Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
1.
Article in English | MEDLINE | ID: mdl-39361201

ABSTRACT

Lake surface-water temperature (LSWT) regulates physical and biochemical processes in lakes. Therefore, understanding the LSWT dynamics is important, especially in Arctic zone since the region is experiencing a warming rate that is greater than the Earth's average. However, regular measurements of LSWT in the remote Arctic lakes always face difficulties or cannot be done by satellites accurately due to the cloud cover and their limited spatiotemporal resolution. Here, we used a historically rich data (1960-2023) to develop four machine learning-based algorithms for the daily LSWT modeling in Lake Inari, situated in Arctic zone, using the air-temperature data. Our results showed that both air-temperature (0.030 °C/yr) and LSWT (0.023m °C/yr) were warming with a rate faster than those in the globe. The long-short-term memory model, with the coefficients of determination varied from 0.96 to 0.98, outperformed other algorithms in modeling of the daily LSWT dynamics in Lake Inari, followed by both support vector regression and neural network tools, and random forest model. As the air-temperature data are widely accessible through synoptic stations and remote sensing techniques, our suggested models can be simply adopted for other Arctic lakes, where the local water-temperature data are often lacking or contain large windows of missing data due to harsh atmospheric conditions and equipment failure.

2.
J Comp Physiol B ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269478

ABSTRACT

Nutritional programming is a promising concept for promoting metabolic adaptation of fish to challenging conditions, such as the increase in water temperature. The present work evaluates in ovo arginine or glutamine supplementation as enhancers of zebrafish metabolic or absorptive capacity, respectively, at optimum (28 ºC) and challenging temperatures (32 ºC) in the long-term. Growth performance, free amino acids profile, methylation index and the activity levels of digestive and intermediary metabolism enzymes were analysed to assess the metabolic plasticity induced by an early nutritional intervention. Temperature affected fish larvae growth performance. At the end of the experimental period 28 ºC-fish showed higher dry weight than 32 ºC-fish. The effects of the early supplementation were reflected in the larval free amino acids profile at the end of the experiment. Higher methylation potential was observed in the ARG-fish. In ovo amino acid supplementation modulated the metabolic response in zebrafish larvae, however, the magnitude of this effect differed according to the amino acid and the temperature. Overall, arginine supplementation enhanced carbohydrates metabolism at 32 ºC. In conclusion, the present work suggests that in ovo arginine supplementation may promote a better adaptive response to higher temperatures.

3.
Heliyon ; 10(16): e36294, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39253187

ABSTRACT

Quantity and quality of the water held in the reservoir fluctuates due to turbidity alterations. The influence of turbidity on the amount of the water held in a reservoir was described explicitly in this research. This study aimed to evaluate turbidity's impact on the Gilgel-Gibe I reservoir water. The samples were obtained by longitudinally stratifying the reservoir water throughout its course. Ten burrowed pools wrapped in transparent white plastic were used to retain water, for detection of the association between turbidity and surface water temperature, and to demonstrate the vertical variation in water temperature. The pan evaporation rate was measured using two Class A pans placed in the field to indicate the disparity in the amount of water evaporated from reservoir owing to reservoir turbidity variation. SPSS and MS Excel spreadsheet softwares were used to analyze the data. According to the results of this study, turbidity and water temperature have a significant direct relationship that is positive at 9:00 and 13:00 and negative at 17:00 observation hours. From the top layer of pool water to the bottom layer, the water temperature decreased vertically. Intensity of the light rays absorbed and scattered alters with turbidity variation and significant amounts of light rays was absorbed and scattered in the most turbid water. The reported water temperature differences between the top and bottom layers at 13:00 observation hour were 9.78 °C and 1.53 °C, for the most and least turbid pool water, respectively. Turbidity directly affects reservoir water by increasing both the water temperature and evaporation rates. Among all turbid-water samples, substantial quantity of water evaporated from the most turbid-water. For the most and least turbid water samples, the volume difference of the evaporated water from the reservoir was approximately 65.812 m3. According to these findings, if the reservoir water turbidity increases, the amount of water held in the reservoir significantly reduced due to substantial water loss.

4.
J Hazard Mater ; 479: 135762, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39255666

ABSTRACT

Spread of antibiotic resistance genes (ARGs) in aquatic ecosystems poses a significant global challenge to public health. The potential effects of water temperature perturbation induced by specific water environment changes on ARGs transmission are still unclear. The conjugate transfer of plasmid-mediated ARGs under water temperature perturbation was investigated in this study. The conjugate transfer frequency (CTF) was only 7.16 × 10-7 at a constant water temperature of 5 °C, and it reached 2.18 × 10-5 at 30 °C. Interestingly, compared to the constant 5 °C, the water temperature perturbations (cooling and warming models between 5-30 °C) significantly promoted the CTF. Intracellular reactive oxygen species was a dominant factor, which not only directly affected the CTF of ARGs, but also functioned indirectly via influencing the cell membrane permeability and cell adhesion. Compared to the constant 5 °C, water temperature perturbations significantly elevated the gene expression associated with intercellular contact, cell membrane permeability, oxidative stress responses, and energy driven force for CTF. Furthermore, based on the mathematical model predictions, the stabilization times of acquiring plasmid maintenance were shortened to 184 h and 190 h under cooling and warming model, respectively, thus the water temperature perturbations promoted the ARGs transmission in natural conditions compared with the constant low temperature conditions.


Subject(s)
Plasmids , Reactive Oxygen Species , Temperature , Reactive Oxygen Species/metabolism , Plasmids/genetics , Drug Resistance, Microbial/genetics , Water/chemistry , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Gene Transfer, Horizontal , Escherichia coli/genetics , Escherichia coli/drug effects , Drug Resistance, Bacterial/genetics , Cell Membrane Permeability/drug effects , Water Microbiology
5.
Heliyon ; 10(16): e35987, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39247302

ABSTRACT

Rivers worldwide are warming due to the impact of climate change and human interventions. This study investigated river heatwaves in the Vistula River Basin, one of the largest river systems in Europe using long-term observed daily river water temperatures from the past 30 years (1991-2020). The results showed that river heatwaves are increased in frequency and intensity in the Vistula River Basin. The total number of river heatwaves showed clear increasing trend with an average rate of 1.400 times/decade, the duration of river heatwaves increased at an average rate of 14.506 days/decade, and the cumulative intensity of river heatwaves increased at an average rate of 53.169 °C/decade. The Mann-Kendall (MK) test was also employed, showing statistically significant increasing trends in the total number, duration, and intensity of heatwaves for all rivers, including the main watercourse of the Vistula River and its tributaries, with few exceptions. Air temperature is the major controller of river heatwaves for each hydrological station, and with the increase of air temperatures, river heatwaves will increase in frequency and intensity. Another impacting factor is flow, and with the increase of flow, river heatwaves tend to decrease in number, duration and intensity. The results suggested that mitigation measures shall be taken to reduce the effect of climate change on river systems.

6.
Environ Technol ; : 1-14, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39317339

ABSTRACT

The formation of black odour water is primarily attributed to the elevated concentration of organic pollutants, along with an excessive amount of nitrogen and phosphorus, ultimately leading to an anoxic aquatic environment. The water temperature influence mechanism on black-odorous water restoration by microporous aeration is still lacking depth study. This paper selected (15-18) ℃ (spring and autumn), (22-25) ℃ (summer), (8-11) ℃ (winter) as temperature conditions, and investigated temperature influence on nitrogen reduction. Researches showed that: (1) The removal rates of COD, NH4+-N and TN were significantly positively correlated with temperature (r = 0.99, 0.96, 0.97), the lowest removal rates were 83.16%, 95.68%, 58.7% ((8-11) ℃), the highest values were 92.67%, 98.27%, 70.96% ((22-25) ℃), respectively. (2) At a temperature range of 22-25°C, the microbial community exhibited the highest levels of abundance, diversity, and uniformity. Notably, Proteobacteria dominated this temperature range with a relative abundance of 79.72%. Furthermore, temperature positively correlated with the majority of dominant bacterial species, suggesting that conditions at 22-25°C are highly conducive to the growth of most bacterial communities. Among these, Limnohabitans, Alsobacter, and Candidatus_Aquirestis, which possess key functions in denitrification and nitrogen removal, displayed significantly higher abundances. It explains the positive correlation between temperature and removal rates of COD, TN and NH4+-N from microbial population's perspective. Thus, the best temperature for repairing black-smelly water is (22-25) ℃. This study provides technical reference for mechanism research and practical application of microporous aeration.

7.
Environ Sci Pollut Res Int ; 31(42): 54873-54886, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39215917

ABSTRACT

Climate change is viewed as one of the important causes of the amphibian population decline. Aspects of climate change like increase in water temperature and drying up of habitats have been underrepresented. The expanding production and usage of metal nanoparticles like silver nanoparticles (AgNPs) make them likely to end up in aquatic ecosystems. To arrive at a realistic assessment of the impact of AgNPs in a warming world, we have investigated the effects of temperature on the acute toxicity of AgNPs in tadpoles of Fejervarya limnocharis at 24, 48, 72 and 96 h of exposure. The various aspects of sub-lethal toxicities of AgNPs with increase in temperature were also investigated. Besides, the effects of habitat desiccation on the sub-lethal toxicities of AgNPs in the tadpoles were analysed. The LC50 values of AgNPs at four different time points were found to be significantly different between the two different temperatures. Alterations in survival pattern, life history traits, amplifications in genotoxic potential and oxidative stress were observed with increased water temperature following AgNP exposure. The phenomenon of habitat desiccation was also found to significantly affect the toxicity of AgNPs with respect to alterations in mortality rate, time to metamorphosis and morphometric parameters of metamorphosed tadpoles. The findings suggest that changed water regime such as increased water temperature as well as reduction in water level accelerated the toxic effects of AgNPs in F. limnocharis tadpoles which is likely to affect their natural populations.


Subject(s)
Larva , Metal Nanoparticles , Silver , Animals , Metal Nanoparticles/toxicity , Silver/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Climate Change , Anura
8.
BMC Vet Res ; 20(1): 349, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113047

ABSTRACT

Optimizing fish performance depends on several factors, with dietary protein levels and rearing temperature playing important roles. In this study, Nile tilapia fingerlings (Oreochromis niloticus) weighing an average of 20.00 ± 1.26 g were divided into nine groups (in three replicates). Each group was subjected to different water temperatures (26 °C, 28 °C, and 30 °C) and received one of three dietary protein levels (20%, 25%, and 30%) for two months. Our findings indicate that higher temperatures, particularly at 30 °C, increased water electrical conductivity and total dissolved salts, especially noticeable in fish fed 25% or 30% crude protein (CP). Lower total ammonia nitrogen levels were observed at 28 °C with 25% CP, 30 °C with 30% CP, and 26 °C with 30% CP. Hepatic growth hormone receptor 1 and insulin-like growth factor 1 expression gradually rose with higher dietary CP percentages in fish at 26 °C but declined in those at 30 °C, albeit remaining higher than in the 28 °C groups with 25% CP. Fish at 28 °C showed the best final body weights and growth performance when fed 20% or 25% CP, with no significant difference between these groups. Hepatic leptin expression did not differ significantly among groups, but hepatic fatty acid binding protein expression notably increased in fish fed 30% CP at both 26 °C and 30 °C compared to those at 28 °C with 25% CP. Within the same temperature group, fish fed 30% CP exhibited higher globulin levels, particularly thriving at 28 °C or 30 °C. Hepatic mucin-like protein expression significantly increased across all groups, especially in fish at 30 °C with 30% CP compared to those at 28 °C with 25% CP. Hepatic lysozyme expression also increased notably in fish at 30 °C with 30% CP. Notable changes in superoxide dismutase, catalase, and glutathione peroxidase expression were observed, with the highest serum superoxide dismutase and catalase activities recorded in fish at 30 °C with 25% CP. Overall, dietary protein levels of 25% and 30%, combined with temperatures of 28 °C and 30 °C, yielded favorable outcomes, particularly favoring 28 °C with 25% protein.


Subject(s)
Animal Feed , Cichlids , Dietary Proteins , Temperature , Animals , Cichlids/growth & development , Cichlids/physiology , Cichlids/metabolism , Dietary Proteins/administration & dosage , Animal Feed/analysis , Diet/veterinary , Water , Liver/metabolism
9.
Sci Rep ; 14(1): 18526, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122770

ABSTRACT

This study evaluated the effect of fish total length (LT) and three water temperatures (10, 15 and 20 °C) on the critical swimming speed (Ucrit) of the species Percilia irwini (2.9-6.3 cm LT), Cheirodon galusdae (3.4-5.5 cm LT), and Trichomycterus areolatus (4.0-6.3 cm LT). An Ucrit estimation model was constructed for each species as a function of temperature and size. The results showed mean Ucrit for P. irwini of 44.56, 53.83 and 63.2 cm s-1 at 10, 15 and 20 °C, respectively: 55.34, 61.74 and 70.05 cm s-1 for C. galusdae and 56.18, 63.01 and 71.09 cm s-1 for T. areolatus. Critical velocity depended on the interaction between species, body length and water. The swimming performance increased significantly with rising temperature in all three species. The velocity also increased with greater fish total length. After controlling for fish total length, velocity also increased with higher temperature in the three species. This research is relevant to small fish species that require conservation measures.


Subject(s)
Fishes , Fresh Water , Swimming , Temperature , Animals , Swimming/physiology , Fishes/physiology , Body Size
10.
PeerJ ; 12: e17832, 2024.
Article in English | MEDLINE | ID: mdl-39157768

ABSTRACT

The Gulf of Maine (GoM) is one of the fastest-warming parts of the world's oceans. Some species' distributional shifts have already been documented, especially for commercially-important species. Less is known about species that are not currently exploited but may become so in the future. As a case study into these issues, we focus on lumpfish (Cyclopterus lumpus) because of the recognized and timely need to understand wild lumpfish population dynamics to support sustainable fisheries and aquaculture developments. Using occurrence data from five different fisheries-dependent and independent surveys, we examined lumpfish distribution over time in the GoM. We found that lumpfish presence was more likely in Fall and correlated with deeper waters and colder bottom temperatures. Since 1980, lumpfish presence has increased over time and shifted north. Given a limited set of data, these findings should be interpreted with caution as additional work is needed to assess if the actual distribution of lumpfish is changing. Nevertheless, our work provides preliminary information for resource managers to ensure that lumpfish are harvested sustainably for use in emergent lumpfish aquaculture facilities.


Subject(s)
Fisheries , Animals , Maine , Population Dynamics , Perciformes , Fishes , Animal Distribution
11.
Water Res ; 265: 122308, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39180952

ABSTRACT

Global warming and eutrophication contribute to frequent occurrences of toxic algal blooms in freshwater systems globally, while there is a limited understanding of their combined impacts on toxin-producing algal species under interspecific competitions. This study investigated the influences of elevated temperatures, lights, nutrient enrichments and interspecific interactions on growth and microcystin (MC) productions of Microcystis aeruginosa in laboratory condition. Our results indicated that elevated temperatures and higher nutrient levels significantly boosted biomass and specific growth rates of Microcystis aeruginosa, which maintained a competitive edge over Chlorella sp. Specifically, with phosphorus levels between 0.10 and 0.70 mg P L-1, the growth rate of Microcystis aeruginosa in mixed cultures increased by 23 %-52 % compared to mono-cultures, while the growth rate of Chlorella sp. shifted from positive in mono-cultures to negative in mixed cultures. Redundancy and variance partition analyses suggested that Chlorella sp. stimulate MC production in Microcystis aeruginosa and nutrient levels outshine temperature for toxin productions during competition. Lotka‒Volterra model revealed a positive correlation between the intensities of competitions and MC concentration. Our findings indicate that future algal bloom mitigation strategies should consider combined influence of temperature, nutrients, and interspecific competition due to their synergistic effects on MC productions.


Subject(s)
Microcystins , Microcystis , Nutrients , Temperature , Microcystis/metabolism , Microcystis/growth & development , Microcystins/metabolism , Microcystins/biosynthesis , Nutrients/metabolism , Chlorella/growth & development , Chlorella/metabolism , Phosphorus/metabolism , Eutrophication , Biomass , Harmful Algal Bloom
12.
Mar Environ Res ; 200: 106640, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013226

ABSTRACT

We investigated long-term changes in the megabenthic community in Tokyo Bay, Japan, using data from fisheries-independent trawl surveys conducted from 1977 to 2023. In addition, we examined the potential relationship between changes in biotic communities and environmental conditions. The total abundance and biomass exhibited an increasing trend until 1987, followed by a substantial decline from the late 1980s to the 1990s due to a decrease in small to medium-sized fish and crustacean species. Meanwhile, a marked increase in the number of large fish (including elasmobranchs), mollusks, and echinoids, was observed in the 2000s. These shifts in the megabenthic community structure were correlated with an increase in water temperature and a decrease in nutrient concentrations and copepod densities. Cumulative evidence suggests that a remarkable shift in the megabenthic community structure occurred between the 1970s and the 2020s, which was possibly associated with variations in the environmental conditions in Tokyo Bay.


Subject(s)
Bays , Biodiversity , Environmental Monitoring , Animals , Japan , Fishes/physiology , Aquatic Organisms/physiology , Ecosystem , Biomass , Mollusca/physiology , Crustacea/physiology , Crustacea/growth & development
13.
Water Res ; 261: 122026, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38971078

ABSTRACT

This study investigated the impact of varying total ammonia nitrogen (TAN) feed levels along with water temperature decreases on the performance of nitrifying moving bed biofilm reactor (MBBR) at 1 °C and its recovery at 3 °C. Five MBBR reactors were operated with different TAN concentrations as water temperature decreased from 20 to 3 °C: reactor R1 at 30 mg N/L, reactor R2 at 20 mg N/L, reactor R3 at 15 mg N/L, reactor R4 at 10 mg N/L and reactor R5 at 0 mg N/L. The corresponding biofilm characteristics were also analyzed to understand further nitrifying MBBR under different TAN feeding scenarios. The findings revealed that the higher TAN levels were before reaching 1 °C, the better nitrification performance and the more biomass grew. However, the highest TAN concentration (30 mg N/L) might negatively affect the nitrification performance, the activity of nitrifiers, and the growth of biofilms at 1 °C because of the toxic effects of un-ionized or free ammonia (FA). It was observed that the activities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were affected by FA concentrations ranging from 0.2 to 0.7 mg N/L at 1 °C, but they could gradually be adapted to such inhibitory environment, with NOB recovering more quickly and robustly than AOB. The study identified 20 mg N/L (67 % of maximum influent TAN at 1 °C in R2 as the optimal TAN feeding concentration, achieving over 90 % TAN removal and a surface area removal rate (SARR) of 0.78 ± 0.02 g N/m2·d at 1 °C. Meanwhile, R2 also exhibited the highest biofilm mass, with total solids at 13.3 mg/carrier and volatile solids at 11.3 mg/carrier. As TAN was removed, nitrite accumulation was observed at 1 °C, and higher influent TAN concentrations prior to 1 °C appeared to delay the accumulation. When water temperature increased from 1 °C to 3 °C, nitrification performance improved significantly in all reactors without nitrite accumulation, and the higher TAN feeding in the previous stage led to faster recovery. Compared with 20 °C, biofilm became thinner and denser at 1 °C and 3 °C. Furthermore, this study revealed significant shifts in microbial community composition and nitrifier abundances in response to changes in water temperature and influent TAN levels. The dominant nitrifiers were identified as Nitrosomonadaceae (AOB) and Nitrospiraceae (NOB). At 1 °C, the nitrifier abundances were significantly correlated with SARRs, FA, and biofilm density. R2, which exhibited the best nitrification performance, maintained higher nitrifier abundances at 1 °C.


Subject(s)
Ammonia , Biofilms , Bioreactors , Nitrification , Ammonia/metabolism , Temperature , Waste Disposal, Fluid/methods , Bacteria/metabolism , Nitrites/metabolism , Nitrogen/metabolism
14.
Sci Rep ; 14(1): 16298, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009635

ABSTRACT

Harmful algae blooms are a rare phenomenon in rivers but seem to increase with climate change and river regulation. To understand the controlling factors of cyanobacteria blooms that occurred between 2017 and 2020 over long stretches (> 250 km) of the regulated Moselle River in Western Europe, we measured physico-chemical and biological variables and compared those with a long-term dataset (1997-2016). Cyanobacteria (Microcystis) dominated the phytoplankton community in the late summers of 2017-2020 (cyano-period) with up to 110 µg Chlorophyll-a/L, but had not been observed in the river in the previous 20 years. From June to September, the average discharge in the Moselle was reduced to 69-76% and water temperature was 0.9-1.8 °C higher compared to the reference period. Nitrogen (N), phosphorus (P) and silica (Si) declined since 1997, albeit total nutrient concentrations remained above limiting conditions in the study period. Cyanobacterial blooms correlated best with low discharge, high water temperature and low nitrate. We conclude that the recent cyanobacteria blooms have been caused by dry and warm weather resulting in low flow conditions and warm water temperature in the regulated Moselle. Under current climate projections, the Moselle may serve as an example for the future of regulated temperate rivers.


Subject(s)
Climate Change , Cyanobacteria , Rivers , Rivers/microbiology , Cyanobacteria/growth & development , Temperature , Phytoplankton/growth & development , Seasons , Phosphorus/analysis , Nitrogen/analysis , Chlorophyll A/analysis , Chlorophyll/analysis , Harmful Algal Bloom , Plankton/growth & development , Eutrophication , Environmental Monitoring/methods
15.
Biodivers Data J ; 12: e117960, 2024.
Article in English | MEDLINE | ID: mdl-38974676

ABSTRACT

Background: Sciaenidae is one of the most important coastal fisheries in Taiwan, both in production and economic value. It is also significant as the main targetted diet of Chinese white dolphins, Sousachinensis, especially for the genus Johnius, such as J.taiwanensis, J.belangerii and J.distinctus, which is primarily found in central-western Taiwan coastal waters. Despite an abundance of Johnius species occurrences reported in the Global Biodiversity Information Facility (GBIF) and the Taiwan Biodiversity Information Facility (TaiBIF) data portals (Mozambique, Australia, Taiwan, Korea, India, Indonesia, South Africa, Pakistan, Vietnam and China), there are no specific datasets that properly document the regional distribution of this genus, especially in Taiwanese waters. Thus, this paper describes a dataset of genus Johnius occurrences in waters on the central-western coast of Taiwan. The data collection for the present study was conducted from 2009 until 2020 and comprised 62 sampling events and 133 occurrence records. All fish specimens were collected by trawling in Miaoli, Changhwa and Yunlin Counties, Taiwan and brought back to the lab for identification, individual number count and body weight measurement. These processing data have been integrated and established in the Taiwan Fish Database and published in GBIF. This dataset contains six Johnius species and 2,566 specimens, making it comprehensive Johnius fish fauna and spatial distributional data on the coastal habitat in central-western Taiwanese waters. New information: This dataset contains 133 occurrence records of Johnius species (Sciaenidae) with 2,566 specimens, making it the most extensive public dataset of Johnius distribution records in Taiwan. The publication of this dataset through the TaiBIF and GBIF dataset platforms demonstrated that the number of Johnius spatial and temporal records in Taiwan waters is influenced by the topographical structure of the Changyun Rise (CYR) in combination with the cold current of the China Coastal currents and bound with the warm currents of the Kuroshio and the South China Sea on the central-western coast of Taiwan. The data serve as the foundation for understanding the biogeography and Johnius species ecology in Taiwan's coastal waters, which present a 2°C water temperature difference split at the CYR.

16.
Environ Sci Pollut Res Int ; 31(35): 48189-48204, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023725

ABSTRACT

An increase in water temperature is one of the main factors that can potentially modify biogeochemical dynamics in lowland rivers, such as the removal and recycling of nitrogen (N). This effect of climate change on N processing deserves attention, as it may have unexpected impacts on eutrophication in the coastal zones. Intact sediment cores were collected seasonally at the closing section of the Po River, the largest Italian river and one of the main N inputs to the Mediterranean Sea. Benthic oxygen fluxes, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) rates were measured using laboratory dark incubations. Different temperature treatments were set up for each season based on historical data and future predictions. Higher water temperatures enhanced sediment oxygen demand and the extent of hypoxic conditions in the benthic compartment, favoring anaerobic metabolism. Indeed, warming water temperature stimulated nitrate (NO3-) reduction processes, although NO3- and organic matter availability were found to be the main controlling factors shaping the rates between seasons. Denitrification was the main process responsible for NO3- removal, mainly supported by NO3- diffusion from the water column into the sediments, and much more important than N recycling via DNRA. The predicted increase in the water temperature of the Po River due to climate change may exert an unexpected negative feedback on eutrophication by strongly controlling denitrification and contributing to partial buffering of N export in the lagoons and coastal areas, especially in spring.


Subject(s)
Climate Change , Denitrification , Nitrogen , Rivers , Italy , Eutrophication , Nitrates , Geologic Sediments/chemistry
17.
Environ Sci Pollut Res Int ; 31(33): 45929-45953, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980490

ABSTRACT

Urbanization, agriculture, and climate change affect water quality and water hyacinth growth in lakes. This study examines the spatiotemporal variability of lake surface water temperature, turbidity, and chlorophyll-a (Chl-a) and their association with water hyacinth biomass in Lake Tana. MODIS Land/ Lake surface water temperature (LSWT), Sentinel 2 MSI Imagery, and in-situ water quality data were used. Validation results revealed strong positive correlations between MODIS LSWT and on-site measured water temperature (R = 0.90), in-situ turbidity and normalized difference turbidity index (NDTI) (R = 0.92), and in-situ Chl-a and normalized difference chlorophyll index (NDCI) (R = 0.84). LSWT trends varied across the lake, with increasing trends in the northeastern, northwestern, and southwestern regions and decreasing trends in the western, southern, and central areas (2001-2022). The spatial average LSWT trend decreased significantly in pre-rainy (0.01 ℃/year), rainy (0.02 ℃/year), and post-rainy seasons (0.01℃/year) but increased non-significantly in the dry season (0.00 ℃/year) (2001-2022, P < 0.05). Spatial average turbidity decreased significantly in all seasons, except in the pre-rainy season (2016-2022). Likewise, spatial average Chl-a decreased significantly in pre-rainy and rainy seasons, whereas it showed a non-significant increasing trend in the dry and post-rainy seasons (2016-2022). Water hyacinth biomass was positively correlated with LSWT (R = 0.18) but negatively with turbidity (R = -0.33) and Chl-a (R = -0.35). High spatiotemporal variability was observed in LSWT, turbidity, and Chl-a, along with overall decreasing trends. The findings suggest integrated management strategies to balance water hyacinth eradication and its role in water purification. The results will be vital in decision support systems and preparing strategic plans for sustainable water resource management, environmental protection, and pollution prevention.


Subject(s)
Biomass , Environmental Monitoring , Lakes , Temperature , Water Quality , Ethiopia , Seasons , Eichhornia
18.
Environ Sci Pollut Res Int ; 31(28): 41167-41181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847954

ABSTRACT

Lake surface water temperature (LSWT) plays a crucial role in assessing the health of aquatic ecosystems. Variations in LSWT can significantly impact the physical, chemical, and biological processes within lakes. This study investigates the long-term changes in surface water temperature of the Dongting Lake, China. The LSWT is retrieved using Landsat thermal infrared imageries from 1988 to 2022 and validated with in situ observations, and the change characteristics of LSWT and near-surface air temperature (NSAT) as well as the spatial distribution characteristics of LSWT are analyzed. Additionally, the contribution rates of different meteorological factors to LSWT are quantified. The results show that the accuracy assessment of satellite-derived temperatures indicates a Nash-Sutcliffe efficiency coefficient (NSE) of 0.961, suggesting an accurate retrieval of water temperature. From 1988 to 2022, both the annual average LSWT and NSAT of Dongting Lake exhibit an increasing trend, with similar rates of warming. They both undergo a mutation in 1997 and have the main periods on the 11-year and 4-year time scales. The changes in NSAT emerge as one of the important factors contributing to variations in LSWT. Among the multiple meteorological factors, NSAT exhibits a significant correlation with LSWT (R = 0.822, α < 0.01). Furthermore, NSAT accounts for the highest contribution rate to LSWT, amounting to 67.5%. The distribution of LSWT within Dongting Lake exhibits spatial variations, with higher LSWT observed on the west part compared to the east part during summer, while lower LSWT occurs on the west part during winter. The findings of this study can provide a scientific understanding for the long-term thermal regimes of lakes and help advance sustainable lake management.


Subject(s)
Environmental Monitoring , Lakes , Satellite Imagery , Temperature , China
19.
J Environ Manage ; 365: 121494, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897079

ABSTRACT

Floating photovoltaics (FPV) are an emerging renewable energy technology. Although they have received extensive attention in recent years, understanding of their environmental impacts is limited. To address this knowledge gap, we measured water temperature and meteorological parameters for six months under FPV arrays and in the control open water site and constructed a numerical model reflecting the water energy balance. Our results showed that FPV arrays caused diurnal variation in water temperature and microclimate. Specifically, we found that FPV had a cooling effect on their host waterbody during the daytime and a heat preservation effect at night, reducing diurnal variation. The diel oscillation of water temperature below FPV panels lagged behind that of open waters by approximately two hours. The microclimate conditions below FPV panels also changed, with wind speed decreasing by 70%, air temperature increasing during the daytime (averaging +2.01°C) and decreasing at night (averaging -1.27°C). Notably, the trend in relative humidity was the opposite (-3.72%, +14.43%). Correlation analysis showed that the degree of water temperature affected by FPV was related to local climate conditions. The numerical model could capture the energy balance characteristics with a correlation coefficient of 0.80 between the simulated and actual data. The shortwave radiation and latent heat flux below FPV panels was significantly reduced, and the longwave radiation emitted by FPV panels became one of the heat sources during the daytime. The combined variations of these factors dominated the water energy balance below FPV panels. The measured data and simulation results serve as a foundation for evaluating the impact of FPV systems on water temperature, energy budget, and aquatic environment, which would also provide a more comprehensive understanding of FPV systems.


Subject(s)
Temperature , Water , Models, Theoretical
20.
Animals (Basel) ; 14(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891659

ABSTRACT

This study assessed variations in demersal fish assemblages with respect to the study site and water depth. Seasonal samplings from May 2018 to March 2019 were conducted along the northern (Ayajin, Goseong) and southern (Hupo, Uljin) sites of the East Sea off the Korean coast, using commercial gill nets. Samples were collected at depths of ~50, ~80, ~150 m across the study sites, with concurrent monitoring of water column structures. A total of 73 species and 6250 specimens were collected. Distinctive fish species compositions were observed according to the study site and depth. Although Glyptocephalus stelleri was the most abundant fish species in both Ayajin and Hupo, Gadus macrocephalus, Icelus cataphractus, and Alcichthys elongatus were most predominant in Ayajin, whereas Cleisthenes pinetorum, Hippoglossoides dubius, and Gymnocanthus herzensteini were more prevalent in Hupo. In terms of depth layer, in Ayajin, G. stelleri dominated in both intermediate and deeper layers, with Hemilepidotus gilberti, A. elongatus, Enophrys diceraus common in shallower depths. Conversely, in Hupo, G. stelleri, C. pinetorum, and A. nadeshnyi dominated across all depth layers, whereas Dasycottus setiger and G. herzensteini dominated in deeper and shallower depths, respectively. Significant influences of the study site and water depth on fish assemblage structures were observed due to variations in water temperature at the seasonal thermocline boundary.

SELECTION OF CITATIONS
SEARCH DETAIL