher expression of IL17A, TNFα and IL21, as determined by quantitative real-time PCR. A mixed leukocyte reaction (MLR) assay, employing third-party donor antigen presenting cells (APCs), was implemented to evaluate the direct alloreactive response. HS patients demonstrated notably higher frequencies of CD4+ T cells expressing IL4, IL6 and IL17A. Interestingly, APCs expressing recall HLA antigens triggered a stronger Th17 response compared to APCs lacking recall HLA antigens in sensitized patients. Furthermore, donor APCs induced higher activation of effector memory T cells in HS patients as compared to NS patients. Conclusion: These results provide an assessment of pretransplant alloreactive T cell subsets in highly sensitized patients and emphasize the significance of Th17 cells in alloimmune responses. These findings hold promise for the development of treatment strategies tailored to sensitized kidney transplant recipients, with potential clinical implications.

9.
Eur J Immunol ; : e2451212, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996350

ABSTRACT

The PD-1-PD-L1 immune checkpoint helps to maintain self-tolerance and prevent the development of autoimmune diseases. Immune checkpoint inhibitors are successful immunotherapeutics for several cancers, but responding patients can develop immune-mediated adverse events. It is well established that PD-1 regulates CD4 and CD8 T-cell responses, but its role in controlling the activation of pathogenic γδ T cells is less clear. Here we examined the role of PD-1 in regulating γδ T cells in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. We found that PD-1 was highly expressed on CD27- Vγ4 γδ T cells in the lymph node (LN) and CNS of mice with EAE. Treatment of mice with anti-PD-1 significantly augmented IL-17A-producing CD27- Vγ4 γδ T cells in the LN and CNS and enhanced the severity of EAE. The exacerbating effect of anti-PD-1 on EAE was lost in Tcrd-/- mice. Conversely, ligation of PD-1 suppressed Il17a and Rorc gene expression and IL-17A production by purified Vγ4 γδ T cells stimulated via the TCR, but not with IL-1ß and IL-23. Our study demonstrates that PD-1 regulates TCR-activated CD27- Vγ4 γδ T cells, but that cytokine-activated IL-17A producing γδ T cells escape the regulatory effects of the PD-1-PD-L1 pathway.

10.
Environ Sci Pollut Res Int ; 31(35): 48758-48772, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039370

ABSTRACT

Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely found as cereal contaminants, and their co-consumption is associated with liver cancer. Both are immunotoxic, but their interactions have been little studied. This work was aimed to evaluate in mouse spleen mononuclear cells (SMC) the effects of the exposure to AFB1 (5-50 µM), FB1 (25-250 µM), and AFB1-FB1 mixtures (MIX) on the in vitro differentiation of regulatory T cells (Treg and Tr1-like) and Th17 cells, as well as elucidate the contribution of aryl hydrocarbon receptor (Ahr) in such effects. AFB1 and mainly MIX induced cytotoxicity in activated CD4 cells via Ahr signaling. AFB1 (5 µM) increased the Treg cell differentiation, but its combination with FB1 (25 µM) also reduced Th17 cell expansion by Ahr-dependent mechanisms. Therefore, this mixture could enhance the Treg/Th17 cell ratio and favor immunosuppression and escape from tumor immunosurveillance to a greater extent than individual mycotoxins. Whereas, AFB1-FB1 mixtures at medium-high doses inhibited the Tr1-like cell expansion induced by the individual mycotoxins and affected Treg and Th17 cell differentiation in Ahr-independent and dependent manners, respectively, which could alter anti-inflammatory and Th17 immune responses. Moreover, individual FB1 altered regulatory T and Th17 cell development independently of Ahr. In conclusion, AFB1 and FB1 interact by modifying Ahr signaling, which is involved in the immunotoxicity as well as in the alteration of the differentiation of Treg, Tr1-like, and Th17 cells induced by AFB1-FB1 mixtures. Therefore, Ahr is implicated in the regulation of the anti- and pro-inflammatory responses caused by the combination of AFB1 and FB1.


Subject(s)
Aflatoxin B1 , Cell Differentiation , Fumonisins , Receptors, Aryl Hydrocarbon , T-Lymphocytes, Regulatory , Th17 Cells , Receptors, Aryl Hydrocarbon/metabolism , Aflatoxin B1/toxicity , Animals , Th17 Cells/drug effects , T-Lymphocytes, Regulatory/drug effects , Fumonisins/toxicity , Mice , Cell Differentiation/drug effects
11.
Gut Microbes ; 16(1): 2380064, 2024.
Article in English | MEDLINE | ID: mdl-39069911

ABSTRACT

Mucosal enrichment of the Adherent-Invasive E. coli (AIEC) pathotype and the expansion of pathogenic IFNγ-producing Th17 (pTh17) cells have been linked to Crohn's Disease (CD) pathogenesis. However, the molecular pathways underlying the AIEC-dependent pTh17 cell transdifferentiation in CD patients remain elusive. To this aim, we created and functionally screened a transposon AIEC mutant library of 10.058 mutants to identify the virulence determinants directly implicated in triggering IL-23 production and pTh17 cell generation. pTh17 cell transdifferentiation was assessed in functional assays by co-culturing AIEC-infected human dendritic cells (DCs) with autologous conventional Th17 (cTh17) cells isolated from blood of Healthy Donors (HD) or CD patients. AIEC triggered IL-23 hypersecretion and transdifferentiation of cTh17 into pTh17 cells selectively through the interaction with CD-derived DCs. Moreover, the chronic release of IL-23 by AIEC-colonized DCs required a continuous IL-23 neutralization to significantly reduce the AIEC-dependent pTh17 cell differentiation. The multi-step screenings of the AIEC mutant's library revealed that deletion of ybaT or rfaP efficiently hinder the IL-23 hypersecretion and hampered the AIEC-dependent skewing of protective cTh17 into pathogenic IFNγ-producing pTh17 cells. Overall, our findings indicate that ybaT (inner membrane transport protein) and rfaP (LPS-core heptose kinase) represent novel and attractive candidate targets to prevent chronic intestinal inflammation in CD.


Subject(s)
Cell Transdifferentiation , Crohn Disease , Dendritic Cells , Escherichia coli , Interleukin-23 , Th17 Cells , Th17 Cells/immunology , Crohn Disease/immunology , Crohn Disease/genetics , Humans , Cell Transdifferentiation/genetics , Dendritic Cells/immunology , Interleukin-23/genetics , Interleukin-23/metabolism , Interleukin-23/immunology , Escherichia coli/genetics , Escherichia coli/immunology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Interferon-gamma/metabolism , Interferon-gamma/genetics , Interferon-gamma/immunology , Virulence Factors/genetics , Virulence Factors/metabolism
12.
Article in English | MEDLINE | ID: mdl-39012496

ABSTRACT

The interleukin-23/Th17 axis is a promising modifiable target for depression. However, its association with depression has not been systematically evaluated. We systematically searched four databases (EMBASE, Web of Science, Pubmed and PsycINFO) for studies comparing patients with major depression and healthy controls for plasma/serum levels of Th17 cells and their canonical cytokines (interleukin-17A [IL-17A], IL-22, granulocyte macrophage colony stimulating factor [GM-CSF]). We also compared counts of Th1, Th2 and Th9 cells between depressed/non-depressed patients and their respective canonical cytokines. We performed random-effects meta-analysis of the standardised mean difference (SMD) in immune measures between groups. Risk of bias was assessed using the Newcastle-Ottawa scale. Of 3154 studies screened, 36 studies were included in meta-analysis. Patients with depression had elevated IL-17A compared to controls (SMD = 0.80 [95% CI 0.03 to 1.58], p = 0.042), an association moderated by antidepressant use (Z = 2.12, p = 0.034). Patients with depression had elevated GM-CSF (SMD = 0.54 [95% CI 0.16 to 0.91], p = 0.0047), and a trend towards higher Th17 counts (SMD = 0.44 [- 0.01 to 0.88], p = 0.052). Whilst the Th2-associated cytokine IL-5 was elevated in depression (SMD = 0.36 [95% CI 0.05 to 0.66], p = 0.02), Th2 cell counts (p = 0.97), Th1 cell counts (p = 0.17) and interferon-γ (p = 0.22) were not. Data for Th9 cells, IL-9 and IL-22 were insufficient for meta-analysis. Respectively, 22, 25 and 5 studies were good, fair and poor in quality. Patients with major depression show peripheral over-activation of the IL-23/Th17 axis. Future interventional studies should test whether this is a modifiable target for depression.

