Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.219
Filter
1.
Sci Total Environ ; 946: 174492, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969113

ABSTRACT

Certain agricultural plastics, i.e., mulching films, are generally considered as potent sources of micro- and nanoplastics (MNPs), due to their direct application on soil and waste mishandling. During the synthesis and fabrication of such agricultural plastics, it is necessary to use chemicals, the so-called plastic additives (PAs), improving the physicochemical properties of the final polymeric product. However, since PAs are loosely bound on the polymer matrix, they can potentially leach into the soil environment with unidentified effects. Clearly, to monitor the fate of PAs in the terrestrial ecosystem, it is necessary to develop accurate, sensitive and robust analytical methods. To this end, a comprehensive analytical strategy was developed for monitoring 16 PAs with diverse physicochemical properties (partition coefficient; -3 < logP<19) in soil samples using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). For this purpose, two different extraction procedures were developed, namely, a single step ultrasound-assisted extraction (UAE) using ethyl acetate or an aqueous solution of methanol and a binary extraction, combining Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) and UAE principles with n-hexane as the extractant. Interestingly, within the sample preparation investigation, we identified in-lab contamination sources of PAs, e.g., centrifuge tubes or microfilters. Such consumables are made of plastic contaminating the procedural blanks and omitting their use was necessary to acquire satisfactory analytical performance. In detail, method validation was performed for 16 compounds achieving recoveries mainly in the range 70-120 %, repeatability (expressed as relative standard deviation, RSD %) < 20 % and limits of quantification (LOQs) ranging between 0.2 and 20 ng/g dry weight (dw). Importantly, the presented strategies are added to the very limited available for PA determination in soil, a topical issue with a significant and rather understudied impact on agriculture.

2.
J Vet Res ; 68(2): 255-261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947148

ABSTRACT

Introduction: Chicken bones, a by-product of the poultry industry, can directly or indirectly enter the food chain. Bone meal and bone products could be sources of many contaminants. Considering the wide range of uses made of bones in the culinary and food industries, this material needs to be safe and antibiotic residue-free. To determine if such is the case, the concentration of doxycycline in chicken bones was investigated, this antimicrobial being one of the most commonly used in poultry production. Material and Methods: Ross 308 broilers were grouped into three experimental and one control group. Doxycycline was administered in drinking water at therapeutic and sub-therapeutic doses, as well as via spray treatment. The concentration of doxycycline in bones was determined post slaughter by ultra-high performance liquid chromatography-tandem mass spectrometry. Results: Doxycycline was quantified at 135 µg/kg 22 days after the last day of antibiotic administration at therapeutic doses; 2,285 µg/kg after sub-therapeutic treatment for 27 days and 9.62 µg/kg 22 days after the end of spray application. Conclusion: High concentrations and long persistence of doxycycline in bones were found in this study. Doxycycline can contaminate all bone-derived products in the food and fertiliser industries.

3.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893526

ABSTRACT

Itampolin A, a natural brominated tyrosine alkaloid isolated from the sponge Iotrochota purpurea, has been shown to have good inhibitory effects in lung cancer cells as a p38α inhibitor. A simple, sensitive, and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been established, validated, and applied to the study of the pharmacokinetics and tissue distribution of itampolin A following intragastric and intravenous administration. Itampolin A and theophylline (internal standard, IS) were extracted by the simple protein precipitation technique using methanol as the precipitating solvent. Chromatographic separation was achieved by using the optimized mobile phase of a 0.1% formic acid aqueous solution and acetonitrile in the gradient elution mode. Itampolin A and IS were detected and quantified using positive electrospray ionization in the multiple reaction monitoring mode with transitions of m/z 863.9 → 569.1 for itampolin A and m/z 181.1 → 124.1 for IS, respectively. The assay exhibited a linear dynamic range of 1-1600 ng/mL for itampolin A in biological samples and the low limit of quantification was 1 ng/mL. Non-compartmental pharmacokinetic parameters indicated that itampolin A was well-absorbed into the systemic circulation and rapidly eliminated after administration. The apparent distribution volume of itampolin A was much higher after intragastric administration than that after intravenous administration. A tissue distribution study showed that itampolin A could be detected in different tissues and maintained a high concentration in the lung, which provided a material basis for its effective application in lung cancer. The pharmacokinetic process and tissue distribution characteristics of imtapolin A were expounded in this study, which can provide beneficial information for the further research and clinical application of itampolin A.


Subject(s)
Administration, Intravenous , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Tissue Distribution , Chromatography, High Pressure Liquid/methods , Rats , Male , Rats, Sprague-Dawley
4.
Article in English | MEDLINE | ID: mdl-38905720

ABSTRACT

Decitabine is a DNA methyltransferase inhibitor used in the treatment of acute myeloid leukemia and myelodysplastic syndrome. The notion that ongoing trials are presently exploring the combined use of decitabine, with or without the cytidine deaminase inhibitor cedazuridine, and other antileukemic drugs necessitates a comprehensive understanding of pharmacokinetic properties and an evaluation of drug-drug interaction liabilities. We report here the development and validation of a sensitive UHPLC-MS/MS method for quantifying decitabine in mouse plasma, which should be useful for such studies. The method involved a one-step protein precipitation extraction, and chromatographic separation on an XBridge HILIC column using gradient elution. The method was found to be robust, accurate, precise, and sufficiently sensitive (lower limit of quantitation, 0.4 ng/mL) to determine decitabine concentrations in microvolumes of plasma from mice receiving the agent orally or intravenously in the presence or absence of cedazuridine.


Subject(s)
Decitabine , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Decitabine/pharmacokinetics , Decitabine/blood , Decitabine/administration & dosage , Mice , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Azacitidine/pharmacokinetics , Azacitidine/blood , Azacitidine/analogs & derivatives , Azacitidine/administration & dosage , Azacitidine/chemistry , Linear Models , Uridine/pharmacokinetics , Uridine/blood , Uridine/analogs & derivatives , Sensitivity and Specificity , Limit of Detection
5.
J Pharm Biomed Anal ; 248: 116328, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38943819

ABSTRACT

Oxylipins are important low abundant signaling molecules in living organisms. In platelets they play a primary role in platelet activation and aggregation in the course of thrombotic events. In vivo, they are enzymatically synthesized by cyclooxygenases, lipoxygenases, or cytochrome P450 isoenzmes, resulting in diverse polyunsaturated fatty acid (FA) metabolites including hydroxy-, epoxy-, oxo-FAs, and endoperoxides with pro-thrombotic or anti-thrombotic effects. In a recent study, it was reported that hemin induces platelet death which was accompanied by enhanced reactive oxygen species (ROS) production (measured by flow cytometry) and lipid peroxidation (as determined by proxy using flow cytometry with BODIPY-C11 as sensor). Lipidomic studies further indicated significant changes of the platelet lipidome upon ex vivo hemin treatment, amongst others oxylipins were increased. The effect could be (at least partly) reversed by riociguat/diethylamine NONOate diethylammonium salt (DEA/NO) which modulates the soluble guanylate cyclase(sGC)-cGMP-cGMP-dependent protein kinase I(cGKI) signaling axis. In the original work, oxylipins were measured by a non-enantioselective UHPLC-tandem-MS assay which may not give the full picture whether oxylipin elevation is due to ROS or by enzymatic processes. We present here the study of the stereochemical disposition of hemin-induced platelet lipidome alterations using Chiralpak IA-U column with amylose tris(3,5-dimethylphenylcarbamate) chiral selector immobilized on 1.6 µm silica particles. It was found that the major platelet oxylipins 12-HETE, 12-HEPE and 14-HDoHE (from 12-LOX) and 12-HHT (from COX-1) were present in S-configuration indicating their enzymatic formation. On the other hand, both R and S enantiomers of 9- and 13-HODE, 11- and 15-HETE were detected, possibly due to enzyme promiscuity rather than non-specific oxidation (by ROS or autoxidation), as confirmed by multi-loop based two-dimensional LC-MS using selective comprehensive mode with achiral RPLC in the 1st dimension and chiral LC in the 2nd using a multiple heart-cutting interface. For 12-HETrE, a peak at the retention time of the R-enantiomer was ruled out as isobaric interference by 2D-LC-MS. In particular, arachidonic acid derivates 12(S)-HHT, 11(R)-HETE and 15(S)-HETE were found to be sensitive to hemin and cGMP modulation.

6.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931084

ABSTRACT

In this study, based on ethnobotanical data recorded in Transylvania, the polyphenolic compounds and the permeability of the aerial part's extract of Tanacetum balsamita were investigated. Ultrahigh-performance liquid chromatography-tandem mass spectrometry was applied for the analysis of the extracts. Parallel artificial membrane permeability assay (PAMPA) for the gastrointestinal tract and the blood-brain barrier was conducted. In the ethanolic and aqueous extracts of the species traditionally used for wound, furuncle, and liver disorders, 92 polyphenols were characterized (e.g., flavonoid, hydroxycinnamic acid, catechin, dihydroxybenzoyl, lignan derivatives, and a monoterpene) including 54 compounds identified for the first time in the plant. In the PAMPA tests, eight components were shown to be capable of passive diffusion across the studied membranes. These include apigenin and seven methoxylated flavonoid derivatives. Based on these results, methoxylated flavonoids might promote the pharmacological potential of T. balsamita to be applied in the enhancement of novel remedies.

7.
Adv Lab Med ; 5(2): 173-180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939197

ABSTRACT

Objectives: Spontaneous bacterial peritonitis is a frequent severe complication in cirrhotic patients with ascites. Carbapenem antibiotics are currently the treatment of choice for patients with hospital-acquired or healthcare-related infections. However, there is limited evidence available on the efficacy of ertapenem in cirrhotic patients with spontaneous bacterial peritonitis. As a result, the pharmacokynetics and pharmacodynamics of this antibiotic are still unknown. The objective of this study was to develop and validate measurement procedures based on liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to determine ertapenem concentrations in plasma and ascitic fluid. Methods: Samples were pretreated by acetronile protein-precipitation. Chromatographic separation is performed on a C18 reversed-phase Acquity®-UPLC®-BEHTM column (2.1 × 100 mm id, 1.7 µm) using a non-linear gradient of water/acetonitrile containing 0.1 % of formic acid at a flow rate of 0.4 mL/min. Ertapenem and its internal standard (ertapenem-D4) are detected by tandem mass spectrometry using positive electrospray ionization and multiple reaction monitoring, and using 476.2 â†’ 346.0/432.2 as mass transition for ertapenem and 480.2 â†’ 350.0 for its internal standard. Results: No significant interferences or carry-over contamination were observed. Imprecisions, absolute relative bias, matrix effects and normalized recoveries were ≤14.5 %, ≤9.3 % (92.8-104.5) % and (98.8-105.8) %, respectively. Chromatographic measurement procedures were linear from (0.50-100) mg/L. Conclusions: The measurement procedures based on UHPLC-MS/MS developed and validated in this study could be useful in pharmacokynetic and pharmacodynamic studies in subjects with liver cirrhosis who develop spontaneous bacterial peritonitis treated with ertapenem.

8.
Article in English | MEDLINE | ID: mdl-38935119

ABSTRACT

To explore potential factors contributing to high fluoroquinolone resistance levels, it is essential to develop analytical methods capable of detecting residues and trace amounts of antibiotic use in broilers. The aim of the present study was to develop and in-house validate a sensitive UHPLC-MS/MS method capable of determining enrofloxacin (ENR) and flumequine (FLU) residues at slaughter age (day 45) when the animals were treated with these antimicrobials one day after hatching. Residue depletion of ENR and FLU in feathers was also assessed. Two experimental trials were performed, both consisting of 5 different treatment groups. In the first trial animals were treated with ENR and in the second one with FLU. The developed method was successfully validated and was found to be sensitive enough to detect residues of fluoroquinolones in the feathers up until slaughter age in all treatment groups. Average ENR concentration on day 45 was 10 ng g-1 feather after drinking water treatment, with all concentrations above the limit of quantification (LOQ) of 5 ng g-1 feather. For FLU average concentration on day 45 after drinking water administration was 4 ng g-1 feather, with an LOQ of 1 ng g-1 feather. Therefore, the method is suited for application to monitor fluoroquinolone use in broilers.

9.
Toxics ; 12(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38922075

ABSTRACT

Mycotoxins are a class of exogenous metabolites that are major contributors to foodborne diseases and pose a potential threat to human health. However, little attention has been paid to trace mycotoxin co-exposure situations in vivo. To address this, we devised a novel analytical strategy, both highly sensitive and comprehensive, for quantifying 67 mycotoxins in human plasma samples. This method employs isotope dilution mass spectrometry (IDMS) for approximately 40% of the analytes and utilizes internal standard quantification for the rest. The mycotoxins were classified into three categories according to their physicochemical properties, facilitating the optimization of extraction and detection parameters to improve analytical performance. The lowest limits of detection and quantitation were 0.001-0.5 µg/L and 0.002-1 µg/L, respectively, the intra-day precision ranged from 1.8% to 11.9% RSD, and the intra-day trueness ranged from 82.7-116.6% for all mycotoxins except Ecl, DH-LYS, PCA, and EnA (66.4-129.8%), showing good analytical performance of the method for biomonitoring. A total of 40 mycotoxins (including 24 emerging mycotoxins) were detected in 184 plasma samples (89 from infertile males and 95 from healthy males) using the proposed method, emphasizing the widespread exposure of humans to both traditional and emerging mycotoxins. The most frequently detected mycotoxins were ochratoxin A, ochratoxin B, enniatin B, and citrinin. The incidence of exposure to multiple mycotoxins was significantly higher in infertile males than in healthy subjects, particularly levels of ochratoxin A, ochratoxin B, and citrinin, which were significantly increased. It is necessary to carry out more extensive biological monitoring to provide data support for further study of the relationship between mycotoxins and male infertility.

10.
Curr Protoc ; 4(6): e1087, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896100

ABSTRACT

Fabry disease (FD) is a lysosomal storage disorder caused by variants in the GLA gene encoding α-galactosidase A, an enzyme required for catabolism of globotriaosylceramide (Gb3). Accumulation of Gb3 in patients' cells, tissues, and biological fluids causes clinical manifestations including ventricular hypertrophy, renal insufficiency, and strokes. This protocol describes a methodology to analyze urinary Gb3 and creatinine. Samples are diluted with an internal standard solution containing Gb3(C17:0) and creatinine-D3, centrifuged, and directly analyzed by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) using an 8.7-min method. Eight Gb3 isoforms [C16:0, C18:0, C20:0, C22:1, C22:0, C24:1, C24:0, and (C24:0)OH] are analyzed and the total is normalized to creatinine. Confirmation ions are monitored to detect potential interferences. The Gb3 limit of quantification is 0.023 µg/ml. Its interday coefficients of variation (3 concentrations measured) are ≤15.4%. This method minimizes matrix effects (≤6.5%) and prevents adsorption or precipitation of Gb3. Urine samples are stable (bias <15%) for 2 days at 21°C, 7 days at 4°C, and 4 freeze/thaw cycles, whereas prepared samples are stable for 5 days at 21°C, and 14 days at 4°C. The Gb3/creatinine age-related upper reference limits (mean + 2 standard deviations) are 29 mg/mol creatinine (<7 years) and 14 mg/mol creatinine (≥7 years). This simple, robust protocol has been fully validated (ISO 15189) and provides a valuable tool for diagnosis and monitoring of FD patients. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Analysis of urinary globotriaosylceramide (Gb3) and creatinine by UHPLC-MS/MS Support Protocol 1: Preparation of the urinary quality controls Support Protocol 2: Preparation of the urine matrix used for the Gb3 calibration curve Support Protocol 3: Preparation of the Gb3 calibrators Support Protocol 4: Preparation of the working solution containing the internal standards Support Protocol 5: Preparation of the creatinine calibrators Support Protocol 6: Preparation of the UHPLC solutions and mobile phases.


Subject(s)
Fabry Disease , Tandem Mass Spectrometry , Trihexosylceramides , Humans , Tandem Mass Spectrometry/methods , Trihexosylceramides/urine , Trihexosylceramides/metabolism , Chromatography, High Pressure Liquid/methods , Fabry Disease/urine , Fabry Disease/diagnosis , Creatinine/urine
11.
J Chromatogr A ; 1730: 465096, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38889585

ABSTRACT

Bisphenol analogues (BPs) are a class of typical environmental endocrine-disrupting chemicals (EDCs). This study aimed to establish a highly sensitive and high-throughput method utilizing 96-well solid-phase extraction (96-well SPE) in conjunction with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) employing multiple reaction monitoring (MRM), information-dependent acquisition (IDA), and enhanced product ion (EPI) scan modes for the identification and quantitative analysis of nine BPs in human urine. Urine samples were initially thawed to room temperature, followed by digestion using ß-glucuronidase in an ammonium acetate buffer solution at 37 °C overnight. Subsequently, they were purified using 96-well SPE and finally analyzed by UHPLC-MS/MS. The limits of detection (LOD) for the nine BPs ranged from 0.05 µg∙kg-1 to 0.3 µg kg-1. Average recoveries fell within the range of 92.8 % to 111.7 %. Moreover, both the intra-day and inter-day precisions were satisfactory, with relative standard deviations (RSDs) ranging from 2.2 % to 6.7 % and 3.5 % to 6.3 %, respectively. The targets in the samples exhibited a perfect match, with a purity fit value exceeding 70 % from the self-built library. The analytical method developed in this study demonstrates high accuracy and sensitivity. In addition, the MRM-IDA-EPI mode can effectively identifies the target BPs and prevents false positive detection of analytes in the urine.

12.
Molecules ; 29(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38893479

ABSTRACT

Chamazulene (CA) is an intensely blue molecule with a wealth of biological properties. In cosmetics, chamazulene is exploited as a natural coloring and soothing agent. CA is unstable and tends to spontaneously degrade, accelerated by light. We studied the photodegradation of CA upon controlled exposure to UVB-UVA irradiation by multiple techniques, including GC-MS, UHPLC-PDA-ESI-MS/MS and by direct infusion in ESI-MSn, which were matched to in silico mass spectral simulations to identify degradation products. Seven byproducts formed upon UVA exposure for 3 h at 70 mW/cm2 (blue-to-green color change) were identified, including CA dimers and CA benzenoid, which were not found on extended 6 h irradiation (green-to-yellow fading). Photostability tests with reduced irradiance conducted in various solvents in the presence/absence of air indicated highest degradation in acetonitrile in the presence of oxygen, suggesting a photo-oxidative mechanism. Testing in the presence of antioxidants (tocopherol, ascorbyl palmitate, hydroxytyrosol, bakuchiol, γ-terpinene, TEMPO and their combinations) indicated the highest protection by tocopherol and TEMPO. Sunscreens ethylhexyl methoxycinnamate and particularly Tinosorb® S (but not octocrylene) showed good CA photoprotection. Thermal stability tests indicated no degradation of CA in acetonitrile at 50 °C in the dark for 50 days; however, accelerated degradation occurred in the presence of ascorbyl palmitate.


Subject(s)
Azulenes , Oils, Volatile , Oxidation-Reduction , Azulenes/chemistry , Oils, Volatile/chemistry , Photolysis , Ultraviolet Rays , Antioxidants/chemistry , Achillea/chemistry , Artemisia/chemistry , Tandem Mass Spectrometry , Gas Chromatography-Mass Spectrometry
13.
Front Pharmacol ; 15: 1344369, 2024.
Article in English | MEDLINE | ID: mdl-38903992

ABSTRACT

Background: Tacrolimus (Tac) is commonly used for postoperative immunosuppressive therapy in transplant patients. However, problems, for example, low bioavailability and unstable plasma concentration, persist for a long time, Studies have reported that the deoxyschizandrin could effectively improve these problems, but the pharmacokinetic parameters (PKs) of Tac combined with deoxyschizandrin are still unknown. Method: In this study, an UHPLC-MS/MS method has been established for simultaneous quantitation of Tac and deoxyschizandrin. The PKs of Tac influenced by different doses of deoxyschizandrin after single and multiple administrations were analyzed, and the different impact of deoxyschizandrin and Wuzhi capsule on PKs of Tac were compared. Result: The modified UHPLC-MS/MS method could rapid quantification of Tac and deoxyschizandrin within 2 min using bifendatatum as the internal standard (IS). All items were successfully validated. The C max of deoxyschizandrin increased from 148.27 ± 23.20 to 229.13 ± 54.77 ng/mL in rats after multiple administrations for 12 days. After co-administration of 150 mg/mL deoxyschizandrin, Tac had an earlier T max and greater C max and AUC0-t, and the C max and AUC0-t of Tac increased from 14.26 ± 4.73 to 54.48 ± 14.37 ng/mL and from 95.10 ± 32.61 to 315.23 ± 92.22 h/ng/mL, respectively; this relationship was positively proportional to the dosage of deoxyschizandrin. In addition, compared with Wuzhi capsule, the same dose of deoxyschizandrin has a better effective on Tac along with more stable overall PKs. Conclusion: An UHPLC-MS/MS method was established and validated for simultaneous detection of deoxyschizandrin and Tac. Deoxyschizandrin could improve the in vivo exposure level and stability of Tac, besides, this effect is better than Wuzhi capsule in same dose.

14.
Food Chem ; 456: 139948, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38852444

ABSTRACT

The natural vanilla market, which generates millions annually, is predominantly dependent on Vanilla planifolia, a species characterized by low genetic variability and susceptibility to pathogens. There is an increasing demand for natural vanilla, prized for its complex, authentic, and superior quality compared to artificial counterparts. Therefore, there is a necessity for innovative production alternatives to ensure a consistent and stable supply of vanilla flavors. In this context, vanilla crop wild relatives (WRs) emerge as promising natural sources of the spice. However, these novel species must undergo toxicity assessments to evaluate potential risks and ensure safety for consumption. This study aimed to assess the non-mutagenic and non-carcinogenic properties of ethanolic extracts from V. bahiana, V. chamissonis, V. cribbiana, and V. planifolia through integrated metabolomic profiling, in vitro toxicity assays, and in silico analyses. The integrated approach of metabolomics, in vitro assays, and in silico analyses has highlighted the need for further safety assessments of Vanilla cribbiana ethanolic extract. While the extracts of V. bahiana, V. chamissonis, and V. planifolia generally demonstrated non-mutagenic properties in the Ames assay, V. cribbiana exhibited mutagenicity at high concentrations (5000 µg/plate) in the TA98 strain without metabolic activation. This finding, coupled with the dose-dependent cytotoxicity observed in WST-1 (Water Soluble Tetrazolium) assays, a colorimetric method that assesses the viability of cells exposed to a test substance, underscores the importance of concentration in the safety evaluation of these extracts. Kaempferol and pyrogallol, identified with higher intensity in V. cribbiana, are potential candidates for in vitro mutagenicity. Although the results are not conclusive, they suggest the safety of these extracts at low concentrations. This study emphasizes the value of an integrated approach in providing a nuanced understanding of the safety profiles of natural products, advocating for cautious use and further research into V. cribbiana mutagenicity.

15.
J Chromatogr A ; 1729: 465053, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38852267

ABSTRACT

Improper use of antimicrobials in veterinary medicine can lead to residues in food of animal origin. Post-mortem monitoring of antibiotics in animal products is carried out as part of official EU programmes on food safety and consumer health. Oral fluid testing is a promising surveillance method to monitor appropriate treatment in pigs and to avoid residues in edible tissues. Oral fluid analysis can be implemented in an antibiotic residue control programme, thus preventing economic losses due to meat disposal as a result of drug detection in tissues after the withdrawal period. An analytical method was developed for the analysis of 68 compounds from 12 groups (penicillins, cephalosporins, sulfonamides, macrolides, fluoroquinolones, tetracyclines, aminoglycosides, pleuromutilins, diaminopyrimidines, lincosamides, polypeptides and sulfones) in pig oral fluid. Extraction of antibacterials was performed with 0.5 % formic acid. Analyses were carried out by ultra-high performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-MS/MS) detection. The chromatographic separation was achieved on a Zorbax analytical column (2.1 × 50 mm) with a mobile phase consisting of acetonitrile and heptafluorobutyric acid (HFBA). The total run time was 7 min. The method was validated as a confirmatory method according to the Commission Implementing Regulation (EU) 2021/808. The reliability of the method was verified by testing real samples from pig farms.


Subject(s)
Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Swine , Chromatography, High Pressure Liquid/methods , Limit of Detection , Reproducibility of Results , Saliva/chemistry , Anti-Bacterial Agents/analysis , Drug Residues/analysis , Anti-Infective Agents/analysis
16.
Food Chem X ; 22: 101467, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38872719

ABSTRACT

This study was based on QuEChERS cleanup coupled with UHPLC-MS/MS for the determination of γ-oryzanol compounds in vegetable oils. Several parameters of QuEChERS and UHPLC-MS/MS were studied for purification and detection of γ-oryzanol compounds in oil samples. Under the optimized conditions, the whole pretreatment procedure could be accomplished within 10 min without tedious procedure, larger volume of organic solvent and complicated apparatus. The limit of detections and the limit of quantifications for γ-oryzanol compounds were ranging from 0.1-0.3 µg kg-1 and 0.4-1.0 µg kg-1, respectively. Satisfactory recoveries of all analyts were ranging from 72.2 % to 101.3 %, and the intra-day and inter-day precision were less than 10.6 %. The validation indicated that rice band oil and corn oil were rich in 24-mCAF, CAF, ß-SIF, CMF and STF. The QuEChERS-UHPLC-MS/MS simultaneously quantified five γ-oryzanol compounds in lipid matrices and assessed the nutritional and functional substances of vegetable oils.

17.
Article in English | MEDLINE | ID: mdl-38936270

ABSTRACT

BACKGROUND: Due to the close correlation between choline, L-carnitine, betaine and their intestinal microbial metabolites, including trimethylamine (TMA) and trimethylamine N-oxide (TMAO), and creatinine, there has been an increasing interest in the study of these compounds in vivo. METHODS: In this study, a rapid stable isotope dilution (SID)-UHPLC-MS/MS method was developed for the simultaneous determination of choline, L-carnitine, betaine, TMA, TMAO and creatinine in plasma, liver and feces of rats. The method was validated using quality control (QC) samples spiked at low, medium and high levels. Second, we applied the method to quantify the effects of Rosa Roxburghii Tratt juice (RRTJ) on plasma, liver, and fecal levels of choline, L-carnitine, betaine, TMA, TMAO, and creatinine in high-fat diet-induced hyperlipidemic rats, demonstrating the utility of the method. RESULTS: The limits of detection (LOD) were 0.04-0.027 µM and the limits of quantification (LOQ) were 0.009-0.094 µM. The linear ranges for each metabolite in plasma were choline1.50-96 µM; L-carnitine: 2-128 µM; betaine: 3-192 µM; TMA: 0.01-40.96 µM; TMAO: 0.06-61.44 µM and creatinine: 1-64 µM (R2 ≥ 0.9954). The linear ranges for each metabolite in liver were Choline: 12-768 µM; L-carnitine: 1.5-96 µM; betaine: 10-640 µM; TMA: 0.5-32 µM; TMAO: 0.02-81.92 µM and creatinine: 0.2-204.8 µM (R2 ≥ 0.9938). The linear ranges for each metabolite in feces were choline: 1.5-96 µM; L-carnitine: 0.01-40.96 µM; Betaine: 1.5-96 µM; TMA: 1-64 µM; TMAO: 0.02-81.92 µM and Creatinine: 0.02-81.92 µM (R2 ≥ 0.998). The intra-day and inter-day coefficients of variation were < 8 % for all analytes. The samples were stabilized after multiple freeze-thaw cycles (3 freeze-thaw cycles), 24 h at room temperature, 24 h at 4 °C and 20 days at -80 °C. The samples were stable. The average recovery was 89 %-99 %. This method was used to quantify TMAO and its related metabolites and creatinine levels in hyperlipidemic rats. The results showed that high-fat diet led to the disorder of TMAO and its related metabolites and creatinine in rats, which was effectively improved after the intervention of Rosa Roxburghii Tratt juice(RRTJ). CONCLUSIONS: A method for the determination of choline, L-carnitine, betaine, TMA, TMAO and creatinine in plasma, liver and feces samples was established, which is simple, time-saving, high precision, accuracy and recovery.

18.
J Sep Sci ; 47(11): e2400181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863110

ABSTRACT

Topotecan (TPT) is used in the treatment of retinoblastoma, the most common malignant intraocular tumor in children. TPT undergoes pH-dependent hydrolysis of the lactone ring to the ring-opened carboxylate form, with the lactone form showing antitumor activity. A selective, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the determination of both forms of TPT in one mobile phase composition in plasma and vitreous humor matrices. The method showed an excellent linear range of 0.375-120 ng/mL for the lactone. For the carboxylate, the linear range was from 0.75 to 120 ng/mL. The matrix effect and the recovery for the lactone ranged from 98.5% to 106.0% in both matrices, for the carboxylate form, it ranged from 94.9% to 101.2%. The dynamics of the transition between TPT lactone and TPT carboxylate were evaluated at different pH environments. The stability of TPT forms was assessed in plasma and vitreous humor at 8 and 37°C and a very fast conversion of lactone to carboxylate form occurred at 37°C in both matrices. The method developed facilitates the investigation of TPT pharmacodynamics and the release kinetics in the development of the innovative local drug delivery systems.


Subject(s)
Lactones , Tandem Mass Spectrometry , Topotecan , Vitreous Body , Chromatography, High Pressure Liquid , Lactones/chemistry , Lactones/analysis , Vitreous Body/chemistry , Topotecan/chemistry , Topotecan/analysis , Humans , Carboxylic Acids/chemistry , Carboxylic Acids/analysis , Molecular Structure
19.
Biomed Chromatogr ; : e5933, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863152

ABSTRACT

Liquiritin (LQ), a kind of flavonoid isolated from licorice, was proven to have great potential in treating heart failure. Pharmacokinetic evaluation is important for demonstrating clinical efficacy and mechanisms, and the prototype drug and its metabolite profiling are important for drug discovery and development. However, the metabolism of LQ in acute myocardial infarction (AMI) model rats still needs to be studied in depth. An information-dependent acquisition (IDA)-ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was applied to profile LQ metabolites in AMI model rat plasma. Protein precipitation and extraction were used for sample preparation. Chromatographic separation was achieved using an XSelect BEH C18 column (2.1 × 150 mm, 2.5 µm) using gradient elution method combining 0.1% formic acid and acetonitrile with a flow rate of 0.3 mL/min. Twelve metabolites were identified in IDA mode, sulfation, glucuronidation, methylation, methyl esterification, glutamine conjugation, and valine conjugation, and their composite reactions were presumed as the primary pathways of LQ metabolism. The variation in the peak areas showed that the time to reach the peak drug concentration of LQ and 12 metabolites was within 5 h. In summary, IDA-bridged UHPLC-MS/MS from characteristic fragment ions toward confidence-enhanced identification could effectively screen and profile metabolites.

20.
Nat Prod Res ; 38(11): 1956-1960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739565

ABSTRACT

Magonia pubescens is a natural species from the Brazilian cerrado biome. Its fruits and seeds are used in the treatment of seborrheic dermatitis, a common inflammatory skin disease. In this work, the known compounds lapachol, stigmasterol, maniladiol and scopoletin were isolated from hexane and dichloromethane extracts of M. pubescens branches. The aqueous extract of this material was fractioned through a liquid-liquid partition and the obtained fractions were analyzed by UHPLC-MS/MS. The results obtained were compared with data from three databases, leading to the putative identification of 51 compounds from different classes, including flavonoids, saponins and triterpenes. The cytotoxicity of aqueous fractions was assayed against breast cancer (MDA-MB-231) and leukemia (THP-1 and K562) cells. The best activity was observed for fraction AE3 against MDA-MB-231 cells (IC50 30.72 µg.mL-1).


Subject(s)
Antineoplastic Agents, Phytogenic , Breast Neoplasms , Phytochemicals , Plant Extracts , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Breast Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Female , Phytochemicals/pharmacology , Phytochemicals/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Brazil , Leukemia/drug therapy , Flavonoids/pharmacology , Flavonoids/chemistry , K562 Cells , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Saponins/pharmacology , Saponins/chemistry , THP-1 Cells , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...