Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Foods ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928889

ABSTRACT

Postharvest diseases, such as black spots caused by Alternaria alternata, have caused huge economic losses to the tomato industry and seriously restricted its development. In recent years, biological control has become a new method to control postharvest diseases of fruits and vegetables. Our research group screened W. anomalus, a yeast demonstrating a promising control effect on a postharvest black spot disease of tomatoes, and explored its physiological mechanism of prevention and control. Therefore, this study investigated the prevention and control effect of metabolites of W. anomalus on tomato black spot disease and the inhibition effect of main components on A. alternata. A GC-MS analysis found that isoamyl acetate was the main component of W. anomalus that played an inhibitory role. The results showed that isoamyl acetate could inhibit the growth of A. alternata and had a certain control effect on postharvest black spots in tomatoes. Our findings suggest that isoamyl acetate could be a promising alternative to fungicides for controlling postharvest black spots in tomatoes.

2.
Food Microbiol ; 122: 104556, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839235

ABSTRACT

Wickerhamomyces anomalus is one of the most important ester-producing strains in Chinese baijiu brewing. Ethanol and lactic acid are the main metabolites produced during baijiu brewing, but their synergistic influence on the growth and ester production of W. anomalus is unclear. Therefore, in this paper, based on the contents of ethanol and lactic acid during Te-flavor baijiu brewing, the effects of different ethanol concentrations (3, 6, and 9% (v/v)) combined with 1% lactic acid on the growth and ester production of W. anomalus NCUF307.1 were studied and their influence mechanisms were analyzed by transcriptomics. The results showed that the growth of W. anomalus NCUF307.1 under the induction of lactic acid was inhibited by ethanol. Although self-repair mechanism of W. anomalus NCUF307.1 induced by lactic acid was initiated at all concentrations of ethanol, resulting in significant up-regulation of genes related to the Genetic Information Processing pathway, such as cell cycle-yeast, meiosis-yeast, DNA replication and other pathways. However, the accumulation of reactive oxygen species and the inhibition of pathways associated with carbohydrate and amino acid metabolism may be the main reason for the inhibition of growth in W. anomalus NCUF307.1. In addition, 3% and 6% ethanol combined with 1% lactic acid could promote the ester production of W. anomalus NCUF307.1, which may be related to the up-regulation of EAT1, ADH5 and TGL5 genes, while the inhibition in 9% ethanol may be related to down-regulation of ATF2, EAT1, ADH2, ADH5, and TGL3 genes.


Subject(s)
Esters , Ethanol , Fermentation , Lactic Acid , Saccharomycetales , Ethanol/metabolism , Lactic Acid/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/drug effects , Saccharomycetales/growth & development , Esters/metabolism , Transcriptome , Gene Expression Regulation, Fungal/drug effects , Gene Expression Profiling
3.
Braz J Microbiol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775906

ABSTRACT

This study explored the isolation and screening of an osmotolerant yeast, Wickerhamomyces anomalus BKK11-4, which is proficient in utilizing renewable feedstocks for sugar alcohol production. In batch fermentation with high initial glucose concentrations, W. anomalus BKK11-4 exhibited notable production of glycerol and arabitol. The results of the medium optimization experiments revealed that trace elements, such as H3BO3, CuSO4, FeCl3, MnSO4, KI, H4MoNa2O4, and ZnSO4, did not increase glucose consumption or sugar alcohol production but substantially increased cell biomass. Osmotic stress, which was manipulated by varying initial glucose concentrations, influenced metabolic outcomes. Elevated glucose levels promoted glycerol and arabitol production while decreasing citric acid production. Agitation rates significantly impacted the kinetics, enhancing glucose utilization and metabolite production rates, particularly for glycerol, arabitol, and citric acid. The operational pH dictated the distribution of the end metabolites, with glycerol production slightly reduced at pH 6, while arabitol production remained unaffected. Citric acid production was observed at pH 6 and 7, and acetic acid production was observed at pH 7. Metabolomic analysis using GC/MS identified 29 metabolites, emphasizing the abundance of sugar/sugar alcohols. Heatmaps were generated to depict the variations in metabolite levels under different osmotic stress conditions, highlighting the intricate metabolic dynamics occurring post-glucose uptake, affecting pathways such as the pentose phosphate pathway and glycerolipid metabolism. These insights contribute to the optimization of W. anomalus BKK11-4 as a whole-cell factory for desirable products, demonstrating its potential applicability in sustainable sugar alcohol production from renewable feedstocks.

4.
Food Chem X ; 22: 101368, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38645938

ABSTRACT

Distilled soju, a Korean traditional alcoholic beverage, is produced by fermenting rice with a variety of microorganisms including molds, yeasts, and lactic acid-producing bacteria, followed by distillation. Our study sought to improve the quality of distilled soju through co-fermentation with Saccharomyces cerevisiae and Wickerhamomyces anomalus, known for producing volatile aromatic compounds during the early stages of fermentation. Analysis of volatile aromatic compounds in co-fermented distilled soju revealed a substantial increase in compounds with boiling points below 200 °C. Among them, ethyl hexanoate, isobutanol, and isoamyl alcohol were identified as the major volatile aromatic compounds based on Log2 fold change analyses of the volatile aromatic compound pattern. In sensory evaluation, co-fermented distilled soju received higher scores in terms of odor and overall preference. Therefore, incorporating W. anomalus may improve the quality of distilled soju.

5.
Front Bioeng Biotechnol ; 12: 1375937, 2024.
Article in English | MEDLINE | ID: mdl-38659644

ABSTRACT

Polyalcohols such as arabitol are among the main targets of biorefineries aiming to upcycle wastes and cheap substrates. In previous works Wickerhamomyces anomalus WC 1501 emerged as an excellent arabitol producer utilizing glycerol. Arabitol production by this strain is not growth associated, therefore, in this study, pre-grown cells were entrapped in calcium alginate beads (AB) and utilized for glycerol transformation to arabitol. Flasks experiments aimed to assess the medium composition (i.e., the concentration of inorganic and organic nitrogen sources and phosphates) and to establish the appropriate carrier-to-medium proportion. In flasks, under the best conditions of ammonium limitation and the carrier:medium ratio of 1:3 (w/v), 82.7 g/L glycerol were consumed in 168 h, yielding 31.2 g/L arabitol, with a conversion of 38% and volumetric productivity of 186 mg/mL/h. The process with immobilized cells was transferred to laboratory scale bioreactors with different configurations: stirred tank (STR), packed bed (PBR), fluidized bed (FBR), and airlift (ALR) bioreactors. The STR experienced oxygen limitation due to the need to maintain low stirring to preserve AB integrity and performed worse than flasks. Limitations in diffusion and mass transfer of oxygen and/or nutrients characterized also the PBR and the FBR and were partially relieved only in ALR, where 89.4 g/L glycerol were consumed in 168 h, yielding 38.1 g/L arabitol, with a conversion of 42% and volumetric productivity of 227 mg/mL/h. When the ALR was supplied with successive pulses of concentrated glycerol to replenish the glycerol as it was being consumed, 117 g/L arabitol were generated in 500 h, consuming a total of 285 g/L glycerol, with a 41% and 234 mg/L/h. The study strongly supports the potential of W. anomalus WC 1501 for efficient glycerol-to-arabitol conversion using immobilized cells. While the yeast shows promise by remaining viable and active for extended periods, further optimization is required, especially regarding mixing and oxygenation. Improving the stability of the immobilization process is also crucial for reusing pre-grown cells in multiple cycles, reducing dead times, biomass production costs, and enhancing the economic feasibility of the process.

6.
Fungal Biol ; 128(2): 1657-1663, 2024 04.
Article in English | MEDLINE | ID: mdl-38575238

ABSTRACT

Xylitol is an increasingly popular functional food additive, and the newly isolated yeast Wickerhamomyces anomalus WA has shown extensive substrate utilization capability, with the ability to grow on hexose (d-galactose, d-glucose, d-mannose, l-fructose, and d-sorbose) and pentose (d-xylose and l-arabinose) substrates, as well as high tolerance to xylose at concentrations of up to 300 g/L. Optimal xylitol fermentation conditions were achieved at 32 °C, 140 rpm, pH 5.0, and initial cell concentration OD600 of 2.0, with YP (yeast extract 10 g/L, peptone 20 g/L) as the optimal nitrogen source. Xylitol yield increased from 0.61 g/g to 0.91 g/g with an increase in initial substrate concentration from 20 g/L to 180 g/L. Additionally, 20 g/L glycerol was found to be the optimal co-substrate for xylitol fermentation, resulting in an increase in xylitol yield from 0.82 g/g to 0.94 g/g at 140 rpm, enabling complete conversion of xylose to xylitol.


Subject(s)
Saccharomycetales , Xylitol , Fermentation , Xylose , Glucose
7.
Cureus ; 16(2): e53550, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38445156

ABSTRACT

We report the case of an 84-year-old man with a history of IgG4-related sclerosing cholangitis who was diagnosed with advanced esophageal cancer and underwent radiation and chemotherapy. An implantable central venous access port was placed for chemotherapy and total parenteral nutrition. The patient presented with a fever and received antimicrobial therapy for acute cholangitis but remained febrile, and subsequently, yeast was detected in the aerobic bottle of blood culture obtained from the central venous line. The yeast was identified as Wickerhamomyces anomalus. Liposomal amphotericin B was administered, and the central line access port was removed. After confirmation of negative blood cultures and 14 days post treatment, he underwent reinsertion of the central line access port. Due to persistent pain at the insertion site, fluconazole was added for an additional 14 days, and the patient was discharged and transferred to another hospital. Wickerhamomyces anomalus is a rare fungal infection with other synonyms including Pichia anomala, Hansenula anomala, and Candida pelliculosa. A literature review of 53 case reports of Wickerhamomyces anomalus, Pichia anomala, Hansenula anomala, and Candida pelliculosa was conducted, with a total of 211 cases reviewed. Fungemia was reported in 94% of cases, with central venous catheterization, parental feeding, low birth weight, and immunocompromised status identified as major risk factors. The majority of cases were pediatric, particularly neonatal, and there were reports of nosocomial infections causing outbreaks, with some cases involving the eye such as endophthalmitis or keratitis.

8.
Pathogens ; 13(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38535612

ABSTRACT

Wickerhamomyces anomalus has been previously classified as Hansenula anomala, Pichia anomala, and Candida pelliculosa and was recently reclassified in the genus Wickerhamomyces after phylogenetic analysis of its genetic sequence. An increasing number of reports of human infections by W. anomalus have emerged, suggesting that this microorganism is an emerging pathogen. The present review aimed to provide data on the epidemiology, antifungal resistance, clinical characteristics, treatment, and outcomes of fungemia by W. anomalus by extracting all the available information from published original reports in the literature. PubMed/Medline, Cochrane Library, and Scopus databases were searched for eligible articles reporting data on patients with this disease. In total, 36 studies involving 170 patients were included. The age of patients with fungemia by W. anomalus ranged from 0 to 89 years; the mean age was 22.8 years, the median age was 2.2 years, with more than 37 patients being less than one month old, and 54% (88 out of 163 patients) were male. Regarding patients' history, 70.4% had a central venous catheter use (CVC), 28.7% were on total parenteral nutrition (TPN), 97% of neonates were hospitalized in the neonatal ICU (NICU), and 39.4% of the rest of the patients were hospitalized in the intensive care unit (ICU). Previous antimicrobial use was noted in 65.9% of patients. The most common identification method was the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in 34.1%, VITEK and VITEK 2 in 20.6%, and ID32 C in 15.3%. W. anomalus had minimal antifungal resistance to fluconazole, echinocandins, and amphotericin B, the most commonly used antifungals for treatment. Fever and sepsis were the most common clinical presentation noted in 95.8% and 86%, respectively. Overall mortality was 20% and was slightly higher in patients older than one year. Due to the rarity of this disease, future multicenter studies should be performed to adequately characterize patients' characteristics, treatment, and outcomes, which will increase our understanding and allow drawing safer conclusions regarding optimal management.

9.
Int J Food Microbiol ; 413: 110575, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38244385

ABSTRACT

Brown rot, aspergillosis and soft rot are the primary diseases of postharvest peach fruit. Our study aimed to investigate the biocontrol effect of Wickerhamomyces anomalus on the primary postharvest diseases of peach fruit and to explore its underlying physiological mechanism. The findings demonstrated that W. anomalus had an obvious inhibitory effect on Monilinia fructicola, Aspergillus niger and Rhizopus stolonifer. At the same time, W. anomalus can grow stably on the wound and surface of peach fruit at 25 °C and 4 °C and can form biofilm. W. anomalus increased the activity of resistance-related enzymes such as PPO, POD, GLU and the content of secondary metabolites such as total phenols, flavonoids and lignin in peach. Furthermore, the application of W. anomalus led to a reduced MDA level in peach fruit and increased activity of the active oxygen-scavenging enzyme system. This increase involved various antioxidant defense enzymes such as SOD and CAT, as well as ascorbic acid-glutathione (AsA-GSH) enzymes, including APX, GPX, GR, DHAR, and MDHAR. Our findings demonstrate that W. anomalus exerts its biocontrol effect by growing rapidly, competing with pathogens for nutrition and space, and enhancing the disease resistance and antioxidative capabilities of the peach fruit.


Subject(s)
Prunus persica , Saccharomycetales , Fruit , Plant Diseases/prevention & control
10.
3 Biotech ; 14(1): 29, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38178894

ABSTRACT

The nitrite efficient utilization microorganism Wickerhamomyces anomalus RZWP01 was identified. Using nitrite and ammonium as the sole nitrogen source, the nitrogen removal rate of W. anomalus RZWP01 was 97.4% and 87.1%, respectively. W. anomalus RZWP01 grew well in the nitrite medium with glucose or xylose as the only carbon source. However, the W. anomalus RZWP01 cannot live on the nitrite medium with lactose, citric acid, and methanol as the only carbon source. The maximal cell concentration occurred in the nitrite medium with glucose as the only carbon source at a C/N ratio of 20 for 48 h, reaching 8.92 × 108 cell mL-1. W. anomalus RZWP01 was the first reported yeast that can efficiently utilize nitrite. The isolation and identification of W. anomalus RZWP01 enriched the microbial resources of nitrite-degrading microorganisms and provided functional microorganisms for the water treatment of sustainable aquaculture.

11.
Foods ; 13(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38254597

ABSTRACT

Soy molasses is rich in oligosaccharides like sucrose, stachyose, and raffinose, with stachyose and raffinose being functional oligosaccharides. Harnessing soy molasses for the production of functional soy oligosaccharides (FSO) can significantly elevate its value. Biological purification, a method leveraging the selective utilization of different carbon sources by microorganisms, allows for the specific removal of sucrose from soy molasses while preserving stachyose and raffinose, thereby increasing the FSO content. This research identified a yeast named YT312 with strong purification capabilities for soy molasses and optimized the purification conditions. The study revealed that yeast YT312 was Wickerhamomyces anomalus, exhibiting a broad range of growth temperatures and pH levels alongside a high tolerance to glucose, sucrose, and NaCl. Through single-factor and orthogonal experiments, it was established that under specific conditions-0.375% inoculum size, 30 °C fermentation temperature, 150 rpm shaking speed, 10-fold dilution ratio, pH of 7, and 12 h of fermentation-sucrose was completely removed from soy molasses, while functional raffinose and stachyose were retained at rates of 96.1% and 90.2%, respectively. Consequently, W. anomalus YT312 displayed exceptional characteristics for the biological purification of soy molasses and the production of FSO.

12.
Med Mycol Case Rep ; 42: 100614, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38022892

ABSTRACT

Fungemia negatively impacts patient outcomes, current diagnostics lack sensitivity to identify emerging rare mycoses, and fungal infections are increasing in prevalence, variety, and resistance. We report a case of Wickerhamomyces anomalus in an immunocompromised neonate in which FcMBL bead-based matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) resulted in species identification roughly 30 hours before standard pathogen identification methods. Deploying FcMBL bead-based MALDI-TOF MS may improve the speed and accuracy of identification, and therefore treatment, of rare pathogens.

13.
Foods ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37761218

ABSTRACT

Microbial inoculation in moromi fermentation has a great influence on the physicochemical and flavour properties of soy sauces. This work investigated the effect of inoculating Tetragenococcus halophilus and Wickerhamomyces anomalus on the flavour formation of early-stage moromi (30 days) fermented at a lower temperature (22 °C) by determining their physicochemical and aroma changes. The results showed that single yeast or LAB inoculation increased the production of amino nitrogen, lactic acid and acetic acid, as well as free amino acids and key flavour components. Particularly, the sequential inoculation of T. halophilus and W. anomalus produced more free amino acids and aromatic compounds, and there might be synergistic effects between these two strains. More characteristic soy sauce flavour compounds, such as benzaldehyde, HEMF, guaiacol and methyl maltol were detected in the sequentially inoculated moromi, and this sample showed higher scores in savoury, roasted and caramel intensities. These results confirmed that sequential inoculation of T. halophilus and W. anomalus could be a choice for the future production of moromi with good flavour and quality under a lower temperature.

14.
BMC Microbiol ; 23(1): 239, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644381

ABSTRACT

BACKGROUND: The ascomycetous heterothallic yeast Wickerhamomyces anomalus (WA) has received considerable attention and has been widely reported in the winemaking industry for its distinctive physiological traits and metabolic attributes. An increased concentration of ethanol during ethanol fermentation, however, causes ethanol stress (ES) on the yeast cells. Trehalose has been implicated in improving survival under various stress conditions in microorganisms. Herein, we determined the effects of trehalose supplementation on the survival, differentially expressed genes (DEGs), cellular morphology, and oxidative stress tolerance of WA in response to ES. RESULTS: The results indicated that trehalose improved the survival and anomalous surface and ultrastructural morphology of WA. Additionally, trehalose improved redox homeostasis by reducing the levels of reactive oxygen species (ROS) and inducing the activities of antioxidant enzymes. In addition, DEGs affected by the application of trehalose were enriched in these categories including in gene expression, protein synthesis, energy metabolism, and cell cycle pathways. Additionally, trehalose increased the content of intracellular malondialdehyde (MDA) and adenosine triphosphate. CONCLUSIONS: These results reveal the protective role of trehalose in ES mitigation and strengthen the possible uses of WA in the wine fermentation sector.


Subject(s)
Saccharomycetales , Trehalose , Adenosine Triphosphate , Ethanol
15.
Front Microbiol ; 14: 1157299, 2023.
Article in English | MEDLINE | ID: mdl-37396392

ABSTRACT

It is shown that bacteria use yeast as a niche for survival in stressful conditions, therefore yeasts may act as temporary or permanent bacterial reservoirs. Endobacteria colonise the fungal vacuole of various osmotolerant yeasts which survive and multiply in sugar-rich sources such as plant nectars. Nectar-associated yeasts are present even in the digestive system of insects and often establish mutualistic symbioses with both hosts. Research on insect microbial symbioses is increasing but bacterial-fungal interactions are yet unexplored. Here, we have focused on the endobacteria of Wickerhamomyces anomalus (formerly Pichia anomala and Candida pelliculosa), an osmotolerant yeast associated with sugar sources and the insect gut. Symbiotic strains of W. anomalus influence larval development and contribute digestive processes in adults, in addition to exerting wide antimicrobial properties for host defence in diverse insects including mosquitoes. Antiplasmodial effects of W. anomalus have been shown in the gut of the female malaria vector mosquito Anopheles stephensi. This discovery highlights the potential of utilizing yeast as a promising tool for symbiotic control of mosquito-borne diseases. In the present study, we have carried out a large Next Generation Sequencing (NGS) metagenomics analysis including W. anomalus strains associated with vector mosquitoes Anopheles, Aedes and Culex, which has highlighted wide and heterogeneous EB communities in yeast. Furthermore, we have disclosed a Matryoshka-like association in the gut of A stephensi that comprises different EB in the strain of W. anomalus WaF17.12. Our investigations started with the localization of fast-moving bacteria-like bodies within the yeast vacuole of WaF17.12. Additional microscopy analyses have validated the presence of alive intravacuolar bacteria and 16S rDNA libraries from WaF17.12 have identified a few bacterial targets. Some of these EB have been isolated and tested for lytic properties and capability to re-infect the yeast cell. Moreover, a selective competence to enter yeast cell has been shown comparing different bacteria. We suggested possible tripartite interactions among EB, W. anomalus and the host, opening new knowledge on the vector biology.

16.
Foods ; 12(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37372580

ABSTRACT

Rice, supplemented with Dendrobium officinale, was subjected to cofermentation using Saccharomyces cerevisiae FBKL2.8022 (Sc) and Wickerhamomyces anomalus FBKL2.8023 (Wa). The alcohol content was determined with a biosensor, total sugars with the phenol-sulfuric acid method, reducing sugars with the DNS method, total acids and total phenols with the colorimetric method, and metabolites were analyzed using LC-MS/MS combined with multivariate statistics, while metabolic pathways were constructed using metaboAnalyst 5.0. It was found that the quality of rice wine was higher with the addition of D. officinale. A total of 127 major active substances, mainly phenols, flavonoids, terpenoids, alkaloids, and phenylpropanoids, were identified. Among them, 26 substances might have been mainly metabolized by the mixed-yeasts fermentation itself, and 10 substances might have originated either from D. officinale itself or from microbial metabolism on the newly supplemented substrate. In addition, significant differences in metabolite could be attributed to amino acid metabolic pathways, such as phenylalanine metabolism and alanine, aspartate, and glutamate metabolism. The characteristic microbial metabolism of D. officinale produces metabolites, which are α-dihydroartemisinin, alantolactone, neohesperidin dihydrochalcone, and occidentoside. This study showed that mixed-yeasts cofermentation and fermentation with D. officinale both could increase the content of active substances in rice wine and significantly improve the quality of rice wine. The results of this study provide a reference for the mixed fermentation of brewer's yeast and non-yeast yeasts in rice wine brewing.

17.
Microorganisms ; 11(6)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37375027

ABSTRACT

Wickerhamomyces anomalus, previously known as Candida pelliculosa, occasionally causes candidemia in humans, primarily infecting neonates, and infants. The mortality rate of these invasive infections is high, and isolates with a reduced susceptibility to fluconazole have been reported. W. anomalus outbreaks are regularly reported in healthcare facilities, especially in neonatal intensive care units (NICUs). In order to rapidly genotype isolates with a high-resolution, we developed and applied a short tandem repeat (STR) typing scheme for W. anomalus. Six STR markers were selected and amplified in two multiplex PCRs, M3 and M6, respectively. In total, 90 W. anomalus isolates were typed, leading to the identification of 38 different genotypes. Four large clusters were found, unveiling simultaneous outbreak events spread across multiple units within the same hospital. STR typing results of 11 isolates were compared to whole-genome sequencing (WGS) single nucleotide polymorphism (SNP) calling, and the identified genotypic relationships were highly concordant. We performed antifungal susceptibility testing of these isolates, and a reduced susceptibility to fluconazole was found for two (2.3%) isolates. ERG11 genes of these two isolates were examined using WGS data, which revealed a novel I469L substitution in one isolate. By constructing a homology model for W. anomalus ERG11p, the substitution was found in close proximity to the fluconazole binding site. In summary, we showed multiple W. anomalus outbreak events by applying a novel STR genotyping scheme.

18.
Anim Microbiome ; 5(1): 21, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016467

ABSTRACT

BACKGROUND: Yeasts are gaining attention as alternative ingredients in aquafeeds. However, the impact of yeast inclusion on modulation of intestinal microbiota of fish fed plant-based ingredients is limited. Thus, the present study investigates the effects of yeast and processing on composition, diversity and predicted metabolic capacity of gut microbiota of Atlantic salmon smolt fed soybean meal (SBM)-based diet. Two yeasts, Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA), were produced in-house and processed by direct heat-inactivation with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h, followed by spray-drying (ACJ and AWA). In a 42-day feeding experiment, fish were fed one of six diets: a fishmeal (FM)-based diet, a challenging diet with 30% SBM and four other diets containing 30% SBM and 10% of each of the four yeast products (i.e., ICJ, ACJ, IWA and AWA). Microbial profiling of digesta samples was conducted using 16S rRNA gene sequencing, and the predicted metabolic capacities of gut microbiota were determined using genome-scale metabolic models. RESULTS: The microbial composition and predicted metabolic capacity of gut microbiota differed between fish fed FM diet and those fed SBM diet. The digesta of fish fed SBM diet was dominated by members of lactic acid bacteria, which was similar to microbial composition in the digesta of fish fed the inactivated yeasts (ICJ and IWA diets). Inclusion of autolyzed yeasts (ACJ and AWA diets) reduced the richness and diversity of gut microbiota in fish. The gut microbiota of fish fed ACJ diet was dominated by the genus Pediococcus and showed a predicted increase in mucin O-glycan degradation compared with the other diets. The gut microbiota of fish fed AWA diet was highly dominated by the family Bacillaceae. CONCLUSIONS: The present study showed that dietary inclusion of FM and SBM differentially modulate the composition and predicted metabolic capacity of gut microbiota of fish. The inclusion of inactivated yeasts did not alter the modulation caused by SBM-based diet. Fish fed ACJ diet increased relative abundance of Pediococcus, and mucin O-glycan degradation pathway compared with the other diets.

19.
Food Chem ; 404(Pt A): 134593, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36444017

ABSTRACT

High-throughput sequencing techniques can provide important information for understanding the interaction between exogenous microbial agents and fruit microbial communities, and explain how it controls postharvest fungal diseases. In this study, we found that Wickerhamomyces anomalus could control the postharvest disease of kiwifruit. Meanwhile, high-throughput sequencing technology results showed that the composition and structure changes of the fungal community in microbial flora were significantly greater than those of bacteria after W. anomalus treated. W. anomalus could colonize inside the fruit and regulate the community composition of bacteria to reduce the abundance of pathogens and eventually maintain the healthy state of the fruit. The dominant genus in the microbiota of kiwifruit after application of W. anomalus showed an increased ability to interact. Some fungi or bacteria are positively associated with yeast in the epiphytic and endophytic sample communities, guiding the synthesis of compound biocontrol strains for kiwifruit postharvest diseases.


Subject(s)
Actinidia , Food Contamination , Fruit , Microbiota , Saccharomycetales , Actinidia/microbiology , Fruit/microbiology , Food Storage , Food Contamination/prevention & control , Fungi/pathogenicity
20.
J Mycol Med ; 33(1): 101351, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36413850

ABSTRACT

The incidence of invasive candidiasis in pediatric patients is increasing and is associated with significant morbidity and mortality. C. pelliculosa has been rarely reported as a human pathogen, however, it has been associated with serious nosocomial infections and clonal outbreaks with poor clinical outcomes in immunocompromised children were reported. Here, we describe the first case of candidemia due to Candida pelliculosa in a 5-year-old immunocompromised male suffered from Griscelli syndrome with hemophagocytic syndrome hospitalized in the pediatric intensive care unit (PICU), Tehran, Iran. In addition, the history of reported cases or case-series due to C. pelliculosa is reviewed.


Subject(s)
Candidemia , Cross Infection , Fungemia , Saccharomycetales , Humans , Child , Male , Child, Preschool , Fungemia/diagnosis , Fungemia/drug therapy , Fungemia/epidemiology , Candida , Iran , Candidemia/epidemiology , Cross Infection/epidemiology , Antifungal Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...