13.
J Leukoc Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952265

ABSTRACT

Aryl hydrocarbon receptor (AhR) is a key transcription factor that modulates the differentiation of T helper 17 (Th17) cells. How AhR is regulated at the post-translational level in Th17 cells remains largely unclear. Here we identify USP21 as a newly defined deubiquitinase of AhR. We demonstrate that USP21 interacts with and stabilizes AhR by removing the K48-linked polyubiquitin chains from AhR. Interestingly, USP21 inhibits the transcriptional activity of AhR in a deubiquitinating-dependent manner. USP21 deubiquitinates AhR at the K432 residue, and the maintenance of ubiquitination on this site is required for the intact transcriptional activity of AhR. Moreover, the deficiency of USP21 promotes the differentiation of Th17 cells both in vitro and in vivo. Consistently, adoptive transfer of USP21 deficient naïve CD4+ T cells elicits more severe colitis in Rag1-/- recipients. Therefore, our study reveals a novel mechanism in which USP21 deubiquitinates AhR and negatively regulates the differentiation of Th17 cells.

14.
Int Immunopharmacol ; 138: 112403, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38936056

ABSTRACT

Interstitial lung disease (ILD) is a common and fatal manifestation of antisynthetase syndrome (ASS). The aim of this study was to provide new insight into investigate peripheral blood lymphocytes, CD4+ T cells, cytokine levels and their relation to the clinical profile of untreated patients with ASS-ILD. The retrospective study population included thirty patients diagnosed with ASS-ILD and 30 healthy controls (HCs). Baseline clinical and laboratory data were collected for all subjects, including peripheral blood lymphocyte, CD4+ T cell subsets measured by flow cytometry, and serum cytokine levels measured by multiple microsphere flow immunofluorescence. Their correlations with clinical and laboratory findings were analyzed by Pearson's or Spearman's correlation analysis. In addition, the Benjamini-Hochberg method was used for multiple correction to adjust the p-values. Patients with ASS-ILD had lower CD8+ T cells, higher proportion of Th17 cells and Th17/Treg ratio than HCs. Serum cytokine levels (IL-1ß, IL-6, IL-12, IL-17, IL-8, IL-2, IL-4, IL-10, TNF-α and IFN-γ) were higher in patients with ASS-ILD than HCs. Moreover, Th17/Treg ratio was negatively correlated with diffusing capacity of carbon monoxide (DLCO)%. Our study demonstrated abnormalities of immune disturbances in patients with ASS-ILD, characterized by decreased CD8+ T cells and an increased Th17/Treg ratio, due to an increase in the Th17 cells. These abnormalities may be the immunological mechanism underlying the development of ILD in ASS.


Subject(s)
Cytokines , Lung Diseases, Interstitial , Myositis , T-Lymphocytes, Regulatory , Th17 Cells , Humans , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/blood , Male , Female , Th17 Cells/immunology , Middle Aged , Cytokines/blood , Adult , T-Lymphocytes, Regulatory/immunology , Myositis/immunology , Myositis/blood , Retrospective Studies , China , Aged , East Asian People
15.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891893

ABSTRACT

Skin macrophages are critical to maintain and restore skin homeostasis. They serve as major producers of cytokines and chemokines in the skin, participating in diverse biological processes such as wound healing and psoriasis. The heterogeneity and functional diversity of macrophage subpopulations endow them with multifaceted roles in psoriasis development. A distinct subpopulation of skin macrophages, characterized by high expression of CD169, has been reported to exist in both mouse and human skin. However, its role in psoriasis remains unknown. Here, we report that CD169+ macrophages exhibit increased abundance in imiquimod (IMQ) induced psoriasis-like skin lesions. Specific depletion of CD169+ macrophages in CD169-ditheria toxin receptor (CD169-DTR) mice inhibits IMQ-induced psoriasis, resulting in milder symptoms, diminished proinflammatory cytokine levels and reduced proportion of Th17 cells within the skin lesions. Furthermore, transcriptomic analysis uncovers enhanced activity in CD169+ macrophages when compared with CD169- macrophages, characterized by upregulated genes that are associated with cell activation and cell metabolism. Mechanistically, CD169+ macrophages isolated from IMQ-induced skin lesions produce more proinflammatory cytokines and exhibit enhanced ability to promote Th17 cell differentiation in vitro. Collectively, our findings highlight the crucial involvement of CD169+ macrophages in psoriasis development and offer novel insights into the heterogeneity of skin macrophages in the context of psoriasis.


Subject(s)
Imiquimod , Macrophages , Psoriasis , Sialic Acid Binding Ig-like Lectin 1 , Skin , Animals , Psoriasis/immunology , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/chemically induced , Psoriasis/genetics , Macrophages/metabolism , Macrophages/immunology , Mice , Skin/metabolism , Skin/pathology , Skin/immunology , Sialic Acid Binding Ig-like Lectin 1/metabolism , Cytokines/metabolism , Disease Models, Animal , Th17 Cells/immunology , Th17 Cells/metabolism , Cell Differentiation , Mice, Inbred C57BL
16.
Hypertension ; 81(8): 1822-1836, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853755

ABSTRACT

BACKGROUND: Hypoxia-induced pulmonary hypertension (HPH) is a T helper 17 cell response-driven disease, and PD-1 (programmed cell death 1)/PD-L1 (programmed cell death-ligand 1) inhibitor-associated pulmonary hypertension has been reported recently. This study is designed to explore whether the PD-1/PD-L1 pathway participates in HPH via regulating endothelial dysfunction and T helper 17 cell response. METHODS: Lung tissue samples were obtained from eligible patients. Western blotting, immunohistochemistry, and immunofluorescence techniques were used to assess protein expression, while immunoprecipitation was utilized to detect ubiquitination. HPH models were established in C57BL/6 WT (wild-type) and PD-1-/- mice, followed by treatment with PD-L1 recombinant protein. Adeno-associated virus vector delivery was used to upregulate PD-L1 in the endothelial cells. Endothelial cell function was assessed through assays for cell angiogenesis and adhesion. RESULTS: Expression of the PD-1/PD-L1 pathway was downregulated in patients with HPH and mouse models, with a notable decrease in PD-L1 expression in endothelial cells compared with the normoxia group. In comparison to WT mice, PD-1-/- mice exhibited a more severe HPH phenotype following exposure to hypoxia, However, administration of PD-L1 recombinant protein and overexpression of PD-L1 in lung endothelial cells mitigated HPH. In vitro, blockade of PD-L1 with a neutralizing antibody promoted endothelial cell angiogenesis, adhesion, and pyroptosis. Mechanistically, hypoxia downregulated PD-L1 protein expression through ubiquitination. Additionally, both in vivo and in vitro, PD-L1 inhibited T helper 17 cell response through the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in HPH. CONCLUSIONS: PD-1/PD-L1 plays a role in ameliorating HPH development by inhibiting T helper 17 cell response through the PI3K/AKT/mTOR pathway and improving endothelial dysfunction, suggesting a novel therapeutic indication for PD-1/PD-L1-based immunomodulatory therapies in the treatment of HPH.


Subject(s)
B7-H1 Antigen , Hypoxia , Programmed Cell Death 1 Receptor , Vascular Remodeling , Animals , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Humans , Hypoxia/metabolism , Vascular Remodeling/physiology , Male , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Mice, Inbred C57BL , Disease Models, Animal , Endothelial Cells/metabolism , Signal Transduction/physiology , Mice, Knockout , Female , Lung/metabolism , Lung/pathology
17.
Cell Rep Med ; 5(7): 101620, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38901430

ABSTRACT

Primary sclerosing cholangitis (PSC) is an immune-mediated liver disease of unknown pathogenesis, with a high risk to develop cirrhosis and malignancies. Functional dysregulation of T cells and association with genetic polymorphisms in T cell-related genes were previously reported for PSC. Here, we genotyped a representative PSC cohort for several disease-associated risk loci and identified rs56258221 (BACH2/MIR4464) to correlate with not only the peripheral blood T cell immunophenotype but also the functional capacities of naive CD4+ T (CD4+ TN) cells in people with PSC. Mechanistically, rs56258221 leads to an increased expression of miR4464, in turn causing attenuated translation of BACH2, a major gatekeeper of T cell quiescence. Thereby, the fate of CD4+ TN is skewed toward polarization into pro-inflammatory subsets. Clinically, people with PSC carrying rs56258221 show signs of accelerated disease progression. The data presented here highlight the importance of assigning functional outcomes to disease-associated genetic polymorphisms as potential drivers of diseases.


Subject(s)
Basic-Leucine Zipper Transcription Factors , CD4-Positive T-Lymphocytes , Cholangitis, Sclerosing , MicroRNAs , Polymorphism, Single Nucleotide , Humans , Cholangitis, Sclerosing/genetics , Cholangitis, Sclerosing/pathology , Cholangitis, Sclerosing/immunology , MicroRNAs/genetics , MicroRNAs/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Male , Polymorphism, Single Nucleotide/genetics , Female , Genetic Predisposition to Disease , Adult , Middle Aged
18.
Mar Life Sci Technol ; 6(2): 252-265, 2024 May.
Article in English | MEDLINE | ID: mdl-38827125

ABSTRACT

Th17 is a lymphocyte T helper (Th) subpopulation relevant in the control and regulation of the immune response characterized by the production of interleukin (IL)-17. This crucial cytokine family acts through their binding to the IL-17 receptors (IL-17R), having up to six members. Although the biology of fish Th17 is well-recognized, the molecular and functional characterization of IL-17 and IL-17R has been limited. Thus, our aim was to identify and characterize the IL-17R repertory and regulation in the two main Mediterranean cultured fish species, the gilthead seabream (Sparus aurata) and the European sea bass (Dicentrarchus labrax). Our in silico results showed the clear identification of six members in each fish species, from IL-17RA to IL-17RE-like, with well-conserved gene structure and protein domains with their human orthologues. All of them showed wide and constitutive transcription in naïve tissues but with highest levels in mucosal tissues, namely skin, gill or intestine. In leucocytes, T mitogens showed the strongest up-regulation in most of the il17 receptors though il17ra resulted in inhibition by most stimulants. Interestingly, in vivo nodavirus infection resulted in alterations on the transcription of il17 receptors. While nodavirus infection led to some increments in the il17ra, il17rb, il17rc and il17rd transcripts in the susceptible European sea bass, many down-regulations were observed in the resistant gilthead seabream. Our data identify the presence and conservation of six coding IL-17R in gilthead seabream and European sea bass as well as their differential regulation in vitro and upon nodavirus infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00225-1.

19.
Immunology ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829009

ABSTRACT

Overexpression of T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells has been observed in smokers. However, whether and how galectin-9 (Gal-9)/TIM-3 signal between T-regulatory cells (Tregs) and type 17 helper (Th17) cells contributes to tobacco smoke-induced airway inflammation remains unclear. Here, we aimed to explore the role of the Gal-9/TIM-3 signal between Tregs and Th17 cells during chronic tobacco smoke exposure. Tregs phenotype and the expression of TIM-3 on CD4+ T cells were detected in a mouse model of experimental emphysema. The role of TIM-3 in CD4+ T cells was explored in a HAVCR2-/- mouse model and in mice that received recombinant anti-TIM3. The crosstalk between Gal-9 and Tim-3 was evaluated by coculture Tregs with effector CD4+ T cells. We also invested the expression of Gal-9 in Tregs in patients with COPD. Our study revealed that chronic tobacco smoke exposure significantly reduces the frequency of Tregs in the lungs of mice and remarkably shapes the heterogeneity of Tregs by downregulating the expression of Gal-9. We observed a pro-inflammatory but restrained phenotypic transition of CD4+ T cells after tobacco smoke exposure, which was maintained by TIM-3. The restrained phenotype of CD4+ T cells was perturbed when TIM-3 was deleted or neutralised. Tregs from the lungs of mice with emphysema displayed a blunt ability to inhibit the differentiation and proliferation of Th17 cells. The inhibitory function of Tregs was partially restored by using recombinant Gal-9. The interaction between Gal-9 and TIM-3 inhibits the differentiation of Th17 cells and promotes apoptosis of CD4+ T cells, possibly by interfering with the expression of retinoic acid receptor-related orphan receptor gamma t. The expression of Gal-9 in Tregs was reduced in patients with COPD, which was associated with Th17 response and lung function. These findings present a new paradigm that impairment of Gal-9/Tim-3 crosstalk between Tregs and Th17 cells during chronic tobacco smoke exposure promotes tobacco smoke-induced airway/lung inflammation.

20.
Br J Pharmacol ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38881036

ABSTRACT

BACKGROUND AND PURPOSE: Ulcerative colitis (UC) is a refractory inflammatory disease associated with immune dysregulation. Elevated levels of heat shock protein (HSP) 90 in the ß but not α subtype were positively associated with disease status in UC patients. This study validated the possibility that pharmacological inhibition or reduction of HSP90ß would alleviate colitis, induced by dextran sulfate sodium, in mice and elucidated its mechanisms. EXPERIMENTAL APPROACH: Histopathological and biochemical analysis assessed disease severity, and bioinformatics and correlation analysis explained the association between the many immune cells and HSP90ß. Flow cytometry was used to analyse the homeostasis and transdifferentiation of Th17 and Treg cells. In vitro inhibition and adoptive transfer assays were used to investigate functions of the phenotypically transformed Th17 cells. Metabolomic analysis, DNA methylation detection and chromatin immunoprecipitation were used to explore these mechanisms. KEY RESULTS: The selective pharmacological inhibitor (HSP90ßi) and shHSP90ß significantly mitigated UC in mice and promoted transformation of Th17 to Treg cell phenotype, via Foxp3 transcription. The phenotypically-transformed Th17 cells by HSP90ßi or shHSP90ß were able to inhibit lymphocyte proliferation and colitis in mice. HSP90ßi and shHSP90ß selectively weakened glycolysis by stopping the direct association of HSP90ß and GLUT1, the key glucose transporter, to accelerate ubiquitination degradation of GLUT1, and enhance the methylation of Foxp3 CNS2 region. Then, the mediator path was identified as the "lactate-STAT5-TET2" cascade. CONCLUSION AND IMPLICATIONS: HSP90ß shapes the fate of Th17 cells via glycolysis-controlled methylation modification to affect UC progression, which provides a new therapeutic target for UC.

SELECTION OF CITATIONS
SEARCH DETAIL