Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Int J Biol Macromol ; 278(Pt 2): 134777, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153669

ABSTRACT

Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.


Subject(s)
Ferroptosis , Glioblastoma , Iron , Receptors, Transferrin , Humans , Receptors, Transferrin/metabolism , Iron/metabolism , Ferroptosis/drug effects , Glioblastoma/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Antigens, CD/metabolism , Antigens, CD/genetics , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/pharmacology
2.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126006

ABSTRACT

The use of tyrosine kinase inhibitors (TKI) has been growing in veterinary oncology and in the past few years several TKI have been tested in dogs. However, different from human medicine, we lack strategies to select patients to be treated with each TKI. Therefore, this study aimed to screen different tumor subtypes regarding TKI target immunoexpression as a predictor strategy to personalize the canine cancer treatment. It included 18 prostatic carcinomas, 36 soft tissue sarcomas, 20 mammary gland tumors, 6 urothelial bladder carcinomas, and 7 tumors from the endocrine system. A total of 87 patients with paraffin blocks were used to perform immunohistochemistry (IHC) of human epidermal growth factor receptor 2 (HER-2), epidermal growth factor receptors 1 (EGFR1), vascular endothelial growth factor receptor 2 (VEGFR-2), platelet derived growth factor receptor beta (PDGFR-ß), c-KIT, and extracellular signal-regulated kinase 1/2 (ERK1/ERK2). The immunohistochemical screening revealed a heterogeneous protein expression among histological types with mesenchymal tumors showing the lowest expression level and carcinomas the highest expression. We have demonstrated by IHC screening that HER2, EGFR1, VEGFR-2, PDGFR-ß and ERK1/ERK2 are commonly overexpressed in dogs with different carcinomas, and KIT expression is considered relatively low in the analyzed samples.


Subject(s)
Dog Diseases , Immunohistochemistry , Dogs , Animals , Dog Diseases/metabolism , Dog Diseases/drug therapy , Dog Diseases/pathology , Male , Female , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/veterinary , Neoplasms/pathology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Biomarkers, Tumor/metabolism , Receptor, ErbB-2/metabolism , Proto-Oncogene Proteins c-kit/metabolism , ErbB Receptors/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Humans
3.
J Vet Med Sci ; 86(6): 677-683, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38692860

ABSTRACT

Mastectomy is the standard treatment for mammary gland tumors in dogs. In addition to traditional therapy, sodium dichloroacetate (DCA) can act as target therapy, as it may promote autophagy, reduce metastatic potential, and tumor proliferation in mammary tumor cell lines. This study aimed to analyze the effects of DCA as preoperative therapy for mammary tumors in bitches. Nineteen animals were selected, and they received DCA at a dose of 10 mg/kg orally every 12 hr, for 15 days. The periodic evaluation included hematological analysis (complete blood count and biochemical markers), evaluation of gastrointestinal adverse effects, evaluation of tumor volume, histopathological analysis, and immunohistochemical evaluation (Ki67 and cyclooxygenase-2/COX-2 markers). After treatment, there was a significant reduction in hematocrit (P=0.02) and leukocyte (P=0.04) means. Despite the variations for these two hematological parameters, the means remained within the reference range for the species. There were two cases of vomiting and one case of diarrhea. Most cases were classified as carcinoma in mixed tumor (n=7, 36.8%), followed by solid carcinoma (n=6, 31.6%). Nine cases (47.4%) showed reduced tumor volume, nine (47.4%) had stable disease, and one showed progressive disease. While there was no sample with a COX-2 score higher than 6, tumor samples with COX-2 scores 3 and 4 were significantly associated with stable disease or progression. DCA preoperative treatment for bitches with mammary gland tumors showed safety and potential cytoreduction in some cases.


Subject(s)
Dichloroacetic Acid , Dog Diseases , Mammary Neoplasms, Animal , Neoadjuvant Therapy , Animals , Dogs , Female , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/surgery , Dog Diseases/drug therapy , Dichloroacetic Acid/therapeutic use , Neoadjuvant Therapy/veterinary
4.
J Soc Work End Life Palliat Care ; 20(2): 120-132, 2024.
Article in English | MEDLINE | ID: mdl-38635421

ABSTRACT

Ovarian cancer is considered the most fatal and costly gynecologic cancer. Although personalized therapies have improved ovarian cancer prognosis, they have resulted in increased financial toxicity concerns among this population. This study evaluated financial toxicity in patients with advanced ovarian cancer. Using secondary data from a study of barriers to palliative care, financial toxicity (FT) was measured through the Comprehensive Score for Financial Toxicity scale. Univariate and bivariate analyses were used to assess the relationship between selected demographic (i.e., age, race, ethnicity, education, place of birth, insurance type, yearly household income, employment status) and treatment-specific variables (i.e., years since diagnosis, surgery, chemotherapy, radiation, hormonal and targeted therapy) with clinically relevant financial toxicity. Characteristics were compared using Fisher's exact or chi squared tests. A total of 38 participants with advanced ovarian cancer were included in this study; 24% (n = 9) reported clinically significant FT. Income (p = .001), place of birth (p = .048) and employment status (p = .001) were related to FT. Study findings highlight that advanced ovarian cancer patients experience high FT, particularly those with low income, who are not able to work and were born outside the US. Further research using larger datasets and more representative samples is needed to inform intervention development and implementation.


Subject(s)
Financial Stress , Income , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/therapy , Ovarian Neoplasms/pathology , Middle Aged , Aged , Financial Stress/psychology , Income/statistics & numerical data , Palliative Care , Socioeconomic Factors , Employment/statistics & numerical data , Adult , Aged, 80 and over , Sociodemographic Factors
5.
Article in English | MEDLINE | ID: mdl-38434801

ABSTRACT

Antibody-drug conjugates (ADCs) have surfaced as a promising group of anticancer agents employing the precise targeting capacity of monoclonal antibodies to transport highly effective cytotoxic payloads. Compared to conventional chemotherapy, they aim to selectively eradicate cancer cells while minimizing off-target toxicity on healthy tissues. An increasing body of evidence has provided support for the efficacy of ADCs in treating breast cancer across various contexts and tumor subtypes, resulting in significant changes in clinical practice. Nevertheless, unlocking the full potential of these therapeutic agents demands innovative molecular designs to address complex clinical challenges, including drug resistance, tumor heterogeneity, and treatment-related adverse events. This thorough review provides an in-depth analysis of the clinical data on ADCs, offering crucial insights from pivotal clinical trials that assess the efficacy of ADCs in diverse breast cancer settings. This aids in providing a comprehensive understanding of the current state of ADCs in breast cancer therapy, while also providing valuable perspectives for the future.

6.
Diagnostics (Basel) ; 14(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337803

ABSTRACT

(1) Background: Somatic mutations may be connected to the exposome, potentially playing a role in breast cancer's development and clinical outcomes. There needs to be information regarding Latin American women specifically, as they are underrepresented in clinical trials and have limited access to somatic analysis in their countries. This study aims to systematically investigate somatic mutations in breast cancer patients from Latin America to gain a better understanding of tumor biology in the region. (2) Methods: We realize a systematic review of studies on breast cancer in 21 Latin American countries using various databases such as PubMed, Google Scholar, Web of Science, RedAlyc, Dianlet, and Biblioteca Virtual en Salud. Of 392 articles that fit the criteria, 10 studies have clinical data which can be used to create a database containing clinical and genetic information. We compared mutation frequencies across different breast cancer subtypes using statistical analyses and meta-analyses of proportions. Furthermore, we identified overexpressed biological processes and canonical pathways through functional enrichment analysis. (3) Results: 342 mutations were found in six Latin American countries, with the TP53 and PIK3CA genes being the most studied mutations. The most common PIK3CA mutation was H1047R. Functional analysis provided insights into tumor biology and potential therapies. (4) Conclusion: evaluating specific somatic mutations in the Latin American population is crucial for understanding tumor biology and determining appropriate treatment options. Combining targeted therapies may improve clinical outcomes in breast cancer. Moreover, implementing healthy lifestyle strategies in Latin America could enhance therapy effectiveness and clinical outcomes.

