Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Mol Cell Biol ; 44(9): 391-409, 2024.
Article in English | MEDLINE | ID: mdl-39133076

ABSTRACT

Myogenesis is a highly orchestrated process whereby muscle precursor cells, myoblasts, develop into muscle fibers to form skeletal muscle during embryogenesis and regenerate adult muscle. Here, we studied the RNA-binding protein FUS (fused in sarcoma), which has been implicated in muscular and neuromuscular pathologies but is poorly characterized in myogenesis. Given that FUS levels declined in human and mouse models of skeletal myogenesis, and that silencing FUS enhanced myogenesis, we hypothesized that FUS might be a repressor of myogenic differentiation. Interestingly, overexpression of FUS delayed myogenesis, accompanied by slower production of muscle differentiation markers. To identify the mechanisms through which FUS inhibits myogenesis, we uncovered RNA targets of FUS by ribonucleoprotein immunoprecipitation (RIP) followed by RNA-sequencing (RNA-seq) analysis. Stringent selection of the bound transcripts uncovered Tnnt1 mRNA, encoding troponin T1 (TNNT1), as a major effector of FUS influence on myogenesis. We found that in myoblasts, FUS retained Tnnt1 mRNA in the nucleus, preventing TNNT1 expression; however, reduction of FUS during myogenesis or by silencing FUS released Tnnt1 mRNA for export to the cytoplasm, enabling TNNT1 translation and promoting myogenesis. We propose that FUS inhibits myogenesis by suppressing TNNT1 expression through a mechanism of nuclear Tnnt1 mRNA retention.


Subject(s)
Cell Differentiation , Muscle Development , Myoblasts , RNA-Binding Protein FUS , Troponin T , Muscle Development/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Animals , Mice , Humans , Troponin T/metabolism , Troponin T/genetics , Myoblasts/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Muscle, Skeletal/metabolism , Cell Line
2.
Thorac Cancer ; 15(23): 1749-1756, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38973201

ABSTRACT

BACKGROUND: Clinically, most patients with lung cancer (LC) die from tumor spread and metastasis. Specific metastasis-related molecules can provide reference for clinical prediction of efficacy, evaluation of prognosis, and search for the best treatment plan. Troponin T1 (TNNT1) is highly expressed in various cancer tissues, which affects malignant behavior of tumor cells and is related to patients' survival and prognosis. However, the role and molecular mechanism of TNNT1 in LC invasion and metastasis have not yet been investigated. METHODS: Gene expression profiling interactive analysis (GEPIA) online analysis was used to analyze TNNT1 expression in LC tissues. Quantitative real-time-polymerase chain reaction (qRT-PCR) or western blot were performed to measure TNNT1 or epithelial-to-mesenchymal transition (EMT)-related and Wnt/ß-catenin pathway-related protein expression in LC cells. After TNNT1 knockdown, cell scratch healing and transwell assays were introduced to assess cell migration and invasion, respectively. RESULTS: TNNT1 expression in LC tissues and cells was increased. TNNT1 knockdown notably impaired LC cell migration, invasion and EMT. TNNT1 knockdown inhibited Wnt/ß-catenin pathway of LC cells. Lithium chloride (LiCl) addition partially restored the inhibition of TNNT1 knockdown on migration, invasion, EMT and Wnt/ß-catenin of LC cells. CONCLUSION: TNNT1 knockdown attenuated LC migration, invasion and EMT, possibly through Wnt/ß-catenin signaling.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplasm Invasiveness , Troponin T/metabolism , Troponin T/genetics , Wnt Signaling Pathway , Gene Expression Regulation, Neoplastic , Cell Proliferation , Prognosis , Cell Line, Tumor
3.
J Cell Mol Med ; 28(11): e18410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853457

ABSTRACT

Troponin T1 (TNNT1) plays a crucial role in muscle contraction but its role in cancer, particularly in kidney renal clear cell carcinoma (KIRC), is not well-understood. This study explores the expression, clinical significance and biological functions of TNNT1 in various cancers, with an emphasis on its involvement in KIRC. We analysed TNNT1 expression in cancers using databases like TCGA and GTEx, assessing its prognostic value, mutation patterns, methylation status and functional implications. The study also examined TNNT1's effect on the tumour microenvironment and drug sensitivity in KIRC, complemented by in vitro TNNT1 knockdown experiments in KIRC cells. TNNT1 is overexpressed in several cancers and linked to adverse outcomes, showing frequent upregulation mutations and abnormal methylation. Functionally, TNNT1 connects to muscle and cancer pathways, affects immune infiltration and drug responses, and its overexpression in KIRC is associated with advanced disease and reduced survival. Knocking down TNNT1 curbed KIRC cell growth. TNNT1's aberrant expression plays a significant role in tumorigenesis and immune modulation, highlighting its value as a prognostic biomarker and a potential therapeutic target in KIRC and other cancers. Further studies are essential to understand TNNT1's oncogenic mechanisms in KIRC.


Subject(s)
Carcinogenesis , Carcinoma, Renal Cell , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Troponin T , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/immunology , Carcinogenesis/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Proliferation , DNA Methylation , Immunomodulation/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Mutation/genetics , Prognosis , Troponin T/metabolism , Troponin T/genetics , Tumor Microenvironment/immunology
4.
Genes Genomics ; 46(5): 613-620, 2024 05.
Article in English | MEDLINE | ID: mdl-38363456

ABSTRACT

BACKGROUND: Nemaline Myopathy (NM) is a rare genetic disorder that affects muscle function and is characterized by the presence of nemaline rods in muscle fibers. These rods are abnormal structures that interfere with muscle contraction and can cause muscle weakness, respiratory distress, and other complications. NM is caused by variants in several genes, including TNNT1, which encodes the protein troponin T1. NM is inherited in an autosomal recessive pattern. The prevalence of heterozygous TNNT1 variants has been reported to be 1/152,000, indicating that the disease is relatively rare. OBJECTIVE: Investigation of TNNT1 gene variants that may cause cretin kinase elevation. METHODS: Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and family segregation was done by Sanger sequencing. RESULTS: In this study, we report a 5-year-old girl with a novel variant recessive congenital TNNT1 myopathy. The patient had a novel homozygous (c.271_273del) deletion in the TNNT1 gene that is associated with creatine kinase elevation, which is a marker of muscle damage. CONCLUSION: This case expands the phenotypic spectrum of TNNT1 myopathy and highlights the importance of genetic testing and counseling for families affected by this rare disorder. In this study provides valuable insights into the genetic basis of NM and highlights the importance of early diagnosis and management for patients with this rare disorder. Further research is needed to better understand the pathophysiology of TNNT1 myopathy and to develop effective treatments for this debilitating condition.


Subject(s)
Myopathies, Nemaline , Female , Humans , Child, Preschool , Myopathies, Nemaline/genetics , Myopathies, Nemaline/diagnosis , Creatine Kinase/genetics , Homozygote , Genetic Testing , Troponin T/genetics
5.
J Endocrinol Invest ; 47(1): 149-166, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37477865

ABSTRACT

PURPOSE: To explore the key genes and molecular pathways in the progression of thyroid papillary carcinoma (PTC) promoted by testosterone using RNA-sequencing technology, and to provide new drug targets for improving the therapeutic effect of PTC. METHODS: Orchiectomy (ORX) was carried out to construct ORX mouse models. TPC-1 cells were subcutaneously injected for PTC formation in mice, and the tumor tissues were collected for RNA-seq. The key genes were screened by bioinformatics technology. Tnnt1 expression in PTC cells was knocked down or overexpressed by transfection. Cell counting kit-8 (CCK-8), colony formation assay, scratch assay and transwell assay were adopted, respectively, for the detection of cell proliferation, colony formation, migration and invasion. Besides, quantification real-time polymerase chain reaction (qRT-PCR) and western blot were utilized to determine the mRNA and protein expression levels of genes in tissues or cells. RESULTS: Both estradiol and testosterone promoted the growth of PTC xenografts. The key gene Tnnt1 was screened and obtained by bioinformatics technology. Functional analysis revealed that overexpression of Tnnt1 could markedly promote the proliferation, colony formation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) process of PTC cells, as well as could activate p38/JNK pathway. In addition, si-Tnt1 was able to inhibit the cancer-promoting effect of testosterone. CONCLUSION: Based on the outcomes of bioinformatics and basic experiments, it is found that testosterone can promote malignant behaviors such as growth, migration, invasion and EMT process of PTC by up-regulating Tnnt1 expression. In addition, the function of testosterone may be achieved by activating p38/JNK signaling pathway.


Subject(s)
MicroRNAs , Thyroid Neoplasms , Humans , Animals , Mice , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Testosterone/pharmacology , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic
6.
Environ Toxicol ; 39(4): 2064-2076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38095131

ABSTRACT

OBJECTIVE: We aimed to determine the role of Troponin T1 (TNNT1) in paclitaxel (PTX) resistance and tumor progression in breast cancer (BC). METHODS: Differentially expressed genes were obtained from the GSE4298 and GSE90564 datasets. Hub genes were isolated from protein-protein interaction networks and further validated by real-time quantitative polymerase chain reaction. The effect of TNNT1 on PTX resistance was determined using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, transwell, flow cytometry assays, and subcutaneous xenografted tumor model. Western blotting was used to detect proteins associated with PTX resistance, apoptosis, migration, invasion, and other key pathways. Hematoxylin-eosin and immunohistochemical staining were used to evaluate the role of TNNT1 in tumors. RESULTS: After comprehensive bioinformatic analysis, we identified CCND1, IGF1, SFN, INHBA, TNNT1, and TNFSF11 as hub genes for PTX resistance in BC. TNNT1 plays a key role in BC and is upregulated in PTX-resistant BC cells. TNNT1 silencing inhibited PTX resistance, proliferation, migration, and invasion while promoting apoptosis of PTX-resistant BC cells. Tumor xenograft experiments revealed that TNNT1 silencing suppresses PTX resistance and tumor development in vivo. In addition, TNNT1 silencing inhibited the expression of proteins in the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma1 (RAF1) pathway in vivo. Treatment with a RAS/RAF1 pathway activator reversed the inhibitory effect of TNNT1 silencing on proliferation, migration, and invasion while promoting apoptosis of PTX resistance BC cells. CONCLUSION: Silencing of TNNT1 suppresses PTX resistance and BC progression by inhibiting the RAS/RAF1 pathway, which is a promising biomarker and therapeutic target for drug resistance in BC.


Subject(s)
Breast Neoplasms , Fibrosarcoma , MicroRNAs , Humans , Female , Paclitaxel/pharmacology , Breast Neoplasms/pathology , Troponin T/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/therapeutic use , Drug Resistance, Neoplasm/genetics , Apoptosis/genetics , Cell Line, Tumor , Fibrosarcoma/genetics , Fibrosarcoma/drug therapy , Cell Proliferation , MicroRNAs/genetics
7.
Gene ; 865: 147331, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36871674

ABSTRACT

Slow skeletal muscle troponin T (TNNT1) as a poor prognostic indicator is upregulated in colon and breast cancers. However, the role of TNNT1 in the disease prognosis and biological functions of hepatocellular carcinoma (HCC) is still unclear. The Cancer Genome Atlas (TCGA), real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to evaluate the TNNT1 expression of human HCC. The impact of TNNT1 levels on disease progression and survival outcome was studied using TCGA analysis. Moreover, the bioinformatics analysis and HCC cell culture were used to investigate the biological functions of TNNT1. Besides, the immunoblot analysis and enzyme-linked immunosorbent assay (ELISA) were used to detect the extracellular TNNT1 of HCC cells and circulating TNNT1 of HCC patients, respectively. The effect of TNNT1 neutralization on oncogenic behaviors and signaling was further validated in the cultured hepatoma cells. In this study, tumoral and blood TNNT1 was upregulated in HCC patients based on the analyses using bioinformatics, fresh tissues, paraffin sections, and serum. From the multiple bioinformatics tools, the TNNT1 overexpression was associated with advanced stage, high grade, metastasis, vascular invasion, recurrence, and poor survival outcome in HCC patients. By the cell culture and TCGA analyses, TNNT1 expression and release were positively correlated with epithelial-mesenchymal transition (EMT) processes in HCC tissues and cells. Moreover, TNNT1 neutralization suppressed oncogenic behaviors and EMT in hepatoma cells. In conclusion, TNNT1 may serve as a non-invasive biomarker and drug target for HCC management. This research finding may provide a new insight for HCC diagnosis and treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Muscle, Skeletal/metabolism , Prognosis , Troponin T/genetics
8.
Neuromuscul Disord ; 32(3): 245-254, 2022 03.
Article in English | MEDLINE | ID: mdl-35249790

ABSTRACT

Biallelic pathogenic variants in the troponin T type 1 (TNNT1) gene cause a severe form of congenital nemaline myopathy. Typical features include severe motor delay, proximal contractures and weakness, pectus carinatum, chest wall rigidity and tremor. If left untreated, respiratory failure leads to early death at a median age of 18 months. Here we report on three non-Amish, unrelated patients harbouring novel TNNT1 variants. The peculiar combination of respiratory muscle weakness and chest wall stiffness caused early severe hypoventilation warranting the use of high pressures on BiPAP ventilator, with subsequent rapid escalation of pressures delivered with limited efficacy secondary to the extreme rib cage stiffness. Severe respiratory impairment occurred despite a relatively milder motor involvement in one patient. Muscle biopsies from two individuals showed predominant involvement of type 1 fibres, abundant nemaline bodies, marked fibrosis and loss of TNNT1 protein. We aim to increase the awareness of the challenges of managing respiratory support in patients with this unique respiratory phenotype.


Subject(s)
Myopathies, Nemaline , Humans , Muscle, Skeletal/pathology , Muscles , Mutation , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology , Phenotype , Troponin T/genetics , Troponin T/metabolism
9.
Neuromuscul Disord ; 32(2): 176-184, 2022 02.
Article in English | MEDLINE | ID: mdl-35165004

ABSTRACT

Nemaline myopathies are clinically and genetically heterogeneous disorders caused by several different genes. One of them is TNNT1, which was initially described in Amish families and has not been reported in Asian populations. Although most TNNT1 myopathies are caused by loss-of-function mutations, several recent studies have shown that missense mutations can also be pathogenic. A 16-year-old Korean boy with progressive muscle weakness visited the Seoul National University Hospital. He showed generalized myopathy, which was predominant in the paraspinal and neck muscles. Moreover, nemaline rods were observed in a muscle biopsy. Whole-exome sequencing of DNA samples of the patient and his younger brother, who had a similar phenotype, revealed novel compound heterozygous mutations in TNNT1 (c.724G>C (p.Ala242Pro) and c.611+1G>A). Sanger sequencing of cDNA extracted from muscle samples of the patient confirmed partial or total skipping of exon 11 in the splicing variant. The impact of the missense variant on muscle integrity and locomotor activity was verified using a zebrafish loss-of-function model. Here, we reported novel familial cases of TNNT1 myopathy with intermediate clinical presentations caused by compound heterozygous mutations and demonstrated their functional defects using an animal model.


Subject(s)
Myopathies, Nemaline , Troponin T/genetics , Zebrafish , Adolescent , Animals , Humans , Male , Muscle, Skeletal/pathology , Mutation , Myopathies, Nemaline/genetics , Phenotype
10.
Acta Neuropathol Commun ; 8(1): 142, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32819427

ABSTRACT

Ovine congenital progressive muscular dystrophy (OCPMD) was first described in Merino sheep flocks in Queensland and Western Australia in the 1960s and 1970s. The most prominent feature of the disease is a distinctive gait with stiffness of the hind limbs that can be seen as early as 3 weeks after birth. The disease is progressive. Histopathological examination had revealed dystrophic changes specifically in type I (slow) myofibres, while electron microscopy had demonstrated abundant nemaline bodies. Therefore, it was never certain whether the disease was a dystrophy or a congenital myopathy with dystrophic features. In this study, we performed whole genome sequencing of OCPMD sheep and identified a single base deletion at the splice donor site (+ 1) of intron 13 in the type I myofibre-specific TNNT1 gene (KT218690 c.614 + 1delG). All affected sheep were homozygous for this variant. Examination of TNNT1 splicing by RT-PCR showed intron retention and premature termination, which disrupts the highly conserved 14 amino acid C-terminus. The variant did not reduce TNNT1 protein levels or affect its localization but impaired its ability to modulate muscle contraction in response to Ca2+ levels. Identification of the causative variant in TNNT1 finally clarifies that the OCPMD sheep is in fact a large animal model of TNNT1 congenital myopathy. This model could now be used for testing molecular or gene therapies.


Subject(s)
Myotonia Congenita/pathology , Myotonia Congenita/veterinary , Sheep Diseases/genetics , Sheep Diseases/pathology , Troponin T/genetics , Animals , Disease Models, Animal , Muscle, Skeletal/pathology , Sheep
11.
Biosci Biotechnol Biochem ; 84(1): 111-117, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31512553

ABSTRACT

Slow skeletal muscle troponin T (TNNT1) has been reported to be correlated with several cancers, but there are no evidences proving that TNNT1 is required in colon adenocarcinoma (COAD). TNNT1 expression in COAD tissues and its prognostic significance were acquired from TCGA database. The proliferative, migratory, and invasive abilities of COAD cells were detected by CCK-8 and transwell assays, respectively. Correlations between TNNT1 and epithelial-mesenchymal transition (EMT)-related markers were determined using western blotting and Pearson's analysis. Our results stated that TNNT1 expression was high-regulated in COAD tissues, which was related with unfavorable prognosis of COAD patients. Functional analyses suggested that TNNT1 promoted the cellular behaviors. Moreover, aberrant expression of TNNT1 affected the expression level of EMT-related proteins. And TNNT1 was negatively linked with E-cadherin. In conclusion, our findings indicated that TNNT1 may promote the progression of COAD, mediating EMT process, and thus shed a novel light on COAD therapeutic treatments.


Subject(s)
Adenocarcinoma/pathology , Cell Movement , Cell Proliferation , Colonic Neoplasms/pathology , Epithelial-Mesenchymal Transition , Troponin T/genetics , Troponin T/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Databases, Genetic , Gene Expression , Gene Knockdown Techniques , HCT116 Cells , Humans , Neoplasm Invasiveness , Prognosis , Transfection
12.
J Gene Med ; 22(2): e3152, 2020 02.
Article in English | MEDLINE | ID: mdl-31830337

ABSTRACT

BACKGROUND: Troponin T1 (TNNT1) is a subunit of troponin that has been linked to neuromuscular disorder. Recently, it was reported that TNNT1 facilitates the proliferation of breast cancer cells. Interestingly, Cancer Genome Atlas data indicate that its overexpression is associated with an unfavorable prognosis of colorectal cancer (CRC) patients. The present study aimed to explore the expression, function and mechanism of dysregulation of TNNT1 in CRC. METHODS: Immunohistochemical staining and a real-time polymerase chain reaction were used to compare the expression level of TNNT1 in CRC tissues and adjacent tissues. Western blotting was used to detect the expression of TNNT1 in cell lines. Kaplan-Meier analysis and a chi-squared test were applied to evaluate the potential of TNNT1 to function as a cancer biomarker. RNA interference was used to inhibit TNNT1 expression in CRC cells, followed by detection of cell proliferation, apoptosis, migration and invasion. A luciferase reporter gene assay was used to determine the regulatory relationship between miR-873 and TNNT1. RESULTS: In the present study, we found that TNNT1 was significantly up-regulated in CRC samples and cell lines. The up-regulation of TNNT1 was also associated with several clinicopathologic features, and its high expression was correlated with an unfavorable prognosis of the patients. Knockdown of TNNT1 markedly arrested proliferation, migration and invasion, whereas it also promoted apoptosis. TNNT1 was identified as a target gene of miR-873, and there was a negative correlation among CRC samples. CONCLUSIONS: In conclusion, we have demonstrated that TNNT1, regulated by miR-873, is an oncogene of CRC associated with patient prognosis.


Subject(s)
Colorectal Neoplasms/pathology , MicroRNAs/genetics , Troponin T/metabolism , Apoptosis , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Male , Neoplasm Invasiveness , Prognosis , Troponin T/genetics
13.
Neuromuscul Disord ; 29(10): 766-770, 2019 10.
Article in English | MEDLINE | ID: mdl-31604653

ABSTRACT

Amish Nemaline Myopathy is a severe form of nemaline myopathy associated to mutation in TNNT1 gene, firstly reported among the Old Order Amish. Here we report two Italian siblings who manifested, by the age of 7 months, progressive and severe muscle weakness and wasting, respiratory insufficiency, pectus carinatum deformity and failure to thrive. Muscle biopsy was consistent with nemaline myopathy and novel homozygous missense mutation in TNNT1 was found. Our cases expand the mutational spectrum of TNNT1, confirm the invariable peculiar clinical phenotype also outside the Amish population, and suggest that TNNT1 should be considered for molecular analysis in NM patients with chest deformities and progressive contractures.


Subject(s)
Mutation/genetics , Myopathies, Nemaline/genetics , Troponin I/genetics , Female , Homozygote , Humans , Infant , Muscle, Skeletal/pathology , Myopathies, Nemaline/diagnosis , Pedigree , Phenotype , Siblings
14.
Eur J Med Genet ; 62(11): 103567, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30395933

ABSTRACT

Amish nemaline myopathy (ANM) is a severe congenital form of NM, known to be fatal in early childhood due to pulmonary insufficiency. Homozygous mutation in TNNT1 was originally ascertained in an Older Amish community in 2000. To date, only five reports with six pathogenic variants in TNNT1 have been described in both Amish and non-Amish families. Here, we describe a 16-month old female from a small Mennonite community from Mexico, presenting with congenital hypotonia and dilated cardiomyopathy, with a novel homozygous deletion of 19q13.42 of about 11 kb in size, encompassing TNNT1 and TNNI3. Cardiomyopathy has not been observed in association with ANM in previous reports. Conversely, homozygous mutation in TNNI3 have been described with dilated cardiomyopathy. Our report underscores the consideration of contiguous gene deletion in children with ANM who present with congenital hypotonia and cardiomyopathy. The report also expands the known spectrum of non-Amish related ANM mutations to include homozygous multi-exonic TNNT1 deletion.


Subject(s)
Cardiomyopathy, Dilated/genetics , Gene Deletion , Myopathies, Nemaline/genetics , Troponin T/genetics , Cardiomyopathy, Dilated/pathology , Exons/genetics , Female , Homozygote , Humans , Infant , Muscle, Skeletal/pathology , Mutation , Myopathies, Nemaline/pathology , Protein Serine-Threonine Kinases/genetics
15.
Mol Genet Genomic Med ; 5(6): 678-691, 2017 11.
Article in English | MEDLINE | ID: mdl-29178646

ABSTRACT

BACKGROUND: Nemaline myopathy (NEM) is one of the three major forms of congenital myopathy and is characterized by diffuse muscle weakness, hypotonia, respiratory insufficiency, and the presence of nemaline rod structures on muscle biopsy. Mutations in troponin T1 (TNNT1) is 1 of 10 genes known to cause NEM. To date, only homozygous nonsense mutations or compound heterozygous truncating or internal deletion mutations in TNNT1 gene have been identified in NEM. This extended family is of historical importance as some members were reported in the 1960s as initial evidence that NEM is a hereditary disorder. METHODS: Proband and extended family underwent Sanger sequencing for TNNT1. We performed RT-PCR and immunoblot on muscle to assess TNNT1 RNA expression and protein levels in proband and father. RESULTS: We report a novel heterozygous missense mutation of TNNT1 c.311A>T (p.E104V) that segregated in an autosomal dominant fashion in a large family residing in the United States. Extensive sequencing of the other known genes for NEM failed to identify any other mutant alleles. Muscle biopsies revealed a characteristic pattern of nemaline rods and severe myofiber hypotrophy that was almost entirely restricted to the type 1 fiber population. CONCLUSION: This novel mutation alters a residue that is highly conserved among vertebrates. This report highlights not only a family with autosomal dominant inheritance of NEM, but that this novel mutation likely acts via a dominant negative mechanism.


Subject(s)
Myopathies, Nemaline/genetics , Troponin T/genetics , Adolescent , Amino Acid Sequence , Base Sequence , Homozygote , Humans , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation, Missense , Myopathies, Nemaline/diagnosis , Pedigree , Polymorphism, Single Nucleotide , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , RNA Splicing , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA
16.
Front Physiol ; 7: 597, 2016.
Article in English | MEDLINE | ID: mdl-28018233

ABSTRACT

Carbonic anhydrase III (CAIII) is a metabolic enzyme and a regulator for intracellular pH. CAIII has been reported with high level expression in slow twitch skeletal muscles. Here we demonstrate that CAIII is expressed in multiple slow and fast twitch muscles of adult mouse independent of the expression of myosin isoforms. Expressing similar fast type of myofilament proteins, CAIII-positive tibial anterior (TA) muscle exhibits higher tolerance to fatigue than that of CAIII-negative fast twitch extensor digitorum longus (EDL) muscle in in situ contractility studies. We further studied the muscles of CAIII knockout (Car3-KO) mice. The loss of CAIII in soleus and TA muscles in Car3-KO mice did not change muscle mass, sarcomere protein isoform contents, and the baseline twitch and tetanic contractility as compared with age-matched wild type (WT) controls. On the other hand, Car3-KO TA muscle showed faster force reduction at the beginning but higher resistance at the end during a fatigue test, followed by slower post fatigue recovery than that of WT TA muscle. Superfused Car3-KO soleus muscle also had faster total force reduction during fatigue test than that of WT soleus. However, it showed a less elevation of resting tension followed by a better post fatigue recovery under acidotic stress. CAIII was detected in neonatal TA and EDL muscle, downregulated during development, and then re-expressed in adult TA but not EDL muscles. The expression of CAIII in Tnnt1-KO myopathy mouse soleus muscle that has diminished slow fiber contents due to the loss of slow troponin T remained high. Car3-KO EDL, TA, and soleus muscles showed no change in the expression of mitochondria biomarker proteins. The data suggest a fiber type independent expression of CAIII with a role in the regulation of intracellular pH in skeletal muscle and may be explored as a target for improving fatigue resistance and for the treatment of TNNT1 myopathies.

17.
Front Physiol ; 7: 449, 2016.
Article in English | MEDLINE | ID: mdl-27790152

ABSTRACT

Troponin T (TnT) is the sarcomeric thin filament anchoring subunit of the troponin complex in striated muscles. A nonsense mutation in exon 11 of the slow skeletal muscle isoform of TnT (ssTnT) gene (TNNT1) was found in the Amish populations in Pennsylvania and Ohio. This single nucleotide substitution causes a truncation of the ssTnT protein at Glu180 and the loss of the C-terminal tropomyosin (Tm)-binding site 2. As a consequence, it abolishes the myofilament integration of ssTnT and the loss of function causes an autosomal recessive nemaline myopathy (NM). More TNNT1 mutations have recently been reported in non-Amish ethnic groups with similar recessive NM phenotypes. A nonsense mutation in exon 9 truncates ssTnT at Ser108, deleting Tm-binding site 2 and a part of the middle region Tm-binding site 1. Two splicing site mutations result in truncation of ssTnT at Leu203 or deletion of the exon 14-encoded C-terminal end segment. Another splicing mutation causes an internal deletion of the 39 amino acids encoded by exon 8, partially damaging Tm-binding site 1. The three splicing mutations of TNNT1 all preserve the high affinity Tm-binding site 2 but still present recessive NM phenotypes. The molecular mechanisms for these mutations to cause myopathy provide interesting models to study and understand the structure-function relationship of TnT. This focused review summarizes the current knowledge of TnT isoform regulation, structure-function relationship of TnT and how various ssTnT mutations cause recessive NM, in order to promote in depth studies for further understanding the pathogenesis and pathophysiology of TNNT1 myopathies toward the development of effective treatments.

18.
Epigenomics ; 8(3): 359-71, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26950807

ABSTRACT

AIM: To assess whether epigenetic and genetic variations at the TNNT1 gene locus are associated with high-density lipoprotein cholesterol (HDL-C) and coronary artery disease (CAD). Patients, materials & methods: TNNT1 DNA methylation and c.-20G>A polymorphism were genotyped in subjects with and without familial hypercholesterolemia (FH). RESULTS: Lower TNNT1 DNA methylation levels were independently associated with lower HDL-C levels and with the TNNT1 c.-20G>A polymorphism. In FH men, carriers of the TNNT1 c.-20G>A polymorphism had lower HDL-C levels and an increased risk of CAD compared with noncarriers. In non-FH men, a higher TNNT1 DNA methylation level was associated with CAD. CONCLUSION: These results suggest that TNNT1 genetic and epigenetic variations are associated with HDL-C levels and CAD.


Subject(s)
Cholesterol, HDL/genetics , Coronary Artery Disease/genetics , Hyperlipoproteinemia Type II/genetics , Adult , DNA Methylation , Epigenesis, Genetic , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quebec , Troponin T/genetics
19.
Muscle Nerve ; 53(4): 564-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26296490

ABSTRACT

INTRODUCTION: Nemaline myopathy is a rare disorder characterized by skeletal muscle weakness of varying severity and onset, with the presence of nemaline rods on muscle biopsy. Congenital nemaline body myopathy due to mutations in TNNT1 has hitherto only been described as a result of a single founder mutation in patients of Amish origin and in 2 other individuals with different recessive mutations. METHODS: Autozygosity mapping and whole exome sequencing were applied after we identified 9 Palestinian patients from 7 unrelated families who have nemaline myopathy. RESULTS: All patients were homozygous for a novel complex rearrangement of the TNNT1 gene (c.574_577delinsTAGTGCTGT | NM_003283) leading to C-terminal truncation of the protein (p.L203* | NP_003274.3). Their clinical course was remarkable for early respiratory failure and striking stiffness of the cervical spine. CONCLUSIONS: This report exemplifies the utility of combining autozygosity mapping and whole exome sequencing and expands the phenotype associated with TNNT1 mutations.


Subject(s)
Arabs/genetics , Mutation/genetics , Myopathies, Nemaline/diagnosis , Myopathies, Nemaline/genetics , Troponin T/genetics , Child, Preschool , Electromyography/methods , Female , Humans , Infant , Male , Myopathies, Nemaline/physiopathology
20.
Muscle Nerve ; 51(5): 767-72, 2015 May.
Article in English | MEDLINE | ID: mdl-25430424

ABSTRACT

INTRODUCTION: Nemaline myopathy (NM) is a congenital neuromuscular disorder often characterized by hypotonia, facial weakness, skeletal muscle weakness, and the presence of rods on muscle biopsy. A rare form of nemaline myopathy known as Amish Nemaline Myopathy has only been seen in a genetically isolated cohort of Old Order Amish patients who may additionally present with tremors in the first 2-3 months of life. METHODS: We describe an Hispanic male diagnosed with nemaline myopathy histopathologically and subsequently confirmed by next generation gene sequencing. RESULTS: Direct sequencing revealed that he is homozygous for a pathogenic nonsense variant c.323C>G (p.S108X) in exon 9 of the TNNT1 gene. CONCLUSIONS: This report describes a novel pathogenic variant in the TNNT1 gene and represents a nemaline myopathy-causing variant in the TNNT1 gene outside of the Old Order Amish and Dutch ancestry.


Subject(s)
Mutation/genetics , Myopathies, Nemaline/genetics , Troponin I/genetics , Biopsy , Child, Preschool , Exons/genetics , Hispanic or Latino/genetics , Homozygote , Humans , Male , Muscle, Skeletal/pathology , Myopathies, Nemaline/diagnosis , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL