Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.976
Filter
1.
Int J Biol Macromol ; 275(Pt 1): 133586, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960242

ABSTRACT

In the face of agricultural challenges posed by both abiotic and biotic stressors, phytopathogens emerge as formidable threats to crop productivity. Conventional methods, involving the use of pesticides and microbes, often lead to unintended consequences. In addressing this issue, ICAR -Indian Institute of Oilseeds Research (ICAR-IIOR) has developed a chitosan-based double-layer seed coating. Emphasizing crop input compatibility, entrapment, and characterization, the study has yielded promising results. The double-layer coating on groundnut seeds enhanced germination and seedling vigor. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed the structural changes and entrapment of crop inputs. The persistence of T. harzianum (Th4d) and Bradyrhizobium sp. in chitosan blended film in studied soils revealed that viable propogules of Th4d were recorded in double layer treatment combination with 3.54 and 3.50 Log CFUs/g of soil (colony forming units) and Bradyrhizobium sp. with 5.34 and 5.27 Log CFUs/g of soil at 90 days after application (DAA). Root colonization efficacy studies of Th4d and Bradyrhizobium sp. in groundnut crop in studied soils revealed that, maximum viable colonies were observed at 45 days after sowing (DAS). This comprehensive study highlights the potential of chitosan-based double-layer seed coating providing a promising and sustainable strategy for stress management in agriculture.

2.
Front Plant Sci ; 15: 1420068, 2024.
Article in English | MEDLINE | ID: mdl-38957597

ABSTRACT

Some volatile organic compounds (VOCs) produced by microorganisms have the ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, and promote plant growth. Among them, 6-pentyl-alpha-pyrone (6-PP), a ketone produced by Trichoderma fungi, has emerged as a focal point of interest. 6-PP has been isolated and characterized from thirteen Trichoderma species and is the main VOC produced, often accounting for >50% of the total VOCs emitted. This review examines abiotic and biotic interactions regulating the production of 6-PP by Trichoderma, and the known effects of 6-PP on plant pathogens through direct and indirect mechanisms including induced systemic resistance. While there are many reports of 6-PP activity against plant pathogens, the vast majority have been from laboratory studies involving only 6-PP and the pathogen, rather than glasshouse or field studies including a host plant in the system. Biopesticides based on 6-PP may well provide an eco-friendly, sustainable management tool for future agricultural production. However, before this can happen, challenges including demonstrating disease control efficacy in the field, developing efficient delivery systems, and determining cost-effective application rates must be overcome before 6-PP's potential for pathogen control can be turned into reality.

3.
Biotechnol Biofuels Bioprod ; 17(1): 90, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937852

ABSTRACT

BACKGROUND: Erythritol, a natural polyol, is a low-calorie sweetener synthesized by a number of microorganisms, such as Moniliella pollinis. Yet, a widespread use of erythritol is limited by high production costs due to the need for cultivation on glucose-rich substrates. This study explores the potential of using Trichoderma reesei as an alternative host for erythritol production, as this saprotrophic fungus can be cultivated on lignocellulosic biomass residues. The objective of this study was to evaluate whether such an alternative host would lead to a more sustainable and economically viable production of erythritol by identifying suitable carbon sources for erythritol biosynthesis, the main parameters influencing erythritol biosynthesis and evaluating the feasibility of scaling up the defined process. RESULTS: Our investigation revealed that T. reesei can synthesize erythritol from glucose but not from other carbon sources like xylose and lactose. T. reesei is able to consume erythritol, but it does not in the presence of glucose. Among nitrogen sources, urea and yeast extract were more effective than ammonium and nitrate. A significant impact on erythritol synthesis was observed with variations in pH and temperature. Despite successful shake flask experiments, the transition to bioreactors faced challenges, indicating a need for further scale-up optimization. CONCLUSIONS: While T. reesei shows potential for erythritol production, reaching a maximum concentration of 1 g/L over an extended period, its productivity could be improved by optimizing the parameters that affect erythritol production. In any case, this research contributes valuable insights into the polyol metabolism of T. reesei, offering potential implications for future research on glycerol or mannitol production. Moreover, it suggests a potential metabolic association between erythritol production and glycolysis over the pentose phosphate pathway.

4.
Microbiol Spectr ; : e0349523, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916333

ABSTRACT

Fungal cell walls are dynamic extracellular matrices that enable efficient adaptation to changing environments. While the cell wall compositions of yeasts, human, and plant pathogenic fungi have been studied to some extent, the cell walls of mycoparasites remain poorly characterized. Trichoderma species comprise a diverse group of soil fungi with different survival strategies and lifestyles. The comparative study of cell wall carbohydrate-active enzymes in 13 Trichoderma spp. revealed that the types of enzymes involved in chitin and chitosan metabolism are phylogenetically distant between mycoparasitic and saprotrophic species. Here, we compare the carbohydrate composition and function of the cell wall of a saprotrophic strain Trichoderma reesei with that of the mycoparasitic, biological control agent Trichoderma atroviride. Monosaccharide and glycosidic linkage analyses as well as dual in situ interaction assays showed that the cell wall polysaccharide composition is conserved between both species, except for the amounts of chitin detected. The results suggest that the observed accumulation of chitosan during mycoparasitism may prevent host recognition. Remarkably, Trichoderma atroviride undergoes dynamic cell wall adaptations during both vegetative development and mycoparasitism, which appears to be confirmed by an evolutionarily expanded group of specialized enzymes. Overall, our analyses support the notion that habitat specialization is reflected in cell wall architecture and that plastic chitin remodeling may confer an advantage to mycoparasites, ultimately enabling the successful invasion and parasitism of plant pathogens. This information may potentially be exploited for the control of crop diseases using biological agents. IMPORTANCE: Trichoderma species are emerging model fungi for the development of biocontrol agents and are used in industrial biotechnology as efficient enzyme producers. Fungal cell walls are complex structures that differ in carbohydrate, protein, and enzyme composition across taxa. Here, we present a chemical characterization of the cell walls of two Trichoderma spp., namely the predominantly saprotrophic Trichoderma reesei and the mycoparasite Trichoderma atroviride. Chemical profiling revealed that Trichoderma spp. remodel their cell wall to adapt to particular lifestyles, with dynamic changes during vegetative development. Importantly, we found that chitosan accumulation during mycoparasitism of a fungal host emerged as a sophisticated strategy underpinning an effective attack. These insights shed light on the molecular mechanisms that allow mycoparasites to overcome host defenses and can be exploited to improve the application of T. atroviride in biological pest control. Moreover, our results provide valuable information for targeting the fungal cell wall for therapeutic purposes.

5.
J Fungi (Basel) ; 10(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921393

ABSTRACT

Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a ß-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.

6.
Environ Pollut ; 357: 124431, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925214

ABSTRACT

Soil contamination by hydrocarbons is a problem that causes severe damage to the environment and public health. Technologies such as bioremediation using native microbial species represent a promising and environmentally friendly alternative for decontamination. This study aimed to isolate indigenous fungi species from the State of Rio de Janeiro, Brazil and evaluate their diesel degrading capacity in soils contaminated with crude oil. Seven filamentous fungi were isolated after enrichment cultivation from soils collected from contaminated sites and subjected to growth analysis on diesel nutrient media. Two fungal species were pre-selected and identified by morphological genus analysis and molecular techniques as Trichoderma asperellum and Penicillium pedernalense. The microdilution test showed that T. asperellum presented better fungal growth in high diesel concentrations than P. pedernalense. In addition, T. asperellum was able to degrade 41 and 54% of the total petroleum hydrocarbon (TPH) content present in soil artificially contaminated with diesel (10 g/kg of soil) in 7 and 14 days of incubation, respectively. In higher diesel concentration (1000 g of diesel/kg of soil) the TPH degradation reached 26%, 45%, and 48%, in 9, 16, and 30 d, respectively. The results demonstrated that the selected species was suitable for diesel degradation. We can also conclude that the isolation and selection process proposed in this work was successful and represents a simple alternative for obtaining native species with hydrocarbon degradation capacity, for use in the bioremediation process in the recovery of contaminated areas in an ecologically acceptable way.

7.
Appl Environ Microbiol ; : e0208223, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899886

ABSTRACT

Genetic engineering at the genomic scale provides a rapid means to evolve microbes for desirable traits. However, in many filamentous fungi, such trials are daunted by low transformation efficiency. Differentially expressed genes under certain conditions may contain important regulatory factors. Accordingly, although manipulating these subsets of genes only can largely reduce the time and labor, engineering at such a sub-genomic level may also be able to improve the microbial performance. Herein, first using the industrially important cellulase-producing filamentous fungus Trichoderma reesei as a model organism, we constructed suppression subtractive hybridization (SSH) libraries enriched with differentially expressed genes under cellulase induction (MM-Avicel) and cellulase repression conditions (MM-Glucose). The libraries, in combination with RNA interference, enabled sub-genomic engineering of T. reesei for enhanced cellulase production. The ability of T. reesei to produce endoglucanase was improved by 2.8~3.3-fold. In addition, novel regulatory genes (tre49304, tre120391, and tre123541) were identified to affect cellulase expression in T. reesei. Iterative manipulation using the same strategy further increased the yield of endoglucanase activity to 75.6 U/mL, which was seven times as high as that of the wild type (10.8 U/mL). Moreover, using Humicola insolens as an example, such a sub-genomic RNAi-assisted strain evolution proved to be also useful in other industrially important filamentous fungi. H. insolens is a filamentous fungus commonly used to produce catalase, albeit with similarly low transformation efficiency and scarce knowledge underlying the regulation of catalase expression. By combining SSH and RNAi, a strain of H. insolens producing 28,500 ± 288 U/mL of catalase was obtained, which was 1.9 times as high as that of the parent strain.IMPORTANCEGenetic engineering at the genomic scale provides an unparalleled advantage in microbial strain improvement, which has previously been limited only to the organisms with high transformation efficiency such as Saccharomyces cerevisiae and Escherichia coli. Herein, using the filamentous fungus Trichoderma reesei as a model organism, we demonstrated that the advantage of suppression subtractive hybridization (SSH) to enrich differentially expressed genes and the convenience of RNA interference to manipulate a multitude of genes could be combined to overcome the inadequate transformation efficiency. With this sub-genomic evolution strategy, T. reesei could be iteratively engineered for higher cellulase production. Intriguingly, Humicola insolens, a fungus with even little knowledge in gene expression regulation, was also improved for catalase production. The same strategy may also be expanded to engineering other microorganisms for enhanced production of proteins, organic acids, and secondary metabolites.

8.
Front Plant Sci ; 15: 1388841, 2024.
Article in English | MEDLINE | ID: mdl-38835860

ABSTRACT

Trichoderma strains used in vineyards for the control of grapevine trunk diseases (GTDs) present a promising alternative to chemical products. Therefore, the isolation and characterization of new indigenous Trichoderma strains for these purposes is a valuable strategy to favor the adaptation of these strains to the environment, thus improving their efficacy in the field. In this research, a new Trichoderma species, Trichoderma carraovejensis, isolated from vineyards in Ribera de Duero (Spain) area, has been identified and phylogenetically analyzed using 20 housekeeping genes isolated from the genome of 24 Trichoderma species. A morphological description and comparison of the new species has also been carried out. In order to corroborate the potential of T. carraovejensis as a biological control agent (BCA), confrontation tests against pathogenic fungi, causing various GTDs, have been performed in the laboratory. The compatibility of T. carraovejensis with different pesticides and biostimulants has also been assessed. This new Trichoderma species demonstrates the ability to control pathogens such as Diplodia seriata, as well as high compatibility with powdered sulfur-based pesticides. In conclusion, the autochthonous species T. carraovejensis can be an effective alternative to complement the currently used strategies for the control of wood diseases in its region of origin.

9.
Arch Microbiol ; 206(7): 286, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829426

ABSTRACT

Controlling the hazard of sclerotia produced by the Sclerotinia sclerotiorum is very complex, and it is urgent to adopt an effective method that is harmonious environmentally to control the disease. Among the six isolates isolated from the rhizosphere of lettuce, the isolate HZA84 demonstrated a high activity in its antagonism towards Sclerotinia sclerotiorum in vitro, and produces siderophore. By amplification of internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II subunit (RPB2) genes, the isolate HZA84 was identified as Trichoderma asperellum, which was confirmed by analysis of phylogenetic tree. The Scanning electron microscope monitoring detected that the isolate HZA84 spread over the sclerotial surface, thus, damaging, decomposing, and distorting the globular cells of the outer cortex of the sclerotia. The Real-time polymerase chain reaction (RT-qPCR) analysis disclosed the overexpression of two genes (chit33 and chit37) encoding the endochitinase in addition to one gene (prb1) encoding the proteinase during 4 and 8 days of the parasitism behavior of isolate HZA84 on the sclerotia surface. These enzymes aligned together in the sclerotia destruction by hyperparasitism. On the other hand, the pots trial revealed that spraying of isolate HZA84 reduced the drop disease symptoms of lettuce. The disease severity was decreased by 19.33 and the biocontrol efficiency was increased by 80.67% within the fourth week of inoculation. These findings magnify the unique role of Trichoderma in disrupting the development of plant diseases in sustainable ways.


Subject(s)
Ascomycota , Lactuca , Phylogeny , Plant Diseases , Lactuca/microbiology , Ascomycota/genetics , Ascomycota/physiology , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Rhizosphere , Antibiosis , Hypocreales/genetics , Hypocreales/metabolism , Hypocreales/isolation & purification , Soil Microbiology , Trichoderma/genetics , Trichoderma/isolation & purification , Trichoderma/physiology , Trichoderma/metabolism
10.
Sci Rep ; 14(1): 13371, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862560

ABSTRACT

Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.


Subject(s)
Laccase , Talaromyces , Trichoderma , Talaromyces/enzymology , Laccase/metabolism , Laccase/chemistry , Laccase/isolation & purification , Laccase/genetics , Trichoderma/enzymology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/isolation & purification , Fungal Proteins/genetics , Substrate Specificity , Copper/metabolism , Kinetics , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/isolation & purification , Catalytic Domain
11.
Lett Appl Microbiol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942473

ABSTRACT

Neocosmospora solani causes Fusarium wilt disease and root rot, which are serious problems worldwide. To determine the growth inhibition of Neocosmospora solani by Trichoderma hamatum volatile organic compounds (VOCs), the major chemical components of Trichoderma hamatum VOCs and the differences in their contents at different times were analysed, and the activity of these components was evaluated. The antifungal activity of Trichoderma hamatum was measured by a screening test, as Trichoderma hamatum exhibited strong antagonism against Neocosmospora solani in vitro. The double plate technique was used to verify the activity of Trichoderma hamatum VOCs, and the inhibition rate was 63.77%. Neocosmospora solani mycelia were uneven and expanded, the contents of the cells leaked, and the mycelia shrank and presented a diaphragm in the hyphae upon Trichoderma hamatum VOCs treatment. Trichoderma hamatum VOCs and their contents at different times were analysed by using GC-MS. 6-Pentyl-2H-pyran-2-one clearly presented in greater amounts than the other components on Day 3, 4, 5, and 6. VOCs from Trichoderma hamatum exhibited evident effects on the percentage of healthy fruit after Day 3. Moreover, Trichoderma hamatum can improve the biological control of diseases caused by soilborne pathogens, and can be applied in biocontrol fields.

12.
Fungal Biol ; 128(4): 1859-1867, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876538

ABSTRACT

Volatile organic compounds (VOCs) produced by yeasts can positively affect crops, acting as antifungals or biostimulants. In this study, Aureobasidium pullulans and Metschnikowia pulcherrima were evaluated as potential antagonists of Trichoderma spp., common fungal pathogen in mushroom cultivation. To assess the biocontrol ability and biostimulant properties of the selected yeast species, in vitro co-culture and VOCs exposure assays were conducted. In both assays, VOCs produced by Aureobasidium spp. showed the stronger antifungal activity with a growth inhibition up to 30 %. This result was further confirmed by the higher volatilome alcohol content revealed by solid phase microextraction-gas chromatography mass spectrometry (SPME/GC-MS). Overall, Aureobasidium strains can be potentially used as biocontrol agent in Pleorotus ostreatus and Cyclocybe cylindracea mycelial growth, without affecting their development as demonstrated by VOCs exposure assay and Fourier-transform infrared spectroscopy (FT-IR). Conversely, M. pulcherrima was characterized by a lower or absent antifungal properties and by a volatilome composition rich in isobutyl acetate, an ester often recognized as plant growth promoter. As confirmed by FT-IR, Lentinula mycelia exposed to M. pulcherrima VOCs showed a higher content of proteins and lipids, suggesting an improvement of some biochemical properties. Our study emphasizes that VOCs produced by specific yeast strains are potentially powerful alternative to synthetic fungicide in the vegetative growth of mushroom-forming fungi and also able to modify their biochemical composition.


Subject(s)
Agaricales , Gas Chromatography-Mass Spectrometry , Mycelium , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Mycelium/growth & development , Mycelium/drug effects , Mycelium/chemistry , Agaricales/chemistry , Agaricales/growth & development , Agaricales/drug effects , Agaricales/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Biological Control Agents/pharmacology , Biological Control Agents/chemistry , Metschnikowia/growth & development , Metschnikowia/drug effects , Metschnikowia/metabolism , Antibiosis , Aureobasidium , Trichoderma/growth & development , Trichoderma/chemistry , Trichoderma/metabolism , Solid Phase Microextraction
13.
J Agric Food Chem ; 72(27): 15228-15236, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935872

ABSTRACT

A new fusicoccane diterpenoid, harziaderma A (1), two novel harziane diterpenoids, harzianones G and H (2 and 3), one revised harziane diterpenoid (4), and two known diterpenoids (5 and 6) were isolated from the fungus Trichoderma harzianum and established via NMR, HRESIMS, Mo2(OAc)4-induced circular dichroism (ICD) and electronic circular dichroism (ECD) calculations. It is worth noting that compound 1 represents the first instance of a fusicoccane-type diterpenoid derived from T. harzianum. The structure of furanharzianone B was revised to 4 via careful spectroscopic analyses. Additionally, compounds 2 and 5 could suppress the overall growth of the foodborne bacterial pathogen Bacillus cereus. Compound 4 showed a moderate suppressive impact on NO generation in lipopolysaccharide (LPS)-treated RAW 264.7 cells. The discoveries from the current study not only expanded the structural variety of diterpenoids isolated from T. harzianum but also laid a robust foundation for the development of harziane diterpenoids as anti-foodborne pathogen agents.


Subject(s)
Anti-Bacterial Agents , Diterpenes , Diterpenes/pharmacology , Diterpenes/chemistry , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , RAW 264.7 Cells , Molecular Structure , Bacillus cereus/drug effects , Hypocreales/chemistry
14.
Pest Manag Sci ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742618

ABSTRACT

BACKGROUND: Phytophthora capsici is a destructive oomycete pathogen, causing huge economic losses for agricultural production. The genus Trichoderma represents one of the most extensively researched categories of biocontrol agents, encompassing a diverse array of effective strains. The commercial biocontrol agent Trichoderma harzianum strain T-22 exhibits pronounced biocontrol effects against many plant pathogens, but its activity against P. capsici is not known. RESULTS: T. harzianum T-22 significantly inhibited the growth of P. capsici mycelia and the culture filtrate of T-22 induced lysis of P. capsici zoospores. Electron microscopic analyses indicated that T-22 significantly modulated the ultrastructural composition of P. capsici, with a severe impact on the cell wall integrity. Dual RNA sequencing revealed multiple biological processes involved in the inhibition during the interaction between these two microorganisms. In particular, a marked upregulation of genes was identified in T. harzianum that are implicated in cell wall degradation or disruption. Concurrently, the presence of T. harzianum appeared to potentiate the susceptibility of P. capsici to cell wall biosynthesis inhibitors such as mandipropamid and dimethomorph. Further investigations showed that mandipropamid and dimethomorph could strongly inhibit the growth and development of P. capsici but had no impact on T. harzianum even at high concentrations, demonstrating the feasibility of combining T. harzianum and these cell wall synthesis inhibitors to combat P. capsici. CONCLUSION: These findings provided enhanced insights into the biocontrol mechanisms against P. capsici with T. harzianum and evidenced compatibility between specific biological and chemical control strategies. © 2024 Society of Chemical Industry.

15.
J Fungi (Basel) ; 10(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786678

ABSTRACT

When cultivating on wheat bran or deactivated fungal mycelium as a model of "natural growth", the ability of Trichoderma to synthesize extracellular L-lysine-α-oxidase (LysO) simultaneously with cell-wall-degrading enzymes (proteases, xylanase, glucanases, chitinases, etc.), responsible for mycoparasitism, was shown. LysO, in turn, causes the formation of H2O2 and pipecolic acid. These compounds are known to be signaling molecules and play an important role in the induction and development of systemic acquired resistance in plants. Antagonistic effects of LysO have been demonstrated against phytopathogenic fungi and Gram-positive or Gram-negative bacteria with dose-dependent cell death. The antimicrobial effect of LysO decreased in the presence of catalase. The generating intracellular ROS in the presence of LysO was also shown in both bacteria and fungi, which led to a decrease in viable cells. These results suggest that the antimicrobial activity of LysO is due to two factors: the formation of exogenous hydrogen peroxide as a product of the enzymatic oxidative deamination of L-lysine and the direct interaction of LysO with the cell wall of the micro-organisms. Thus, LysO on its own enhances the potential of the producer in the environment; namely, the enzyme complements the strategy of the fungus in biocontrol and indirectly participates in inducing SAR and regulating the relationship between pathogens and plants.

16.
J Fungi (Basel) ; 10(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786706

ABSTRACT

Atractylodes lancea is a perennial herb whose rhizome (AR) is a valuable traditional Chinese medicine with immense market demand. The cultivation of Atractylodes lancea faces outbreaks of root rot and deterioration in herb quality due to complex causes. Here, we investigated the effects of Trichoderma spp., well-known biocontrol agents and plant-growth-promoters, on ARs. We isolated Trichoderma strains from healthy ARs collected in different habitats and selected three T. harzianum strains (Th2, Th3 and Th4) with the strongest antagonizing effects on root rot pathogens (Fusarium spp.). We inoculated geo-authentic A. lancea plantlets with Th2, Th3 and Th4 and measured the biomass and quality of 70-day-old ARs. Th2 and Th3 promoted root rot resistance of A. lancea. Th2, Th3 and Th4 all boosted AR quality: the concentration of the four major medicinal compounds in ARs (atractylon, atractylodin, hinesol and ß-eudesmol) each increased 1.6- to 18.2-fold. Meanwhile, however, the yield of ARs decreased by 0.58- to 0.27-fold. Overall, Th3 dramatically increased the quality of ARs at a relatively low cost, namely lower yield, showing great potential for practical application. Our results showed selectivity between A. lancea and allochthonous Trichoderma isolates, indicating the importance of selecting specific microbial patches for herb cultivation.

17.
Front Pharmacol ; 15: 1398135, 2024.
Article in English | MEDLINE | ID: mdl-38751785

ABSTRACT

The discovery of new therapeutic alternatives for cancer treatment is essential for improving efficacy and specificity, overcoming resistance, and enabling a more personalized approach for each patient. We investigated the antitumor activity of the crude ethanolic extract of the fungus Trichoderma asperelloides (ExtTa) and its interaction with chemotherapeutic drugs. It was observed, by MTT cytotoxicity assay, that ExtTa significantly reduced cell viability in breast adenocarcinoma, glioblastoma, lung carcinoma, melanoma, colorectal carcinoma, and sarcomas cell lines. The highest efficacy and selectivity of ExtTa were found against glioblastoma T98G and colorectal HCT116 cell lines. ExtTa is approximately four times more cytotoxic to those tumor cells than to non-cancer cell lines. A synergistic effect between ExtTa and doxorubicin was found in the treatment of osteosarcoma Saos-2 cells, as well as with 5-fluorouracil in the treatment of HCT116 colorectal carcinoma cells using CompuSyn software. Our data unravel the presence of bioactive compounds with cytotoxic effects against cancer cells present in T. asperelloides ethanolic crude extract, with the potential for developing novel anticancer agents.

18.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731537

ABSTRACT

The fungal genus Trichoderma is a rich source of structurally diverse secondary metabolites with remarkable pharmaceutical properties. The chemical constituents and anticancer activities of the marine-derived fungus Trichoderma lixii have never been investigated. In this study, a bioactivity-guided investigation led to the isolation of eleven compounds, including trichodermamide A (1), trichodermamide B (2), aspergillazine A (3), DC1149B (4), ergosterol peroxide (5), cerebrosides D/C (6/7), 5-hydroxy-2,3-dimethyl-7-methoxychromone (8), nafuredin A (9), and harzianumols E/F (10/11). Their structures were identified by using various spectroscopic techniques and compared to those in the literature. Notably, compounds 2 and 5-11 were reported for the first time from this species. Evaluation of the anticancer activities of all isolated compounds was carried out. Compounds 2, 4, and 9 were the most active antiproliferative compounds against three cancer cell lines (human myeloma KMS-11, colorectal HT-29, and pancreas PANC-1). Intriguingly, compound 4 exhibited anti-austerity activity with an IC50 of 22.43 µM against PANC-1 cancer cells under glucose starvation conditions, while compound 2 did not.


Subject(s)
Antineoplastic Agents , Trichoderma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Humans , Trichoderma/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Molecular Structure , Aquatic Organisms/chemistry , Drug Screening Assays, Antitumor
19.
Plants (Basel) ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732455

ABSTRACT

Soil-borne Trichoderma spp. have been extensively studied for their biocontrol activities against pathogens and growth promotion ability in plants. However, the beneficial effect of Trichoderma on inducing resistance against insect herbivores has been underexplored. Among diverse Trichoderma species, consistent with previous reports, we showed that root colonization by T. virens triggered induced systemic resistance (ISR) to the leaf-infecting hemibiotrophic fungal pathogens Colletotrichum graminicola. Whether T. virens induces ISR to insect pests has not been tested before. In this study, we investigated whether T. virens affects jasmonic acid (JA) biosynthesis and defense against fall armyworm (FAW) and western corn rootworm (WCR). Unexpectedly, the results showed that T. virens colonization of maize seedlings grown in autoclaved soil suppressed wound-induced production of JA, resulting in reduced resistance to FAW. Similarly, the bacterial endophyte Pseudomonas chlororaphis 30-84 was found to suppress systemic resistance to FAW due to reduced JA. Further comparative analyses of the systemic effects of these endophytes when applied in sterile or non-sterile field soil showed that both T. virens and P. chlororaphis 30-84 triggered ISR against C. graminicola in both soil conditions, but only suppressed JA production and resistance to FAW in sterile soil, while no significant impact was observed when applied in non-sterile soil. In contrast to the effect on FAW defense, T. virens colonization of maize roots suppressed WCR larvae survival and weight gain. This is the first report suggesting the potential role of T. virens as a biocontrol agent against WCR.

20.
Front Microbiol ; 15: 1376602, 2024.
Article in English | MEDLINE | ID: mdl-38800760

ABSTRACT

Banana (Musa acuminata) is the most important crop in the Canary Islands (38.9% of the total cultivated area). The main pathogen affecting this crop is the soil fungal Fusarium oxysporum f. sp. cubense subtropical race 4 (Foc-STR4), for which there is no effective control method under field conditions. Therefore, the use of native biological control agents may be an effective and sustainable alternative. This study aims to: (i) investigate the diversity and distribution of Trichoderma species in the rhizosphere of different banana agroecosystems affected by Foc-STR4 in Tenerife (the island with the greatest bioclimatic diversity and cultivated area), (ii) develop and preserve a culture collection of native Trichoderma species, and (iii) evaluate the influence of soil chemical properties on the Trichoderma community. A total of 131 Trichoderma isolates were obtained from 84 soil samples collected from 14 farms located in different agroecosystems on the northern (cooler and wetter) and southern (warmer and drier) slopes of Tenerife. Ten Trichoderma species, including T. afroharzianum, T. asperellum, T. atrobrunneum, T. gamsii, T. guizhouense, T. hamatum, T. harzianum, T. hirsutum, T. longibrachiatum, and T. virens, and two putative novel species, named T. aff. harzianum and T. aff. hortense, were identified based on the tef1-α sequences. Trichoderma virens (35.89% relative abundance) and T. aff. harzianum (27.48%) were the most abundant and dominant species on both slopes, while other species were observed only on one slope (north or south). Biodiversity indices (Margalef, Shannon, Simpson, and Pielou) showed that species diversity and evenness were highest in the healthy soils of the northern slope. The Spearman analysis showed significant correlations between Trichoderma species and soil chemistry parameters (mainly with phosphorus and soil pH). To the best of our knowledge, six species are reported for the first time in the Canary Islands (T. afroharzianum, T. asperellum, T. atrobrunneum, T. guizhouense, T. hamatum, T. hirsutum) and in the rhizosphere of banana soils (T. afroharzianum, T. atrobrunneum, T. gamsii, T. guizhouense, T. hirsutum, T. virens). This study provides essential information on the diversity/distribution of native Trichoderma species for the benefit of future applications in the control of Foc-STR4.

SELECTION OF CITATIONS
SEARCH DETAIL
...