7.
Cancer Diagn Progn ; 4(1): 9-24, 2024.
Article in English | MEDLINE | ID: mdl-38173664

ABSTRACT

Leukemias are hematological neoplasms characterized by dysregulations in several cellular signaling pathways, prominently including the PI3K/AKT/mTOR pathway. Since this pathway is associated with several important cellular mechanisms, such as proliferation, metabolism, survival, and cell death, its hyperactivation significantly contributes to the development of leukemias. In addition, it is a crucial prognostic factor, often correlated with therapeutic resistance. Changes in the PI3K/AKT/mTOR pathway are identified in more than 50% of cases of acute leukemia, especially in myeloid lineages. Furthermore, these changes are highly frequent in cases of chronic lymphocytic leukemia, especially those with a B cell phenotype, due to the correlation between the hyperactivation of B cell receptors and the abnormal activation of PI3Kδ. Thus, the search for new therapies that inhibit the activity of the PI3K/AKT/mTOR pathway has become the objective of several clinical studies that aim to replace conventional oncological treatments that have high rates of toxicities and low specificity with target-specific therapies offering improved patient quality of life. In this review we describe the PI3K/AKT/mTOR signal transduction pathway and its implications in leukemogenesis. Furthermore, we provide an overview of clinical trials that employed PI3K/AKT/mTOR inhibitors either as monotherapy or in combination with other cytotoxic agents for treating patients with various types of leukemias. The varying degrees of treatment efficacy are also reported.

8.
Rev Endocr Metab Disord ; 25(1): 109-121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37380825

ABSTRACT

Radioiodine (RAI) refractory differentiated thyroid cancer is an uncommon and challenging situation that requires a multidisciplinary approach to therapeutic strategies. The definition of RAI-refractoriness is usually a clear situation in specialized centers. However, the right moment for initiation of multikinase inhibitors (MKI), the time and availability for genomic testing, and the possibility of prescribing MKI and selective kinase inhibitors differ worldwide.Latin America (LA) refers to the territories of the world that stretch across two regions: North America (including Central America and the Caribbean) and South America, containing 8.5% of the world's population. In this manuscript, we critically review the current standard approach recommended for patients with RAI refractory differentiated thyroid cancer, emphasizing the challenges faced in LA. To achieve this objective, the Latin American Thyroid Society (LATS) convened a panel of experts from Brazil, Argentina, Chile, and Colombia. Access to MKI compounds continues to be a challenge in all LA countries. This is true not only for MKI but also for the new selective tyrosine kinase inhibitor, which will also require genomic testing, that is not widely available. Thus, as precision medicine advances, significant disparities will be made more evident, and despite efforts to improve coverage and reimbursement, molecular-based precision medicine remains inaccessible to most of the LA population. Efforts should be undertaken to alleviate the discrepancies between the current state-of-the-art care for RAI-refractory differentiated thyroid cancer and the present situation in Latin America.


Subject(s)
Iodine Radioisotopes , Thyroid Neoplasms , Humans , Latin America , Iodine Radioisotopes/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Brazil
10.
Cancers (Basel) ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38136297

ABSTRACT

Advanced cutaneous melanoma is considered to be the most aggressive type of skin cancer and has variable rates of treatment response. Currently, there are some classes of immunotherapy and target therapies for its treatment. Immunotherapy can inhibit tumor growth and its recurrence by triggering the host's immune system, whereas targeted therapy inhibits specific molecules or signaling pathways. However, melanoma responses to these treatments are highly heterogeneous, and patients can develop resistance. Epigenomics (DNA/histone modifications) contribute to cancer initiation and progression. Epigenetic alterations are divided into four levels of gene expression regulation: DNA methylation, histone modification, chromatin remodeling, and non-coding RNA regulation. Deregulation of lysine methyltransferase enzymes is associated with tumor initiation, invasion, development of metastases, changes in the immune microenvironment, and drug resistance. The study of lysine histone methyltransferase (KMT) and nicotinamide N-methyltransferase (NNMT) inhibitors is important for understanding cancer epigenetic mechanisms and biological processes. In addition to immunotherapy and target therapy, the research and development of KMT and NNMT inhibitors is ongoing. Many studies are exploring the therapeutic implications and possible side effects of these compounds, in addition to their adjuvant potential to the approved current therapies. Importantly, as with any drug development, safety, efficacy, and specificity are crucial considerations when developing methyltransferase inhibitors for clinical applications. Thus, this review article presents the recently available therapies and those in development for advanced cutaneous melanoma therapy.

11.
Article in English | MEDLINE | ID: mdl-37750550

ABSTRACT

INTRODUCTION: Precision medicine is defined as personalized interventions fitted to patients' or tumors' characteristics. Patients diagnosed with different neoplasms have benefited from a personalized therapeutic approach in terms of response and survival. However, several challenges must be addressed for precision oncology to become a global reality. Access to genomic testing that allows biomarker identification is a main issue. AREAS COVERED: A nonsystematic literature review about inequities in access to molecular genetic testing, focusing on lung cancer as the prominent example, was performed by a group of expert clinical oncologists. EXPERT OPINION: Access to molecular tests and their matched treatments differ between regions of the world and even among diverse populations in the same country. Socioeconomic characteristics are often strongly correlated with this disparity. Furthermore, although the cost is a determinant factor for inequality, other issues have been recognized. Advances in the education of healthcare professionals, patient advocacy initiatives, building local laboratory workstreams, and promoting favorable regulatory environment are vital factors in promoting equal access.


Subject(s)
Lung Neoplasms , Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Medical Oncology , Neoplasms/drug therapy , Precision Medicine
12.
Ageing Res Rev ; 90: 102033, 2023 09.
Article in English | MEDLINE | ID: mdl-37595640

ABSTRACT

Alzheimer's Disease (AD) is the most common form of dementia, affecting almost 50 million of people around the world, characterized by a complex and age-related progressive pathology with projections to duplicate its incidence by the end of 2050. AD pathology has two major hallmarks, the amyloid beta (Aß) peptides accumulation and tau hyperphosphorylation, alongside with several sub pathologies including neuroinflammation, oxidative stress, loss of neurogenesis and synaptic dysfunction. In recent years, extensive research pointed out several therapeutic targets which have shown promising effects on modifying the course of the disease in preclinical models of AD but with substantial failure when transposed to clinic trials, suggesting that modulating just an isolated feature of the pathology might not be sufficient to improve brain function and enhance cognition. In line with this, there is a growing consensus that an ideal disease modifying drug should address more than one feature of the pathology. Considering these evidence, ß-secretase (BACE1), Glycogen synthase kinase 3ß (GSK-3ß) and acetylcholinesterase (AChE) has emerged as interesting therapeutic targets. BACE1 is the rate-limiting step in the Aß production, GSK-3ß is considered the main kinase responsible for Tau hyperphosphorylation, and AChE play an important role in modulating memory formation and learning. However, the effects underlying the modulation of these enzymes are not limited by its primarily functions, showing interesting effects in a wide range of impaired events secondary to AD pathology. In this sense, this review will summarize the involvement of BACE1, GSK-3ß and AChE on synaptic function, neuroplasticity, neuroinflammation and oxidative stress. Additionally, we will present and discuss new perspectives on the modulation of these pathways on AD pathology and future directions on the development of drugs that concomitantly target these enzymes.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Humans , Glycogen Synthase Kinase 3 beta , Amyloid beta-Peptides , Amyloid Precursor Protein Secretases , Neurobiology , Neuroinflammatory Diseases , Aspartic Acid Endopeptidases
13.
An. bras. dermatol ; An. bras. dermatol;98(4): 429-439, July-Aug. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447226

ABSTRACT

Abstract The frequency of the use of drugs that act on the epidermal growth factor receptor (EGFR) is increasing, with the consequent onset of cutaneous toxicity, specifically acneiform eruption. The authors extensively review the topic, focusing on describing how these drugs can affect the skin and its appendages, that is, the pathophysiology that encompasses the cutaneous toxicity related to the use of EGFR inhibitors. In addition, it was possible to list the risk factors that may be associated with adverse effects of these drugs. Based on this recent knowledge, the authors expect to aid in the management of patients who are more vulnerable to toxicity, reduce morbidities, and improve the quality of life of patients undergoing treatment with EGFR inhibitors. Other issues related to the toxicity of EGFR inhibitors, such as the clinical aspects of the acneiform eruption grades, and other different types of cutaneous and mucosal reactions, are also included in the article.

14.
Am J Cancer Res ; 13(4): 1547-1559, 2023.
Article in English | MEDLINE | ID: mdl-37168350

ABSTRACT

Drug resistance remains a major obstacle in the treatment of mucoepidermoid carcinomas (MEC) leading to tumor recurrence, disease progression, and metastasis. Emerging evidence suggests that drug resistance is mediated by the presence of a highly adaptative subpopulation of cancer cells known as cancer stem cells (CSC). We have previously reported that solid tumors use NFkB signaling as a chemotherapy-resistant mechanism. We have also shown that interfering with the epigenome of solid tumors is an effective strategy to control the population of CSC. Here, we sought to investigate the effects of the NFkB inhibitor emetine and the HDAC inhibitor SAHA on the biology of MEC CSC and assessed whether this combination therapy would favor the standard of care therapy comprised of the administration of Cisplatin (CDDP). Our findings suggested that the administration of low concentrations of emetine and SAHA is more effective in disrupting CSC in MEC, while the administration of emetine in combination with CDDP constitutes an effective therapy to target non-CSC MEC tumor cells.

15.
Clin Transl Oncol ; 25(10): 3042-3056, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37079213

ABSTRACT

BACKGROUND: Belonging to the G-protein coupled receptor 1 family, G protein-coupled receptor 176 (GPR176) is associated with the Gz/Gx G-protein subclass and is capable of decreasing cAMP production. METHODS: GPR176 expression was detected by qRT-PCR, bioinformatics analysis, Western blot and immunohistochemistry, and compared with clinicopathological characteristics of breast cancer. GPR176-related genes and pathways were subjected to bioinformatic analysis. We also explored the effects of GPR176 on the phenotypes of breast cancer cells. RESULTS: Lower expression of GPR176 mRNA was seen in breast cancer than in normal tissues, but the opposite pattern was found for its protein (p < 0.05). GPR176 mRNA was associated with female sex, low T staging, non-Her-2+ subtypes, non-mutant p53 status in breast cancer (p < 0.05). GPR176 methylation was negatively correlated with its mRNA level and T staging in breast cancer, and was higher in breast cancer than normal tissues (p < 0.05). GPR176 protein expression was positively correlated with older age, small tumor size, and non-luminal-B subtype of breast cancers (p < 0.05). The differential genes of GPR176 were involved in receptor-ligand interaction, RNA maturation, and so forth (p < 0.05). GPR176-related genes were categorized into cell mobility, membrane structure, and so on (p < 0.05). GPR176 knockdown weakened the proliferation, glucose catabolism, anti-apoptosis, anti-pyroptosis, migration, invasion, and epithelial-mesenchymal transition of breast cancer cells. CONCLUSION: These results indicate that GPR176 might be involved in the tumorigenesis and subsequent progression of breast cancer by deteriorating aggressive phenotypes. It might be utilized as a potential biomarker to indicate the aggressive behaviors and poor prognosis of breast cancer and a potential target of genetic therapy.


Subject(s)
Genetic Therapy , Neoplasms , Female , Animals , Biomarkers , Cell Movement/genetics , Phenotype , RNA, Messenger/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation , Cell Line, Tumor , Prognosis , Neoplasms/genetics
16.
Curr Cancer Drug Targets ; 23(11): 900-909, 2023.
Article in English | MEDLINE | ID: mdl-37076963

ABSTRACT

BACKGROUND: Breast and ovarian tumors with pathogenic variants in BRCA1 or BRCA2 genes are more sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi) treatment than wildtype tumors. Pathogenic variants in non-BRCA1/2 homologous recombination repair genes (HRR) also concede sensitivity to PARPi treatment. RAD50 participates in the Mre11-RAD50-Nbn (MRN) complex of the HRR pathway and plays an important role in DNA repair. OBJECTIVE: The objective of this study is to evaluate whether RAD50 protein deficiency modulates the PARPi response in breast cancer cell lines. METHODS: T47D breast cancer cell line was modified using small interfering RNA and CRISPR/Cas9 technology, to knockout the RAD50 gene. PARPi response (niraparib, olaparib and rucaparib alone or in combination with carboplatin), in T47D and T47D-edited clones, was evaluated by cell viability, cell cycle, apoptosis and protein expression analyses. RESULTS: Treatment with niraparib and carboplatin exerted a synergistic effect on T47D-RAD50 deficient cells and an antagonistic effect on T47D cells parental. Cell cycle analysis demonstrated an increase in the G2/M population in cells treated with niraparib or rucaparib alone or in combination with carboplatin. T47D-RAD50 deficient cells treated with rucaparib and carboplatin exhibited twofold levels in late apoptosis, also showing differences in PARP activation. All T47D RAD50 deficient clones treated with niraparib or rucaparib combined with carboplatin, or rucaparib alone showed increased levels of H2AX phosphorylation. CONCLUSIONS: T47D RAD50 deficient cells treated with PARP inhibitors alone or in combination with carboplatin showed cell cycle arrest in the G2/M phase, leading to death by apoptosis. Thus, RAD50 deficiency may be a good biomarker for predicting PARPi response.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Female , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Carboplatin/pharmacology , Carboplatin/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , DNA Repair , Ovarian Neoplasms/drug therapy
17.
An Bras Dermatol ; 98(4): 429-439, 2023.
Article in English | MEDLINE | ID: mdl-36990917

ABSTRACT

The frequency of the use of drugs that act on the epidermal growth factor receptor (EGFR) is increasing, with the consequent onset of cutaneous toxicity, specifically acneiform eruption. The authors extensively review the topic, focusing on describing how these drugs can affect the skin and its appendages, that is, the pathophysiology that encompasses the cutaneous toxicity related to the use of EGFR inhibitors. In addition, it was possible to list the risk factors that may be associated with adverse effects of these drugs. Based on this recent knowledge, the authors expect to aid in the management of patients who are more vulnerable to toxicity, reduce morbidities, and improve the quality of life of patients undergoing treatment with EGFR inhibitors. Other issues related to the toxicity of EGFR inhibitors, such as the clinical aspects of the acneiform eruption grades, and other different types of cutaneous and mucosal reactions, are also included in the article.


Subject(s)
Acneiform Eruptions , Antineoplastic Agents , Drug-Related Side Effects and Adverse Reactions , ErbB Receptors , Humans , Acneiform Eruptions/chemically induced , Acneiform Eruptions/drug therapy , Antineoplastic Agents/adverse effects , Biomarkers , ErbB Receptors/antagonists & inhibitors , Quality of Life , Risk Factors
18.
Clin Transl Oncol ; 25(7): 1991-1998, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36745340

ABSTRACT

As one of the most aggressive malignant tumors, pancreatic ductal adenocarcinoma (PDAC) ranks as the fourth cancer-related mortality in the world. The extremely low survival rate is closely related to early invasion and distant metastasis. However, effective target therapy for weakening its malignant behavior remains limited. Over the past decades, many proteins correlating with invasion and metastasis of PDAC have been discovered using proteomics. The discovery of these proteins gives us a deeper understanding of the invasive and migratory processes of PDAC. This review is a systemic integration of these proteomics findings over the past 10 years. The discovered proteins were typically associated with the glycolytic process, hypoxic microenvironment, post-translational modification, extracellular matrix, exosomes, cancer stem cells, and immune escape. Some proteins were found to have multiple functions, and, cooperation between different proteins in the invasive and metastatic processes was found. This cooperation, and not just single protein function, may play a more significant role in the poor prognosis of PDAC. Therefore, multi-target therapy against these cooperative networks should be a primary choice in the future.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proteomics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Tumor Microenvironment , Pancreatic Neoplasms
19.
Am J Cancer Res ; 13(12): 6038-6050, 2023.
Article in English | MEDLINE | ID: mdl-38187064

ABSTRACT

Despite many progresses in the development of new systemic therapies for oral squamous cell carcinoma (OSCC), the five-year survival rate of OSCC is low. The traditional chemotherapies approach (cisplatin - CDDP) shows some limitations like drug toxicity, limited efficacy, and drug resistance. Promising studies suggested OSCC cancer stem cells (CSC) presented resistance to CDDP. We have previously studied many targets, and we extensively showed the efficacy of the NFκB signaling and the role of histones acetylation, on different malignant tumors, including adenoid cystic carcinoma and mucoepidermoid carcinoma, but until then the effects of the NFkB inhibitor and histone deacetylase (HDAC) inhibitor on the biology of OSCC were not evaluated. Here we assessed the pharmacological inhibitor of NFκB emetine and HDAC inhibitor SAHA on the behavior of CSC derived from OSCC. Our data suggested that CDDP administration resulted in reduced viability of bulk OSCC cells and increased CSC. A single and isolated shot of emetine and SAHA were able to disrupt CSC by inhibiting the NFκB pathway and increasing the histone acetylation levels, respectively. Further, the combined administration of emetine and SAHA presented the same CSC disruption as seen in emetine alone.

20.
Mol Cell Endocrinol ; 558: 111757, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36049598

ABSTRACT

OBJECTIVE: To evaluate the therapeutic potential of vitamin D receptor (VDR) signaling in adrenocortical carcinoma (ACC) cells. METHODS: We evaluated VDR's methylation pattern in H295R ACC cells, and investigated the effects of calcitriol and seocalcitol treatments on adrenocortical tumorigenesis. RESULTS: VDR was hypermethylated and underexpressed in basal H295R cells. Treatments with calcitriol and seocalcitol restored VDR signaling, resulted in antiproliferative effects, and impaired Wnt/B-catenin signaling. RNAseq of treated cells demonstrated VDR activation on steroid hormones biosynthesis and Rap1 signaling, among others. In vivo, seocalcitol constrained the growth of H295R xenografts and reduced autonomous tumor steroid secretion without hypercalcemia-associated side effects. CONCLUSIONS: H295R cells present VDR hypermethylation, which can be responsible for its underexpression and signaling inactivation under basal conditions. VDR signaling promoted antiproliferative effects in vitro and in vivo, suggesting that it may be a potential therapeutic target for ACC and a valuable tool for patient's clinical management.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Humans , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/genetics , Calcitriol/pharmacology , Carcinogenesis/genetics , Catenins/pharmacology , Cell Line, Tumor , Cell Transformation, Neoplastic , Hormones/pharmacology , Receptors, Calcitriol/genetics , Vitamin D/pharmacology , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL