Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.247
Filter
1.
Heliyon ; 10(16): e36050, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224277

ABSTRACT

Atrial fibrillation (AF) is a common cardiac arrhythmia that seriously affects the quality of life of patients. Effective treatment and prevention are important to control the morbidity and mortality of AF. It has been found that cardiac fibrosis promotes the onset and progression of AF. It is now known that transforming growth factor ß (TGF-ß), an important fibrotic cytokine, plays an important role in cardiac fibrosis by inducing myofibroblast activation via the activation of classical (SMAD-based) and non-classical (non-SMAD-based) signaling pathways. In addition, specific activation of the Wnt/ß-catenin pathway has been shown to promote the transformation of fibroblasts into myofibroblasts. In recent years, a new family of proteins, namely Disheveled-associated antagonist of beta-catenin (DACT) 2, can affect the Wnt/ß-catenin and TGF-ß signaling pathways by regulating the phosphorylation levels of these target proteins, which in turn affects the progression of fibrosis. The present study focuses on the effect of DACT2-guided ß-catenin on atrial fibrosis. It is expected that the summarized information can be helpful in the treatment of AF.

2.
Neurochem Res ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235578

ABSTRACT

Temporal Lobe Epilepsy (TLE) is a severe neurological condition characterized by recurrent seizures that often do not respond well to available anti-seizure medications. TLE has been associated with epileptogenesis, a process that starts during the latent period following a neurologic insult and is followed by chronic phase. Recent research has linked canonical Wnt signaling to the pathophysiology of epileptogenesis and TLE. Our previous study demonstrated differential regulation of canonical Wnt signaling during early and late stage post status epilepticus (SE) induction. Building on these findings, our current study utilized Wnt modulators: GSK-3ß inhibitor 6-bromoindirubin-3'-oxime (6-Bio) and disheveled inhibitor niclosamide and investigated their impact on canonical Wnt signaling during the early (30 days) and later stages (60 days) following SE induction. We assessed several parameters, including seizure frequency, astrogliosis, synaptic density, and neuronal counts in hippocampal tissue. We used immunohistochemistry and Nissl staining to evaluate gliosis, synaptic density, and neuronal counts in micro-dissected hippocampi. Western blotting was used to examine the expression of proteins involved in canonical Wnt/ß-catenin signaling, and real-time PCR was conducted to analyze their relative mRNA expression. Wnt modulators, 6-Bio and Niclosamide were found to reduce seizure frequency and various other parameters including behavioral parameters, hippocampal morphology, astrogliosis and synaptic density at different stages of TLE.

3.
Cancer Cell Int ; 24(1): 306, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227913

ABSTRACT

Clinical trials and studies have implicated that E3 ubiquitin ligase BTBD3 (BTB Domain Containing 3) is a cancer-associated gene. However, the role and underlying mechanism of BTBD3 in colorectal cancer (CRC) is not fully understood yet. Herein, our study demonstrated that the mRNA and protein levels of BTBD3 were decreased in CRC tissues and associated with TYPO3 and Wnt/ß-catenin pathway. Our results showed that circRAE1 knockdown and TYRO3 overexpression activated Wnt/ß-catenin signaling pathway and the EMT process-associated markers, indicating that circRAE1/miR-388-3p/TYRO3 axis exacerbated tumorigenesis of CRC by activating Wnt/ß-catenin signaling pathway. In addition, overexpression of BTBD3 reduced CRC cell migration and invasion in vitro and inhibited tumor growth in vivo. Our data demonstrated that BTBD3 suppressed CRC progression through negative regulation of the circRAE1/miR-388-3p/TYRO3 axis and the Wnt/ß-catenin pathway. Our data further confirmed that BTBD3 bound and ubiquitinated ß-catenin and led to ß-catenin degradation, therefore blocked the Wnt/ß-catenin pathway and suppressed the CRC tumorigenesis. This study explored the mechanism of BTBD3 involved in CRC tumorigenesis and provided a new theoretical basis for the prevention and treatment of CRC.

4.
Iran J Basic Med Sci ; 27(10): 1251-1259, 2024.
Article in English | MEDLINE | ID: mdl-39229572

ABSTRACT

Objectives: Mammals have limited limb regeneration compared to amphibians. The role of Wnt signaling pathways in limb regeneration has rarely been studied. So, this study aimed to investigate the effect of Wnt-signaling using chemicals CHIR99021 and IWP-2 on amputated mice digit tips regeneration in an in vitro organ culture system. Materials and Methods: The distal phalanx of paws from C57BL/6J mouse fetuses at E14.5, E16.5, and E18.5 was amputated. Then, the hands were cultured for 7 days. Subsequently, paws were treated with 1-50 µg/ml concentration of CHIR99021 and 5-10 µg/ml concentration of IWP-2. Finally, the new tissue regrowth was assessed by histological analysis, immunohistochemistry for BC, TCF1, CAN, K14, and P63 genes, and beta-catenin and Tcf1 genes were evaluated with RT-qPCR. Results: The paws of E14.5 and E16.5 days were shrinkaged and compressed after 7 days, so the paws of 18.5E that were alive were selected. As a result, newly-grown masses at digit tips were observed in 25 and 30 µl/ml concentrations of the CHR99021 group but not in the IWP2 treatment (*P<0.05; **P<0.01). qRT-PCR analysis confirmed the significant up-regulation of beta-catenin and Tcf1 genes in CHIR99021 group in comparison to the IWP-2 group (P<0.05). Moreover, Alcian-blue staining demonstrated the presence of cartilage-like tissue at regenerated mass in the CHIR group. In immunohistochemistry analysis beta-catenin, ACN, Keratin-14, and P63 protein expression were observed in digit tips in the CHIR-treated group. Conclusion: By activating the Wnt signaling pathway, cartilage-like tissue formed in the blastema-like mass in the mouse's amputated digit tips.

5.
Proc Natl Acad Sci U S A ; 121(37): e2406854121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39231208

ABSTRACT

Alzheimer's disease (AD) is a prevalent neurodegenerative disease characterized by cognitive decline and learning/memory impairment associated with neuronal cell loss. Estrogen-related receptor α (ERRα) and ERRγ, which are highly expressed in the brain, have emerged as potential AD regulators, with unelucidated underlying mechanisms. Here, we identified genome-wide binding sites for ERRα and ERRγ in human neuronal cells. They commonly target a subset of genes associated with neurodegenerative diseases, including AD. Notably, Dickkopf-1 (DKK1), a Wnt signaling pathway antagonist, was transcriptionally repressed by both ERRα and ERRγ in human neuronal cells and brain. ERRα and ERRγ repress RNA polymerase II (RNAP II) accessibility at the DKK1 promoter by modulating a specific active histone modification, histone H3 lysine acetylation (H3K9ac), with the potential contribution of their corepressor. This transcriptional repression maintains Wnt signaling activity, preventing tau phosphorylation and promoting a healthy neuronal state in the context of AD.


Subject(s)
Alzheimer Disease , ERRalpha Estrogen-Related Receptor , Intercellular Signaling Peptides and Proteins , Receptors, Estrogen , tau Proteins , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Phosphorylation , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Wnt Signaling Pathway/genetics , Neurons/metabolism , Gene Expression Regulation , Animals , Promoter Regions, Genetic , Mice , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Brain/metabolism
6.
Biol Reprod ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223948

ABSTRACT

Trophoblast stem cells (TSCs), derived from the trophectoderm of the blastocyst, are used as an in vitro model to reveal the mechanisms underlying placentation in mammals. In humans, suitable culture conditions for TSC derivation have recently been established. The established human TSCs (hTSCs) differentiate efficiently toward two trophoblast subtypes: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). However, the efficiency of differentiation is lower in macaque TSCs than in hTSCs. Here, we demonstrate that the activation of Wnt signaling downregulated the expression of inhibitory G protein and induced trophoblastic lineage switching to the STB progenitor state. The treatment of macaque TSCs with a GSK-3 inhibitor, CHIR99021, upregulated STB progenitor markers and enhanced proliferation. Under the Wnt signaling-activated conditions, macaque TSCs effectively differentiated to STBs upon dbcAMP and forskolin treatment. RNA-seq analyses revealed the downregulation of inhibitory G protein, which may make macaque TSCs responsive to forskolin. Interestingly, this lineage switching appeared to be reversible as the macaque TSCs lost responsiveness to forskolin upon the removal of CHIR99021. The ability to regulate the direction of macaque TSC differentiation would be advantageous in elucidating the mechanisms underlying placentation in non-human primates.

7.
Biomed Mater ; 19(5)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114907

ABSTRACT

(+)4-cholesten-3-one has been proved to have potential wound healing effect in the process of wound regeneration. This study aimed to evaluate the effect of (+)4-cholesten-3-one/sodium alginate/gelatin on skin injury and reveal its potential molecular mechanism. First, we prepared sodium alginate/gelatin hydrogel (SA/Gel hydrogel) with different ratios and tested their characteristics. Based on these results, different concentrations of (+)4-cholesten-3-one were added into SA/Gel hydrogel. A full-thickness skin injury model was successfully established to evaluate wound healing activityin vivo. HE staining and Masson staining were used to evaluate the thickness of granulation tissue and collagen deposition level. Immunohistochemical staining and immunofluorescence staining were applied to detect the level of revascularization and proliferation in each group of wounds. Western blot, quantitative-PCR and immunofluorescence staining were used to detect the expression of proteins related to Wnt/ß-catenin signaling pathway in each group of wounds.In vitroresults showed that the hydrogel not only created a 3D structure for cell adhesion and growth, but also exhibited good swelling ability, excellent degradability and favorable bio-compatibility. Most importantly,in vivoexperiments further indicated that (+)4-cholesten-3-one/SA/Gel hydrogel effectively enhanced wound healing. The effectiveness is due to its superior abilities in accelerating healing process, granulation tissue regeneration, collagen deposition, promoting angiogenesis, tissue proliferation, as well as fibroblast activation and differentiation. The underlying mechanism was related to the Wnt/ß-catenin signaling pathway. This study highlighted that (+)4-cholesten-3-one/SA/Gel hydrogel holds promise as a wound healing dressing in future clinical applications.


Subject(s)
Alginates , Gelatin , Hydrogels , Regeneration , Skin , Wound Healing , Wound Healing/drug effects , Alginates/chemistry , Animals , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Skin/injuries , Skin/drug effects , Skin/metabolism , Regeneration/drug effects , Cell Proliferation/drug effects , Male , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats , Collagen/chemistry , Wnt Signaling Pathway/drug effects , Humans
8.
Oncotarget ; 15: 535-540, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39102216

ABSTRACT

WNT signaling regulates osteosarcoma proliferation. However, there is controversy in the field of osteosarcoma as to whether WNT signaling is pro- or anti-tumorigenic. WNT-targeting therapeutics, both activators and inhibitors, are compared. WNT5B, a ß-catenin-independent ligand, and WNT10B, a ß-catenin-dependent WNT ligand, are each expressed in osteosarcomas, but they are not expressed in the same tumors. Furthermore, WNT10B and WNT5B regulate different histological subtypes of osteosarcomas. Using WNT signaling modulators as therapeutics may depend on the WNT ligand and/or the activated signaling pathway.


Subject(s)
Bone Neoplasms , Osteosarcoma , Wnt Proteins , Wnt Signaling Pathway , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Humans , Wnt Proteins/metabolism , Wnt Proteins/antagonists & inhibitors , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Wnt Signaling Pathway/drug effects , Animals , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Molecular Targeted Therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , beta Catenin/metabolism , Gene Expression Regulation, Neoplastic
9.
Front Pharmacol ; 15: 1411285, 2024.
Article in English | MEDLINE | ID: mdl-39104397

ABSTRACT

Introduction: Romosozumab is a monoclonal antibody approved for osteoporosis which targets sclerostin, an endogenous inhibitor of Wnt/ß-catenin pathway. Given the essential roles of the Wnt/ß-catenin pathway in various tissues, we hypothesized romosozumab treatment may influence other conditions. Methods: This cohort study included patients prescribed romosozumab or parathyroid receptor (PTHR) agonists after 1 January 2019, using a Japanese electronic medical record database. The outcomes of interest included autoimmune disease, interstitial pneumonia, cardiovascular outcome, Alzheimer's disease, Parkinson's disease (PD), serious infections, and malignancies. A stabilized inverse probability-weighted Cox proportional hazard model was used to estimate the hazard ratios. Age- and gender-based subgroup analyses were conducted. Exploratory outcomes based on three-digit International Classification of Diseases 10th Revision-based were also examined. Results: In total, 2,673 patients treated with romosozumab and 5,980 treated with PTHR agonists were identified, respectively. While most outcomes of interest showed no association with romosozumab, the risk of PD decreased with romosozumab (hazard ratio [95% confidence interval], 0.37 [0.14-0.94]) compared with PTHR agonist. Regarding the cardiovascular outcome, no notable association was identified overall; however, gender-based subgroup analysis suggested that male sex may be a potential risk factor with romosozumab treatment. Only 16 of 903 exploratory outcomes were potentially influenced by romosozumab. Conclusion: Romosozumab lowered the risk of PD development compared with PTHR agonist. The study also highlights the utility of routinely collected health data for drug repositioning. While further validation is warranted, the findings suggest that the Wnt-ß-catenin pathway holds promise as a therapeutic target for PD.

10.
Cancers (Basel) ; 16(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39123414

ABSTRACT

Since the initial identification of oncogenic Wnt in mice and Drosophila, the Wnt signaling pathway has been subjected to thorough and extensive investigation. Persistent activation of Wnt signaling exerts diverse cancer characteristics, encompassing tumor initiation, tumor growth, cell senescence, cell death, differentiation, and metastasis. Here we review the principal signaling mechanisms and the regulatory influence of pathway-intrinsic and extrinsic kinases on cancer progression. Additionally, we underscore the divergences and intricate interplays of the canonical and non-canonical Wnt signaling pathways and their critical influence in cancer pathophysiology, exhibiting both growth-promoting and growth-suppressing roles across diverse cancer types.

11.
Front Mol Neurosci ; 17: 1427054, 2024.
Article in English | MEDLINE | ID: mdl-39114641

ABSTRACT

Spinal cord injury (SCI) denotes damage to both the structure and function of the spinal cord, primarily manifesting as sensory and motor deficits caused by disruptions in neural transmission pathways, potentially culminating in irreversible paralysis. Its pathophysiological processes are complex, with numerous molecules and signaling pathways intricately involved. Notably, the pronounced upregulation of the Wnt signaling pathway post-SCI holds promise for neural regeneration and repair. Activation of the Wnt pathway plays a crucial role in neuronal differentiation, axonal regeneration, local neuroinflammatory responses, and cell apoptosis, highlighting its potential as a therapeutic target for treating SCI. However, excessive activation of the Wnt pathway can also lead to negative effects, highlighting the need for further investigation into its applicability and significance in SCI. This paper provides an overview of the latest research advancements in the Wnt signaling pathway in SCI, summarizing the recent progress in treatment strategies associated with the Wnt pathway and analyzing their advantages and disadvantages. Additionally, we offer insights into the clinical application of the Wnt signaling pathway in SCI, along with prospective avenues for future research direction.

12.
J Orthop Surg Res ; 19(1): 467, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118123

ABSTRACT

BACKGROUND: Osteosarcoma is a soft tissue neoplasm with elevated recurrence risk and highly metastatic potential. Metal response element binding transcriptional factor 2 (MTF2) has been revealed to exert multiple activities in human tissues. The present research was conducted to explore the functions and related response mechanism of MTF2 in osteosarcoma which have not been introduced yet. METHODS: Bioinformatics tools identified the differential MTF2 expression in osteosarcoma tissues. MTF2 expression in osteosarcoma cells was examined with Western blot. Cell Counting Kit-8 (CCK-8) assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, wound healing as well as transwell assays measured cell proliferation, migration and invasion, respectively. Flow cytometry assay detected the cellular apoptotic level. Western blot also measured the expressions of proteins associated with epithelial mesenchymal transition (EMT), apoptosis and enhancer of zeste homolog 2 (EZH2)/secreted frizzled-related protein 1 (SFRP1)/Wnt signaling. Co-immunoprecipitation (Co-IP) assay confirmed MTF2-EZH2 interaction. RESULTS: MTF2 expression was increased in osteosarcoma tissues and cells. MTF2 interference effectively inhibited the proliferation, migration and invasion of osteosarcoma cells and promoted the cellular apoptotic rate. MTF2 directly bound to EZH2 and MTF2 silence reduced EZH2 expression, activated SFRP1 expression and blocked Wnt signaling in osteosarcoma cells. EZH2 upregulation or SFRP1 antagonist WAY-316606 partly counteracted the impacts of MTF2 down-regulation on the SFRP1/Wnt signaling and the biological phenotypes of osteosarcoma cells. CONCLUSIONS: MTF2 might down-regulate SFRP1 to activate Wnt signaling and drive the progression of osteosarcoma via interaction with EZH2 protein.


Subject(s)
Bone Neoplasms , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein , Osteosarcoma , Wnt Signaling Pathway , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/genetics , Humans , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Wnt Signaling Pathway/physiology , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Cell Proliferation/physiology , Cell Line, Tumor , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Apoptosis/physiology , Transcription Factors/metabolism , Transcription Factors/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Movement/physiology , Disease Progression , Gene Expression Regulation, Neoplastic
13.
Pharmacol Res ; 208: 107347, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153710

ABSTRACT

Ischemic heart failure rates rise despite decreased acute myocardial infarction (MI) mortality. Excessive myofibroblast activation post-MI leads to adverse remodeling. LIM kinases (LIMK1 and LIMK2) regulate cytoskeleton homeostasis and are pro-fibrotic markers in atrial fibrillation. However, their roles and mechanisms in postinfarction fibrosis and ventricular remodeling remain unclear. This study found that the expression of LIMKs elevated in the border zone (BZ) in mice MI models. LIMK1/2 double knockout (DKO) restrained pathological remodeling and reduced mortality by suppressing myofibroblast activation. By using adeno-associated virus (AAV) with a periostin promoter to overexpress LIMK1 or LIMK2, this study found that myofibroblast-specific LIMK2 overexpression diminished these effects in DKO mice, while LIMK1 did not. LIMK2 kinase activity was critical for myofibroblast proliferation by using AAV overexpressing mutant LIMK2 lack of kinase activity. According to phosphoproteome analysis, functional rescue experiments, co-immunoprecipitation, and protein-protein docking, LIMK2 led to the phosphorylation of ß-catenin at Ser 552. LIMK2 nuclear translocation also played a role in myofibroblast proliferation after MI with the help of AAV overexpressing mutant LIMK2 without nuclear location signal. Chromatin immunoprecipitation sequencing identified that LIMK2 bound to Lrp6 promoter region in TGF-ß treated cardiac fibroblasts, positively regulating Wnt signaling via Wnt receptor internalization. This study demonstrated that LIMK2 promoted myofibroblast proliferation and adverse cardiac remodeling after MI, by enhancing phospho-ß-catenin (Ser552) and Lrp6 signaling. This suggested that LIMK2 could be a target for the treatment of postinfarction injury.

14.
Dev Cell ; 59(16): 2118-2133.e8, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39106861

ABSTRACT

Pluripotent embryonic stem cells (ESCs) can develop into any cell type in the body. Yet, the regulatory mechanisms that govern cell fate decisions during embryogenesis remain largely unknown. We now demonstrate that mouse ESCs (mESCs) display large natural variations in mitochondrial reactive oxygen species (mitoROS) levels that individualize their nuclear redox state, H3K4me3 landscape, and cell fate. While mESCs with high mitoROS levels (mitoROSHIGH) differentiate toward mesendoderm and form the primitive streak during gastrulation, mESCs, which generate less ROS, choose the alternative neuroectodermal fate. Temporal studies demonstrated that mesendodermal (ME) specification of mitoROSHIGH mESCs is mediated by a Nrf2-controlled switch in the nuclear redox state, triggered by the accumulation of redox-sensitive H3K4me3 marks, and executed by a hitherto unknown ROS-dependent activation process of the Wnt signaling pathway. In summary, our study explains how ESC heterogeneity is generated and used by individual cells to decide between distinct cellular fates.


Subject(s)
Cell Differentiation , Mitochondria , Mouse Embryonic Stem Cells , Oxidation-Reduction , Reactive Oxygen Species , Wnt Signaling Pathway , Animals , Mice , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Cell Differentiation/physiology , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Histones/metabolism , Cell Lineage , Mesoderm/cytology , Mesoderm/metabolism
15.
J Orthop Surg Res ; 19(1): 480, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152444

ABSTRACT

BACKGROUND: Increasing evidence shows the pivotal significance of miRNAs in the pathogenesis of osteoporosis. miR-381-3p has been identified as an inhibitor of osteogenesis. This study explored the role and mechanism of miR-381-3p in postmenopausal osteoporosis (PMOP), the most common type of osteoporosis. METHODS: Bilateral ovariectomy (OVX) rat model was established and miR-381-3p antagomir was administrated through the tail vein in vivo. The pathological changes in rats were assessed through the evaluation of serum bone turnover markers (BALP, PINP, and CTX-1), hematoxylin and eosin (H&E) staining, as well as the expression of osteoblast differentiation biomarkers. Moreover, isolated bone marrow mesenchymal stem cells from OVX-induced rats (OVX-BMMSCs) were utilized to explore the impact of miR-381-3p on osteoblast differentiation. In addition, the target gene and downstream pathway of miR-381-3p were further investigated both in vivo and in vitro. RESULTS: miR-381-3p expression was elevated, whereas KLF5 was suppressed in OVX rats. miR-381-3p antagomir decreased serum levels of bone turnover markers, improved trabecular separation, promoted osteoblast differentiation biomarker expression in OVX rats. ALP activity and mineralization were suppressed, and levels of osteoblast differentiation biomarkers were impeded after miR-381-3p overexpression during osteoblast differentiation of OVX-BMMSCs. While contrasting results were found after inhibition of miR-381-3p. miR-381-3p targets KLF5, negatively affecting its expression as well as its downstream Wnt/ß-catenin pathway, both in vivo and in vitro. Silencing of KLF5 restored Wnt/ß-catenin activation induced by miR-381-3p antagomir. CONCLUSION: miR-381-3p aggravates PMOP by inhibiting osteogenic differentiation through targeting KLF5/Wnt/ß-catenin pathway. miR-381-3p appears to be a promising candidate for therapeutic intervention in PMOP.


Subject(s)
Cell Differentiation , Kruppel-Like Transcription Factors , MicroRNAs , Osteogenesis , Osteoporosis, Postmenopausal , Ovariectomy , Wnt Signaling Pathway , Animals , Female , Humans , Rats , Cells, Cultured , Disease Models, Animal , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Osteoblasts/metabolism , Osteogenesis/genetics , Osteogenesis/physiology , Osteoporosis/genetics , Osteoporosis/etiology , Osteoporosis/metabolism , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Ovariectomy/adverse effects , Rats, Sprague-Dawley , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/genetics
16.
Biomed Pharmacother ; 179: 117292, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39151314

ABSTRACT

A type of colorectal cancer (CRC),Colitis-associated colorectal cancer (CAC), is closely associated with chronic inflammation and gut microbiota dysbiosis. Berberine (BBR) has a long history in the treatment of intestinal diseases, which has been reported to inhibit colitis and CRC. However, the mechanism of its action is still unclear. Here, this study aimed to explore the potential protective effects of BBR on azoxymethane (AOM)/dextransulfate sodium (DSS)-induced colitis and tumor mice, and to elucidate its potential molecular mechanisms by microbiota, genes and metabolic alterations. The results showed that BBR inhibited the gut inflammation and improved the function of mucosal barrier to ameliorate AOM/DSS-induced colitis. And BBR treatment significantly reduced intestinal tumor development and ki-67 expression of intestinal tissue along with promoted apoptosis. Through microbiota analysis based on the 16 S rRNA gene, we found that BBR treatment improved intestinal microbiota imbalance in AOM/DSS-induced colitis and tumor mice, which were characterized by an increase of beneficial bacteria, for instance Akkermanisa, Lactobacillus, Bacteroides uniformis and Bacteroides acidifaciens. In addition, transcriptome analysis showed that BBR regulated colonic epithelial signaling pathway in CAC mice particularly by tryptophan metabolism and Wnt signaling pathway. Notably, BBR treatment resulted in the enrichment of amino acids metabolism and microbiota-derived SCFA metabolites. In summary, our research findings suggest that the gut microbiota-amino acid metabolism-Wnt signaling pathway axis plays critical role in maintaining intestinal homeostasis, which may provide new insights into the inhibitory effects of BBR on colitis and colon cancer.

17.
Ecotoxicol Environ Saf ; 284: 116869, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39178759

ABSTRACT

BACKGROUND: Diesel exhaust particles (DEPs), a predominant component of ambient particulate matter (PM), are classified as ultrafine particles with the capacity to penetrate the cerebral blood-brain barrier (BBB). This penetration is implicated in the pathogenesis of central nervous system (CNS) disorders. The integrity of the BBB is inextricably linked to cerebrovascular homeostasis and the development of neurodegenerative disease, highlighting the importance of studying the effects and mechanisms of DEPs on BBB function damage. METHODS AND RESULTS: Utilizing mouse cerebral microvascular endothelial cells (bEnd.3 cells) as an in vitro model of the BBB, we explored the detrimental effects of DEPs exposure on BBB permeability and integrity, with particular focus on inflammation, cell apoptosis, and miRNA expression profiles. Our findings revealed that exposure to DEPs at varying concentrations for 48 h resulted in the inhibition of bEND.3 cell proliferation, induction of cell apoptosis, and an upregulation in the secretion of inflammatory cytokines/chemokines and adhesion molecules. The BBB integrity was further compromised, as evidenced by a decrease in trans-epithelial electrical resistance(TEER), a reduction in cytoskeletal F-actin, , and diminished tight junction (TJ) protein expression. Microarray analysis revealed that 23 miRNAs were upregulated and 11 were downregulated in response to a 50 µg/mL DEPs treatment, with miR-466d-3p being notably differentially expressed. Wnt3 was identified as a target of miR-466d-3p, with the Wnt signaling pathway being significantly enriched. We validated that miR-466d-3p expression was downregulated, and the protein expression levels of Wnt/ß-catenin and Wnt/PCP signaling components were elevated. The modulation of the Wnt signaling pathway by miR-466d-3p was demonstrated by the transfection of miR-466d-3p mimic, which resulted in a downregulation of Wnt3 and ß-catenin protein expression, and the mRNA level of Daam1, as well as an enhancement of TJ proteins ZO-1 and Claudin-5 expression. CONCLUSIONS: Our study further confirmed that DEPs can induce the disruption of BBB integrity through inflammatory processes. We identified alterations in the expression profile of microRNAs (miRNAs) in endothelial cells, with miR-466d-3p emerging as a key regulator of tight junction (TJ) proteins, essential for maintaining BBB integrity. Additionally, our findings primarily demonstrated that the Wnt/ ß-catenin and Wnt/PCP signaling pathway can be activated by DEPs and are regulated by miR-466d-3p. Under the combined effects of Wnt/PCP and inflammation, there is an ultimate increase in BBB hyperpermeability. METHODS AND RESULTS: Employing mouse cerebral microvascular endothelial cells (bEnd.3 cells) as an in vitro model of the BBB, we investigated the adverse effects of DEPs exposure on BBB permeability and integrity, with particular focus on inflammation, cell apoptosis, and miRNA expression profiles. Our findings revealed that exposure to DEPs at varying concentrations for 48 h resulted in the inhibition of bEND.3 cell proliferation, induction of cell apoptosis, and an increase in the release of inflammatory cytokines/chemokines and adhesion molecules. The BBB integrity was further compromised, as evidenced by a decrease in trans-epithelial electrical resistance(TEER), a reduction in cytoskeletal F-actin, loss of intercellular junctional organization, and diminished tight junction (TJ) protein expression. Microarray analysis disclosed that 23 miRNAs were upregulated and 11 were downregulated in bEND.3 cells treated with 50 µg/mL DEPs compared to the controls. In particular, miR-466d-3p was identified as a significantly differentially expressed miRNA. Wnt3 was predicted to be a target of miR-466d-3p, and the Wnt signaling pathway was identified as one of the most significantly enriched pathways. We validated that miR-466d-3p expression was downregulated, and the protein expression levels of Wnt/ß-catenin and Wnt/PCP signaling components were elevated. The modulation of the Wnt signaling pathway by miR-466d-3p was demonstrated by the transfection of miR-466d-3p mimic, which resulted in a downregulation of Wnt3 and ß-catenin protein expression, and the mRNA level of Daam1, as well as an enhancement of TJ proteins ZO-1 and Claudin-5 expression. CONCLUSIONS: Our study further confirmed that DEPs can induce the disruption of BBB integrity by inflammation. We identified changes in the expression profile of microRNAs (miRNAs) in endothelial cells, with miR-466d-3p emerging as a regulator of tight junction (TJ) proteins, which are critical for maintaining BBB integrity. Additionally, our findings primarily demonstrated that the Wnt/ ß-catenin and Wnt/PCP signaling pathway can be activated by DEPs and is regulated by miR-466d-3p, and under the combined effects of Wnt/PCP and inflammation ultimately led to hyperpermeability BBB.

18.
Toxicology ; 508: 153932, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39179171

ABSTRACT

Hydroquinone (HQ), a metabolite of benzene, is frequently utilized as a surrogate for benzene in in vitro studies and is associated with the development of acute myeloid leukemia (AML). In the hemotoxicity caused by benzene and HQ, cell apoptosis plays a key role. However, the molecular mechanisms underlying HQ are unknown. Studies have indicated that Suv39h1 is involved in regulating cell division and proliferation by regulating histone H3K9me3. Meanwhile, the Wnt/ß-catenin signaling pathway also plays a significant role in cell proliferation and apoptosis. Therefore, this study was aimed at exploring the regulatory role of Suv39h1 and the Wnt/ß-catenin signaling pathway in the effects of HQ on bone marrow mesenchymal stem cells (BMSCs), as well as its influence on cell proliferation and apoptosis. The results demonstrated that HQ elevated the levels of Suv39h1 and H3K9me3 and activated the Wnt/ß-catenin signaling pathway by upregulating ß-catenin, Wnt2b, C-myc, and Cyclin D1 and downregulating Wnt5a, resulting in an increase in cell growth and a decrease in apoptosis. Suv39h1 knockdown inhibited the Wnt/ß-catenin signaling pathway. Meanwhile, inhibition of the Wnt/ß-catenin signaling pathway resulted in the down-regulation of Suv39h1 and H3K9me3 in BMSCs. They both promoted cell proliferation and inhibited apoptosis in the effects of HQ on BMSCs by downregulating the expression of Cyt-C, Bax, Caspase 3, and Caspase 9 and upregulating the expression of Bcl-xl. Therefore, we concluded that Suv39h1 and the Wnt/ß-catenin signaling pathway may mutually regulate each other in the effects of HQ on BMSCs in order to ameliorate the altered function of BMSCs.

19.
Nutrients ; 16(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125288

ABSTRACT

Young-onset colorectal cancer is an increasing concern worldwide due to the growing prevalence of Westernized lifestyles in childhood and adolescence. Environmental factors during early life, particularly early-life nutrition, significantly contribute to the increasing incidence. Recently, there have been reports of beneficial effects, including anti-inflammation and anti-cancer, of a unique fungus (Antrodia camphorate, AC) native to Taiwan. The objective of this study is to investigate the impact of AC supplementation in early life on the development of young-onset intestinal tumorigenesis. APC1638N mice were fed with a high-fat diet (HF) at 4-12 weeks of age, which is equivalent to human childhood/adolescence, before switching to a normal maintenance diet for an additional 12 weeks up to 24 weeks of age, which is equivalent to young to middle adulthood in humans. Our results showed that the body weight in the HF groups significantly increased after 8 weeks of feeding (p < 0.05). Following a switch to a normal maintenance diet, the change in body weight persisted. AC supplementation significantly suppressed tumor incidence and multiplicity in females (p < 0.05) and reduced IGF-1 and Wnt/ß-catenin signaling (p < 0.05). Moreover, it altered the gut microbiota, suppressed inflammatory responses, and created a microenvironment towards suppressing tumorigenesis later in life.


Subject(s)
Carcinogenesis , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Female , Mice , Male , Diet, High-Fat/adverse effects , Carcinogenesis/drug effects , Polyporales , Mice, Inbred C57BL , Wnt Signaling Pathway/drug effects , Insulin-Like Growth Factor I/metabolism , Colorectal Neoplasms/prevention & control , Disease Models, Animal , Adenomatous Polyposis Coli Protein/genetics
20.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125758

ABSTRACT

APC is a tumor suppressor gene that exerts its effect through the regulation of the Wnt signaling pathway. Loss of function mutations of the gene are associated with familial adenomatous polyposis (FAP). Early diagnosis in FAP patients is essential to prevent the development of colorectal cancer. Extraintestinal manifestations often precede the formation of the polyposis; therefore, these manifestations may serve as a clinical indicator for the condition. The aim of this study was to assess genotype-phenotype associations between the location of APC mutations and various extraintestinal features, mainly focusing on osseous and dental anomalies. Analyses of our cases and the mutations available in the literature with these manifestations revealed that mutations in the N-terminal region (amino acids 1-~1000) of the protein are more frequently associated with only osseous anomalies, whereas dental manifestations are more prevalent in mutations in the middle region (amino acids 1000-~2100). In addition, supernumerary teeth were found to be the most common dental feature. Since dental abnormalities often precede intestinal polyposis, dentists have a crucial role in the early identification of patients at risk.


Subject(s)
Adenomatous Polyposis Coli Protein , Adenomatous Polyposis Coli , Germ-Line Mutation , Humans , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli/genetics , Tooth Abnormalities/genetics , Genetic Association Studies , Tooth, Supernumerary/genetics , Genetic Predisposition to Disease , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL