Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Hepatocell Carcinoma ; 10: 1973-1990, 2023.
Article in English | MEDLINE | ID: mdl-37954494

ABSTRACT

Objectives: Local and systemic immune responses evoked by locoregional therapies such as cryoablation are incompletely understood. The aim of this study was to characterize cryoablation-related immune response and the capacity of immune drugs to augment immunity upon cryoablation for the treatment of hepatocellular carcinoma (HCC) using a woodchuck hepatocellular carcinoma model. Materials and Methods: Twelve woodchucks chronically infected with woodchuck hepatitis virus and with hepatocellular carcinoma underwent imaging with contrast-enhanced CT. Partial cryoablation of tumors in three woodchucks was performed. Fourteen days after cryoablation, liver tissues were harvested and stained with H&E and TUNEL, and immune infiltrates were quantified. Peripheral blood mononuclear cells (PBMC) were collected from ablated and nonablated woodchucks, labeled with carboxyfluorescein succinimidyl ester (CFSE) and cultured with immune-modulating drugs, including a small PD-L1 antagonist molecule (BMS-202) and three TLR7/8 agonists (DSR 6434, GS-9620, gardiquimod). After incubation, cell replication and immune cell populations were analyzed by flow cytometry. Results: Local immune response in tumors was characterized by an increased number of CD3+ T lymphocytes and natural killer cells in the cryolesion margin compared to other tumor regions. T regulatory cells were found in higher numbers in distant tumors within the liver compared to untreated or control tumors. Cryoablation also augmented the systemic immune response as demonstrated by higher numbers of PBMC responses upon immune drug stimulation in the cryoablation group. Conclusions: Partial cryoablation augmented immune effects in both treated and remote untreated tumor microenvironments, as well as systemically, in woodchucks with HCC. Characterization of these mechanisms may enhance development of novel drug-device combinations for treatment of HCC.

2.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834296

ABSTRACT

Hepatitis B virus (HBV) remains a dominant cause of hepatocellular carcinoma (HCC). Recently, it was shown that HBV and woodchuck hepatitis virus (WHV) integrate into the hepatocyte genome minutes after invasion. Retrotransposons and transposable sequences were frequent sites of the initial insertions, suggesting a mechanism for spontaneous HBV DNA dispersal throughout the hepatocyte genome. Several somatic genes were also identified as early insertional targets in infected hepatocytes and woodchuck livers. Head-to-tail joints (HTJs) dominated amongst fusions, indicating their creation by non-homologous end-joining (NHEJ). Their formation coincided with the robust oxidative damage of hepatocyte DNA. This was associated with the activation of poly(ADP-ribose) polymerase 1 (PARP1)-mediated dsDNA repair, as reflected by the augmented transcription of PARP1 and XRCC1; the PARP1 binding partner OGG1, a responder to oxidative DNA damage; and increased activity of NAD+, a marker of PARP1 activation, and HO1, an indicator of cell oxidative stress. The engagement of the PARP1-mediated NHEJ repair pathway explains the HTJ format of the initial merges. The findings show that HBV and WHV are immediate inducers of oxidative DNA damage and hijack dsDNA repair to integrate into the hepatocyte genome, and through this mechanism, they may initiate pro-oncogenic processes. Tracking initial integrations may uncover early markers of HCC and help to explain HBV-associated oncogenesis.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B virus/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Hepatocytes , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Genomics , DNA, Viral/genetics , Hepatitis B/complications , Hepatitis B/genetics , X-ray Repair Cross Complementing Protein 1
3.
Virus Genes ; 59(6): 823-830, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37728707

ABSTRACT

Due to the limited host range of HBV, research progress has been hindered by the absence of a suitable animal model. The natural history of woodchuck hepatitis virus (WHV) infection in woodchuck closely mirrors that of HBV infection in human, making this species a promising candidate for establishing both in vivo and in vitro HBV infection models. Therefore, this animal may be a valuable species to evaluate HBV vaccines and anti-HBV drugs. A significant milestone in HBV and hepatitis D virus (HDV) infection is the discovery of sodium taurocholate cotransporting polypeptide (NTCP) as the functional receptor. In an effort to enhance susceptibility to HBV infection, we introduced hNTCP into the woodchuck hepatocytes by multiple approaches including transduction of vLentivirus-hNTCP in woodchuck hepatocytes, transfection of p-lentivirus-hNTCP-eGFP plasmids into these cells, as well as transduction of vAdenovirus-hNTCP-eGFP. Encouragingly, our findings demonstrated the successful introduction of hNTCP into woodchuck hepatocytes. However, it was observed that these hNTCP-expressing hepatocytes were only susceptible to HDV infection but not HBV. This suggests the presence of additional crucial factors mediating early-stage HBV infection that are subject to stringent species-specific restrictions.


Subject(s)
Hepatitis B , Hepatitis D , Animals , Humans , Hepatitis B virus/genetics , Marmota , Hepatocytes , Organic Anion Transporters, Sodium-Dependent/genetics , Hepatitis Delta Virus/genetics , Virus Internalization
4.
J Hepatocell Carcinoma ; 10: 291-301, 2023.
Article in English | MEDLINE | ID: mdl-36860804

ABSTRACT

Purpose: We tested a recently developed short peptide radioligand for PET imaging of hepatocellular carcinoma (HCC) by targeting an oncoprotein, extra-domain B fibronectin (EDB-FN) in the tumor microenvironment. Methods: The radioligand consists of a small linear peptide ZD2 with 68Ga-NOTA chelator, and specifically binds to EDB-FN. PET images were acquired dynamically for 1 hour after intravenously (i.v.) injecting 37 MBq (1.0 mCi) of the radioligand into the woodchuck model of naturally occurring HCC. Woodchuck HCC originated from chronic viral hepatitis infection, which recapitulates the corresponding human primary liver cancer. The animals were euthanized post-imaging for tissue collection and validation. Results: For ZD2 avid liver tumors, the radioligand accumulation plateaued a few minutes after injection, while the liver background uptake stabilized 20 min post-injection. The status of EDB-FN in woodchuck HCC was confirmed by histology and validated by PCR and western blocking. Conclusion: We have showed the viability of using the ZD2 short peptide radioligand targeting EDB-FN in liver tumor tissue for PET imaging of HCC, which can potentially impact the clinical care for HCC patients.

5.
Front Microbiol ; 13: 1011070, 2022.
Article in English | MEDLINE | ID: mdl-36560951

ABSTRACT

Woodchuck (Marmota monax) infected with woodchuck hepatitis virus (WHV) is the most pathogenically compatible naturally occurring model of human hepatitis B virus (HBV) infection, chronic hepatitis B, and HBV-induced hepatocellular carcinoma. This system plays a crucial role in discovery and preclinical evaluation of anti-HBV therapies. Its utilization remains tempered by the relatively narrow range of validated immunologic and molecular tools. We evaluated commercial antibodies against immune cell phenotypic markers and T cell molecules for cross-reactivity with woodchuck antigenic equivalents. The confirmed antibodies against programed cell death protein-1 (PD-1) and its ligand (PD-L1) were examined for ex vivo ability to activate WHV-specific, global and bystander cytotoxic T cells (CTLs) in chronic hepatitis and asymptomatic infection persisting after self-resolved acute hepatitis. Examination of 65 antibodies led to identification or confirmation of 23 recognizing woodchuck T, regulatory T, B and natural killer cells, T cell-associated PD-1, PD-L1, CTLA-4 and TIM-3 molecules, CD25 and CD69 markers of T cell activation, and interferon gamma (IFNγ). Antibodies against woodchuck PD-1 and PD-L1 triggered in vitro highly individualized WHV-specific and global activation of CTLs in both chronic hepatitis and persistent occult infection. WHV-specific CTLs were more robustly augmented by anti-PD-1 than by anti-PD-L1 in chronic hepatitis, while global IFNγ-positive CTL response was significantly suppressed in chronic hepatitis compared to persistent occult infection. Anti-PD-1 and anti-PD-L1 also occasionally activated CTLs to specificities other than those tested suggesting their potency to trigger side effects. This was particularly apparent when T cells from chronic hepatitis were treated with anti-PD-L1. The current findings indicate that inhibition of the PD-1/PD-L1 pathway could reactivate virus-specific and global T cell responses in both chronic hepatitis and asymptomatic persistent infection. They suggest a mechanism of potential reactivation of clinically silent infection during anti-PD-1/PD-L1 treatment and indicate that this therapy may also subdue occult HBV infection.

6.
Viruses ; 14(8)2022 08 03.
Article in English | MEDLINE | ID: mdl-36016334

ABSTRACT

Infection with hepatitis B virus (HBV) is responsible for the increasing global hepatitis burden, with an estimated 296 million people being carriers and living with the risk of developing chronic liver disease and cancer. While the current treatment options for chronic hepatitis B (CHB), including oral nucleos(t)ide analogs and systemic interferon-alpha, are deemed suboptimal, the path to finding an ultimate cure for this viral disease is rather challenging. The lack of suitable laboratory animal models that support HBV infection and associated liver disease progression is one of the major hurdles in antiviral drug development. For more than four decades, experimental infection of the Eastern woodchuck with woodchuck hepatitis virus has been applied for studying the immunopathogenesis of HBV and developing new antiviral therapeutics against CHB. There are several advantages to this animal model that are beneficial for performing both basic and translational HBV research. Previous review articles have focused on the value of this animal model in regard to HBV replication, pathogenesis, and immune response. In this article, we review studies of drug development and preclinical evaluation of direct-acting antivirals, immunomodulators, therapeutic vaccines, and inhibitors of viral entry, gene expression, and antigen release in the woodchuck model of CHB since 2014 until today and discuss their significance for clinical trials in patients.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Hepatitis C, Chronic , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Disease Models, Animal , Drug Development , Hepatitis B/drug therapy , Hepatitis B virus , Hepatitis C, Chronic/drug therapy , Humans , Marmota
7.
Gastro Hep Adv ; 1(4): 631-639, 2022.
Article in English | MEDLINE | ID: mdl-35844243

ABSTRACT

BACKGROUND AND AIMS: Radiolabeled short peptide ligands targeting prostate-specific membrane antigen (PSMA) were developed initially for imaging and treatment of prostate cancers. While many nonprostate solid tumors including hepatocellular carcinoma (HCC) express little PSMA, their neovasculature expresses a high level of PSMA, which is avid for Gallium-68-labeled PSMA-targeting radio-ligand (68Ga-PSMA-11) for positron emission tomography (PET). However, the lack of a spontaneous animal model of tumor-associated vascular PSMA overexpression has hindered the development and assessment of PSMA-targeting radioligands for imaging and therapy of the nonprostatic cancers. We identified detectable indigenous PSMA expression on tumor neovascular endothelia in a naturally occurring woodchuck model of HCC. METHODS: Molecular docking was performed with 3 bait PSMA ligands and compared between human and woodchuck PSMA. Initially, PET images were acquired dynamically after intravenously injecting 37 MBq (1.0 mCi) of 68Ga-PSMA-11 into woodchuck models of HCC. Subsequently, 10-minute static PET scans were conducted for other animals 1-hour after injection due to HCC and liver background uptake stabilization at 30-45 minutes after injection. Liver tissue samples were harvested after imaging, fresh-frozen for quantitative reverse transcription polymerase chain reaction and western blot for validation, or fixed for histology for correlation. RESULTS: Our preclinical studies confirmed the initial clinical findings of 68Ga-PSMA-11 uptake in HCC. The agents (ligands and antibodies) developed against human PSMA were found to be reactive against the woodchuck PSMA. CONCLUSION: This animal model offers a unique opportunity for investigating the biogenesis of tumor-associated vascular PSMA, its functional role(s), and potentials for future treatment strategies targeting tumor vascular PSMA using already developed PSMA-targeting agents.

8.
Front Immunol ; 13: 884113, 2022.
Article in English | MEDLINE | ID: mdl-35677037

ABSTRACT

Conventional treatment of chronic hepatitis B (CHB) is rarely curative due to the immunotolerant status of patients. RG7854 is an oral double prodrug of a toll-like receptor 7 (TLR7) agonist that is developed for the treatment of CHB. The therapeutic efficacy, host immune response, and safety of RG7854 were evaluated in the woodchuck model of CHB. Monotreatment with the two highest RG7854 doses and combination treatment with the highest RG7854 dose and entecavir (ETV) suppressed viral replication, led to loss of viral antigens, and induced seroconversion in responder woodchucks. Since viral suppression and high-titer antibodies persisted after treatment ended, this suggested that a sustained antiviral response (SVR) was induced by RG7854 in a subset of animals. The SVR rate, however, was comparable between both treatment regimens, suggesting that the addition of ETV did not enhance the therapeutic efficacy of RG7854 although it augmented the proliferation of blood cells in response to viral antigens and magnitude of antibody titers. The induction of interferon-stimulated genes in blood by RG7854/ETV combination treatment demonstrated on-target activation of TLR7. Together with the virus-specific blood cell proliferation and the transient elevations in liver enzymes and inflammation, this suggested that cytokine-mediated non-cytolytic and T-cell mediated cytolytic mechanisms contributed to the SVR, in addition to the virus-neutralizing effects by antibody-producing plasma cells. Both RG7854 regimens were not associated with treatment-limiting adverse effects but accompanied by dose-dependent, transient neutropenia and thrombocytopenia. The study concluded that finite, oral RG7854 treatment can induce a SVR in woodchucks that is based on the retrieval of antiviral innate and adaptive immune responses. This supports future investigation of the TLR7 agonist as an immunotherapeutic approach for achieving functional cure in patients with CHB.


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Marmota , Seroconversion , Toll-Like Receptor 7 , Animals , Antigens, Viral , Antiviral Agents/therapeutic use , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/veterinary , Toll-Like Receptor 7/agonists
9.
Int J Pharm ; 616: 121466, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35065205

ABSTRACT

Cancer immunotherapy has yet to reach its full potential due in part to limited response rates and side effects inherent to systemic delivery of immune-modulating drugs. Local administration of immunotherapy using drug-eluting embolic (DEE) microspheres as drug delivery vehicles for direct infusion into tumor-feeding arteries might increase and prolong tumor drug concentrations and reduce systemic drug exposure, potentially improving the risk-to-benefit ratio of these agents. The purpose of this study was to evaluate the ability of four immune modulators affecting two different immune pathways to potentiate replication of immune cells from a woodchuck model of hepatocellular carcinoma. DSR 6434, a Toll-like receptor agonist, and BMS-202, a PD-L1 checkpoint inhibitor, induced immune cell replication and were successfully loaded into radiopaque DEE microspheres in high concentrations. Release of DSR 6434 from the DEE microspheres was rapid (t99% = 0.4 h) upon submersion in a physiologic saline solution while BMS-202 demonstrated a more sustained release profile (t99% = 17.9 h). These findings demonstrate the feasibility of controlled delivery of immune-modulating drugs via a local DEE microsphere delivery paradigm.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Chemoembolization, Therapeutic/adverse effects , Doxorubicin , Humans , Liver Neoplasms/pathology , Microspheres , Pharmaceutical Preparations
10.
Front Immunol ; 12: 745802, 2021.
Article in English | MEDLINE | ID: mdl-34671360

ABSTRACT

Immune modulation for the treatment of chronic hepatitis B (CHB) has gained more traction in recent years, with an increasing number of compounds designed for targeting different host pattern recognition receptors (PRRs). These agonistic molecules activate the receptor signaling pathway and trigger an innate immune response that will eventually shape the adaptive immunity for control of chronic infection with hepatitis B virus (HBV). While definitive recognition of HBV nucleic acids by PRRs during viral infection still needs to be elucidated, several viral RNA sensing receptors, including toll-like receptors 7/8/9 and retinoic acid inducible gene-I-like receptors, are explored preclinically and clinically as possible anti-HBV targets. The antiviral potential of viral DNA sensing receptors is less investigated. In the present study, treatment of primary woodchuck hepatocytes generated from animals with CHB with HSV-60 or poly(dA:dT) agonists resulted in increased expression of interferon-gamma inducible protein 16 (IFI16) or Z-DNA-binding protein 1 (ZBP1/DAI) and absent in melanoma 2 (AIM2) receptors and their respective adaptor molecules and effector cytokines. Cytosolic DNA sensing receptor pathway activation correlated with a decline in woodchuck hepatitis virus (WHV) replication and secretion in these cells. Combination treatment with HSV-60 and poly(dA:dT) achieved a superior antiviral effect over monotreatment with either agonist that was associated with an increased expression of effector cytokines. The antiviral effect, however, could not be enhanced further by providing additional type-I interferons (IFNs) exogenously, indicating a saturated level of effector cytokines produced by these receptors following agonism. In WHV-uninfected woodchucks, a single poly(dA:dT) dose administered via liver-targeted delivery was well-tolerated and induced the intrahepatic expression of ZBP1/DAI and AIM2 receptors and their effector cytokines, IFN-ß and interleukins 1ß and 18. Receptor agonism also resulted in increased IFN-γ secretion of peripheral blood cells. Altogether, the effect on WHV replication and secretion following in vitro activation of IFI16, ZBP1/DAI, and AIM2 receptor pathways suggested an antiviral benefit of targeting more than one cytosolic DNA receptor. In addition, the in vivo activation of ZBP1/DAI and AIM2 receptor pathways in liver indicated the feasibility of the agonist delivery approach for future evaluation of therapeutic efficacy against HBV in woodchucks with CHB.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B Virus, Woodchuck/drug effects , Hepatitis B/drug therapy , Hepatocytes/drug effects , Poly dA-dT/pharmacology , Receptors, Cell Surface/agonists , Receptors, Pattern Recognition/agonists , Receptors, Virus/agonists , Animals , Antiviral Agents/therapeutic use , Cells, Cultured , Cytokines/biosynthesis , Cytokines/genetics , Cytosol/virology , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Synergism , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B Virus, Woodchuck/physiology , Hepatocytes/virology , Immunity, Innate , Interferons/pharmacology , Liver/drug effects , Liver/virology , Marmota , Persistent Infection , Poly dA-dT/therapeutic use , Pteridines/pharmacology , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/genetics , Receptors, Pattern Recognition/biosynthesis , Receptors, Pattern Recognition/genetics , Receptors, Virus/biosynthesis , Receptors, Virus/genetics , Virus Replication/drug effects
11.
Cells ; 10(9)2021 09 05.
Article in English | MEDLINE | ID: mdl-34571970

ABSTRACT

Current treatment options for patients infected with hepatitis B virus (HBV) are suboptimal, because the approved drugs rarely induce cure due to the persistence of the viral DNA genome in the nucleus of infected hepatocytes, and are associated with either severe side effects (pegylated interferon-alpha) or require life-long administration (nucleos(t)ide analogs). We report here the evaluation of the safety and therapeutic efficacy of a novel, humanized antibody (hzVSF) in the woodchuck model of HBV infection. hzVSF has been shown to act as a viral entry inhibitor, most likely by suppressing vimentin-mediated endocytosis of virions. Targeting the increased vimentin expression on liver cells by hzVSF after infection with HBV or woodchuck hepatitis virus (WHV) was demonstrated initially. Thereafter, hzVSF safety was assessed in eight woodchucks naïve for WHV infection. Antiviral efficacy of hzVSF was evaluated subsequently in 24 chronic WHV carrier woodchucks by monotreatment with three ascending doses and in combination with tenofovir alafenamide fumarate (TAF). Consistent with the proposed blocking of WHV reinfection, intravenous hzVSF administration for 12 weeks resulted in a modest but transient reduction of viral replication and associated liver inflammation. In combination with oral TAF dosing, the antiviral effect of hzVSF was enhanced and sustained in half of the woodchucks with an antibody response to viral proteins. Thus, hzVSF safely but modestly alters chronic WHV infection in woodchucks; however, as a combination partner to TAF, its antiviral efficacy is markedly increased. The results of this preclinical study support future evaluation of this novel anti-HBV drug in patients.


Subject(s)
Alanine/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antiviral Agents/pharmacology , Hepatitis B Virus, Woodchuck/drug effects , Hepatitis B/drug therapy , Liver/drug effects , Tenofovir/analogs & derivatives , Vimentin/antagonists & inhibitors , Virus Internalization/drug effects , Animals , Disease Models, Animal , Drug Therapy, Combination , Endocytosis/drug effects , Hep G2 Cells , Hepatitis B/metabolism , Hepatitis B/virology , Hepatitis B Virus, Woodchuck/pathogenicity , Host-Pathogen Interactions , Humans , Liver/metabolism , Liver/virology , Marmota , Tenofovir/pharmacology , Vimentin/metabolism , Viral Load , Virus Replication/drug effects
12.
Front Microbiol ; 12: 695384, 2021.
Article in English | MEDLINE | ID: mdl-34421849

ABSTRACT

Since the discovery of hepatitis B virus (HBV) over five decades ago, there have been many independent studies showing presence of HBV genomes in cells of the immune system. However, the nature of HBV lymphotropism and its significance with respect to HBV biology, persistence and the pathogenesis of liver and extrahepatic disorders remains underappreciated. This is in contrast to studies of other viral pathogens in which the capability to infect immune cells is an area of active investigation. Indeed, in some viral infections, lymphotropism may be essential, and even a primary mechanism of viral persistence, and a major contributor to disease pathogenesis. Nevertheless, there are advances in understanding of HBV lymphotropism in recent years due to cumulative evidence showing that: (i) lymphoid cells are a reservoir of replicating HBV, (ii) are a site of HBV-host DNA integration and (iii) virus genomic diversification leading to pathogenic variants, and (iv) they play a role in HBV resistance to antiviral therapy and (v) likely contribute to reactivation of hepatitis B. Further support for HBV lymphotropic nature is provided by studies in a model infection with the closely related woodchuck hepatitis virus (WHV) naturally infecting susceptible marmots. This animal model faithfully reproduces many aspects of HBV biology, including its replication scheme, tissue tropism, and induction of both symptomatic and silent infections, immunological processes accompanying infection, and progressing liver disease culminating in hepatocellular carcinoma. The most robust evidence came from the ability of WHV to establish persistent infection of the immune system that may not engage the liver when small quantities of virus are experimentally administered or naturally transmitted into virus-naïve animals. Although the concept of HBV lymphotropism is not new, it remains controversial and not accepted by conventional HBV researchers. This review summarizes research advances on HBV and hepadnaviral lymphotropism including the role of immune cells infection in viral persistence and the pathogenesis of HBV-induced liver and extrahepatic diseases. Finally, we discuss the role of immune cells in HBV diagnosis and assessment of antiviral therapy efficacy.

13.
Front Immunol ; 12: 713420, 2021.
Article in English | MEDLINE | ID: mdl-34367179

ABSTRACT

The antiviral property of small agonist compounds activating pattern recognition receptors (PRRs), including toll-like and RIG-I receptors, have been preclinically evaluated and are currently tested in clinical trials against chronic hepatitis B (CHB). The involvement of other PRRs in modulating hepatitis B virus infection is less known. Thus, woodchucks with resolving acute hepatitis B (AHB) after infection with woodchuck hepatitis virus (WHV) were characterized as animals with normal or delayed resolution based on their kinetics of viremia and antigenemia, and the presence and expression of various PRRs were determined in both outcomes. While PRR expression was unchanged immediately after infection, most receptors were strongly upregulated during resolution in liver but not in blood. Besides well-known PRRs, including TLR7/8/9 and RIG-I, other less-characterized receptors, such as IFI16, ZBP1/DAI, AIM2, and NLRP3, displayed comparable or even higher expression. Compared to normal resolution, a 3-4-week lag in peak receptor expression and WHV-specific B- and T-cell responses were noted during delayed resolution. This suggested that PRR upregulation in woodchuck liver occurs when the mounting WHV replication reaches a certain level, and that multiple receptors are involved in the subsequent induction of antiviral immune responses. Liver enzyme elevations occurred early during normal resolution, indicating a faster induction of cytolytic mechanisms than in delayed resolution, and correlated with an increased expression of NK-cell and CD8 markers and cytolytic effector molecules. The peak liver enzyme level, however, was lower during delayed resolution, but hepatic inflammation was more pronounced and associated with a higher expression of cytolytic markers. Further comparison of PRR expression revealed that most receptors were significantly reduced in woodchucks with established and progressing CHB, and several RNA sensors more so than DNA sensors. This correlated with a lower expression of receptor adaptor and effector molecules, suggesting that persistent, high-level WHV replication interferes with PRR activation and is associated with a diminished antiviral immunity based on the reduced expression of immune cell markers, and absent WHV-specific B- and T-cell responses. Overall, the differential expression of PRRs during resolution and persistence of WHV infection emphasizes their importance in the ultimate viral control during AHB that is impaired during CHB.


Subject(s)
Hepatitis B Virus, Woodchuck/immunology , Hepatitis B/veterinary , Immunity, Innate , Receptors, Immunologic/metabolism , Animals , Biomarkers , Disease Progression , Gene Expression , Hepatitis B, Chronic/veterinary , Inflammasomes/metabolism , Liver/immunology , Liver/metabolism , Liver/pathology , Liver/virology , Marmota , Transcription Factors/metabolism , Viral Load
14.
World J Gastrointest Oncol ; 13(6): 509-535, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34163570

ABSTRACT

This review describes woodchucks chronically infected with the woodchuck hepatitis virus (WHV) as an animal model for hepatocarcinogenesis and treatment of primary liver cancer or hepatocellular carcinoma (HCC) induced by the hepatitis B virus (HBV). Since laboratory animal models susceptible to HBV infection are limited, woodchucks experimentally infected with WHV, a hepatitis virus closely related to HBV, are increasingly used to enhance our understanding of virus-host interactions, immune response, and liver disease progression. A correlation of severe liver pathogenesis with high-level viral replication and deficient antiviral immunity has been established, which are present during chronic infection after WHV inoculation of neonatal woodchucks for modeling vertical HBV transmission in humans. HCC in chronic carrier woodchucks develops 17 to 36 mo after neonatal WHV infection and involves liver tumors that are comparable in size, morphology, and molecular gene signature to those of HBV-infected patients. Accordingly, woodchucks with WHV-induced liver tumors have been used for the improvement of imaging and ablation techniques of human HCC. In addition, drug efficacy studies in woodchucks with chronic WHV infection have revealed that prolonged treatment with nucleos(t)ide analogs, alone or in combination with other compounds, minimizes the risk of liver disease progression to HCC. More recently, woodchucks have been utilized in the delineation of mechanisms involved in innate and adaptive immune responses against WHV during acute, self-limited and chronic infections. Therapeutic interventions based on modulating the deficient host antiviral immunity have been explored in woodchucks for inducing functional cure in HBV-infected patients and for reducing or even delaying associated liver disease sequelae, including the onset of HCC. Therefore, woodchucks with chronic WHV infection constitute a well-characterized, fully immunocompetent animal model for HBV-induced liver cancer and for preclinical evaluation of the safety and efficacy of new modalities, which are based on chemo, gene, and immune therapy, for the prevention and treatment of HCC in patients for which current treatment options are dismal.

15.
Cardiovasc Intervent Radiol ; 44(9): 1439-1447, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34021380

ABSTRACT

PURPOSE: To evaluate an integrated liver biopsy platform that combined CT image fusion, electromagnetic (EM) tracking, and optical molecular imaging (OMI) of indocyanine green (ICG) to target hepatocellular carcinoma (HCC) lesions and a point-of-care (POC) OMI to assess biopsy cores, all based on tumor retention of ICG compared to normal liver, in phantom and animal model. MATERIAL: A custom CT image fusion and EM-tracked guidance platform was modified to integrate the measurement of ICG fluorescence intensity signals in targeted liver tissue with an OMI stylet or a POC OMI system. Accuracy was evaluated in phantom and a woodchuck with HCC, 1 day after administration of ICG. Fresh biopsy cores and paraffin-embedded formalin-fixed liver tissue blocks were evaluated with the OMI stylet or POC system to identify ICG fluorescence signal and ICG peak intensity. RESULTS: The mean distance between the initial guided needle delivery location and the peak ICG signal was 5.0 ± 4.7 mm in the phantom. There was complete agreement between the reviewers of the POC-acquired ICG images, cytology, and histopathology in differentiating HCC-positive from HCC-negative biopsy cores. The peak ICG fluorescence intensity signal in the ex vivo liver blocks was 39 ± 12 and 281 ± 150 for HCC negative and HCC positive, respectively. CONCLUSION: Biopsy guidance with fused CT imaging, EM tracking, and ICG tracking with an OMI stylet to detect HCC is feasible. Immediate assessment of ICG uptake in biopsy cores with the POC OMI system is feasible and correlates with the presence of HCC in the tissue.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Biopsy , Carcinoma, Hepatocellular/diagnostic imaging , Disease Models, Animal , Electromagnetic Phenomena , Liver Neoplasms/diagnostic imaging , Marmota , Molecular Imaging , Point-of-Care Systems
16.
Viruses ; 13(4)2021 04 09.
Article in English | MEDLINE | ID: mdl-33918831

ABSTRACT

As current interventions for chronic hepatitis B (CHB) rarely induce cure, more effective drugs are needed. Short-term treatment of woodchucks with the novel immunomodulator AIC649, a parapoxvirus-based stimulator of toll-like receptor 9 dependent and independent pathways, has been shown to reduce viral DNA and surface antigen via a unique, biphasic response pattern. The present study evaluated long-term AIC649 treatment in combination with Entecavir for potency and safety in woodchucks. AIC649 monotreatment induced modest reductions in serum viral DNA and surface and e antigens that were associated with the same biphasic response pattern previously observed. Entecavir monotreatment reduced transiently viremia but not antigenemia, while AIC649/Entecavir combination treatment mediated superior viral control. Undetectability of viral antigens and elicitation of antibodies in AIC649/Entecavir-treated woodchucks correlated with the expression of interferons and suppression of viral replication in liver. Combination treatment was well tolerated, and liver enzyme elevations were minor and transient. It was concluded that the AIC649-mediated effects were most likely based on an improvement and/or reconstitution of antiviral immune responses that are typically deficient in CHB. As a combination partner to Entecavir, the antiviral efficacy of AIC649 was markedly enhanced. This preclinical study supports future evaluation of AIC649 for treatment of human CHB.


Subject(s)
Antiviral Agents/therapeutic use , Guanine/analogs & derivatives , Hepatitis B Virus, Woodchuck/drug effects , Hepatitis B, Chronic/drug therapy , Immunologic Factors/therapeutic use , Marmota/virology , Animals , DNA, Viral/blood , Disease Models, Animal , Drugs, Investigational/therapeutic use , Guanine/therapeutic use , Hepatitis B Virus, Woodchuck/immunology , Hepatitis B, Chronic/immunology , Treatment Outcome , Viremia/drug therapy , Virus Replication/drug effects
17.
Heliyon ; 7(2): e06302, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33665452

ABSTRACT

Woodchuck Hepatitis Virus Post-transcriptional Regulatory Element (WPRE) is thought to enhance transgene expression of target genes delivered by adeno-associated viral (AAV) vectors. This study assessed the protein expression of α-synuclein, phosphorylated α-synuclein at Serine 129, extent of nigrostriatal degeneration as well as subsequent behavioral deficits induced by unilateral intranigral stereotactic injection in male adult C57BL/6J mice of an AAV2/9 expressing A53T human α-synuclein under the control of the synapsin promoter in presence or absence of the WPRE. The presence of WPRE enabled to achieve greater nigrostriatal degeneration and synucleinopathy which was concomitant with worsened forelimb use asymmetry. This work refines a mouse Parkinson's disease model in which anatomo-pathology is related to behavioral deficits.

18.
F1000Res ; 9: 1137, 2020.
Article in English | MEDLINE | ID: mdl-33274050

ABSTRACT

We sequenced the genome of the North American groundhog, Marmota monax, also known as the woodchuck. Our sequencing strategy included a combination of short, high-quality Illumina reads plus long reads generated by both Pacific Biosciences and Oxford Nanopore instruments. Assembly of the combined data produced a genome of 2.74 Gbp in total length, with an N50 contig size of 1,094,236 bp. To annotate the genome, we mapped the genes from another M. monax genome and from the closely related Alpine marmot, Marmota marmota, onto our assembly, resulting in 20,559 annotated protein-coding genes and 28,135 transcripts. The genome assembly and annotation are available in GenBank under BioProject PRJNA587092.


Subject(s)
Marmota , Nanopores , Animals , Base Sequence , Genome , High-Throughput Nucleotide Sequencing , Marmota/genetics , United States
19.
BMC Vet Res ; 16(1): 451, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33228678

ABSTRACT

BACKGROUND: Teratomas are germ cell neoplasms composed of a wide variety of tissues. In the woodchuck, only one testicular teratoma has been described in the literature. The objective of this report was to describe the radiologic and pathologic findings in a female woodchuck (Marmota monax) with an ovarian teratoma consisting of mature tissues originating from all three germ layers. CASE PRESENTATION: A 2-year-old female woodchuck that had been infected at birth with woodchuck hepatitis virus and subsequently developed hepatocellular carcinoma was incidentally discovered to have a mobile 6.6 × 4.8 × 4.7 cm abdominal mass on computed tomography (CT) imaging. The tumor was predominantly solid and heterogenous on CT with soft tissue, fat, and areas of dense calcification. The teratoma did not enhance with intravenous contrast administration. On ultrasound, the tumor was solid with heterogeneous echogenicity, reflecting the fat content and areas of calcification. Sonolucent areas were present that may have represented cysts. There was heterogeneously increased signal on T1-weighted magnetic resonance imaging (MRI) and heterogeneous hyperintensity in T2-weighted imaging. Fat was evident within the tumor. At necropsy, the tumor was attached to the distal end of the right uterine horn. Histopathology showed mature tissue types representing all three germ layers. CONCLUSIONS: Ovarian teratoma should be considered in the differential diagnosis of ovarian or abdominal masses in woodchucks. The tumor displayed mature tissue derived from all three germ layers. CT, ultrasound, and MRI findings were presented in detail and matched the typical imaging appearance of teratomas.


Subject(s)
Carcinoma, Hepatocellular/veterinary , Marmota , Ovarian Neoplasms/veterinary , Teratoma/veterinary , Animals , Female , Hepatitis B/veterinary , Hepatitis B Virus, Woodchuck , Liver Neoplasms/veterinary , Magnetic Resonance Imaging/veterinary , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/pathology , Teratoma/diagnostic imaging , Teratoma/pathology , Tomography, X-Ray Computed/veterinary , Ultrasonography/veterinary
20.
Front Immunol ; 11: 853, 2020.
Article in English | MEDLINE | ID: mdl-32536912

ABSTRACT

Woodchuck infected with woodchuck hepatitis virus (WHV) represents the pathogenically nearest model of hepatitis B and associated hepatocellular carcinoma (HCC). This naturally occurring animal model also is highly valuable for development and preclinical evaluation of new anti-HBV agents and immunotherapies against chronic hepatitis (CH) B and HCC. Studies in this system uncovered a number of molecular and immunological processes which contribute or likely contribute to the immunopathogenesis of liver disease and modulation of the systemic and intrahepatic innate and adaptive immune responses during hepadnaviral infection. Among them, inhibition of presentation of the class I major histocompatibility complex on chronically infected hepatocytes and a role of WHV envelope proteins in this process, as well as augmented hepatocyte cytotoxicity mediated by constitutively expressed components of CD95 (Fas) ligand- and perforin-dependent pathways, capable of eliminating cells brought to contact with hepatocyte surface, including activated T lymphocytes, were uncovered. Other findings pointed to a role of autoimmune response against hepatocyte asialoglycoprotein receptor in augmenting severity of liver damage in hepadnaviral CH. It was also documented that WHV in the first few hours activates intrahepatic innate immunity that transiently decreases hepatic virus load. However, this activation is not translated in a timely manner to induction of virus-specific T cell response which appears to be hindered by defective activation of antigen presenting cells and presentation of viral epitopes to T cells. The early WHV infection also induces generalized polyclonal activation of T cells that precedes emergence of virus-specific T lymphocyte reactivity. The combination of these mechanisms hinder recognition of virus allowing its dissemination in the initial, asymptomatic stages of infection before adaptive cellular response became apparent. This review will highlight a range of diverse mechanisms uncovered in the woodchuck model which affect effectiveness of the anti-viral systemic and intrahepatic immune responses, and modify liver disease outcomes. Further exploration of these and other mechanisms, either already discovered or yet unknown, and their interactions should bring more comprehensive understanding of HBV pathogenesis and help to identify novel targets for therapeutic and preventive interventions. The woodchuck model is uniquely positioned to further contribute to these advances.


Subject(s)
Hepatitis B Virus, Woodchuck/immunology , Hepatitis B/immunology , Host Microbial Interactions/immunology , Immunity , Liver/immunology , Marmota/immunology , Marmota/virology , Animals , Disease Models, Animal , Hepatitis B/virology , Hepatitis B virus/immunology , Hepatocytes/immunology , Humans , Liver/virology
SELECTION OF CITATIONS
SEARCH DETAIL