Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Article in English | MEDLINE | ID: mdl-38683453

ABSTRACT

Runt domain transcription factor 3 (RUNX3) suppresses many different cancer types and is disabled by mutations, epigenetic repression, or cytoplasmic mislocalization. In this study, we investigated whether oxidative stress is associated with RUNX3 accumulation from the nucleus to the cytoplasm in terms of histone modification. Oxidative stress elevated histone deacetylase (HDAC) level and lowered that of histone acetyltransferase. In addition, oxidative stress decreased the expression of mixed lineage leukemia (MLL), a histone methyltransferase, but increased the expression of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), which is also a histone methyltransferase. Moreover, oxidative stress-induced RUNX3 phosphorylation, Src activation, and Jun activation domain-binding protein 1 (JAB1) expression were inhibited by knockdown of HDAC and G9a, restoring the nuclear localization of RUNX3 under oxidative stress. Cytoplasmic RUNX3 localization was followed by oxidative stress-induced histone modification, activated Src along with RUNX3 phosphorylation, and induction of JAB1, resulting in RUNX3 inactivation.

2.
Breast Cancer Res ; 26(1): 6, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195559

ABSTRACT

BACKGROUND: Reports of dual carriers of pathogenic BRCA1 variants in trans are extremely rare, and so far, most individuals have been associated with a Fanconi Anemia-like phenotype. METHODS: We identified two families with a BRCA1 in-frame exon 20 duplication (Ex20dup). In one male individual, the variant was in trans with the BRCA1 frameshift variant c.2475delC p.(Asp825Glufs*21). We performed splicing analysis and used a transcription activation domain (TAD) assay to assess the functional impact of Ex20dup. We collected pedigrees and mapped the breakpoints of the duplication by long- and short-read genome sequencing. In addition, we performed a mitomycin C (MMC) assay from the dual carrier using cultured lymphoblastoid cells. RESULTS: Genome sequencing and RNA analysis revealed the BRCA1 exon 20 duplication to be in tandem. The duplication was expressed without skipping any one of the two exon 20 copies, resulting in a lack of wild-type transcripts from this allele. TAD assay indicated that the Ex20dup variant has a functional level similar to the well-known moderate penetrant pathogenic BRCA1 variant c.5096G > A p.(Arg1699Gln). MMC assay of the dual carrier indicated a slightly impaired chromosomal repair ability. CONCLUSIONS: This is the first reported case where two BRCA1 variants with demonstrated functional impact are identified in trans in a male patient with an apparently normal clinical phenotype and no BRCA1-associated cancer. The results pinpoint a minimum necessary BRCA1 protein activity to avoid a Fanconi Anemia-like phenotype in compound heterozygous status and yet still predispose carriers to hormone-related cancers. These findings urge caution when counseling families regarding potential Fanconi Anemia risk. Furthermore, prudence should be taken when classifying individual variants as benign based on co-occurrence in trans with well-established pathogenic variants.


Subject(s)
Breast Neoplasms , Fanconi Anemia , Humans , Male , BRCA1 Protein/genetics , Exons/genetics , Fanconi Anemia/genetics , Mitomycin , Phenotype
3.
Curr Opin Struct Biol ; 84: 102732, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056064

ABSTRACT

Eukaryotic transcription factors activate gene expression with their DNA-binding domains and activation domains. DNA-binding domains bind the genome by recognizing structurally related DNA sequences; they are structured, conserved, and predictable from protein sequences. Activation domains recruit chromatin modifiers, coactivator complexes, or basal transcriptional machinery via structurally diverse protein-protein interactions. Activation domains and DNA-binding domains have been called independent, modular units, but there are many departures from modularity, including interactions between these regions and overlap in function. Compared to DNA-binding domains, activation domains are poorly understood because they are poorly conserved, intrinsically disordered, and difficult to predict from protein sequences. This review, organized around commonly asked questions, describes recent progress that the field has made in understanding the sequence features that control activation domains and predicting them from sequence.


Subject(s)
DNA , Transcription Factors , Transcriptional Activation , Protein Binding , Transcription Factors/metabolism , Protein Domains , DNA/metabolism
4.
Protein Sci ; 33(2): e4863, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38073129

ABSTRACT

During protein evolution, some amino acid substitutions modulate protein function ("tuneability"). In most proteins, the tuneable range is wide and can be sampled by a set of protein variants that each contains multiple amino acid substitutions. In other proteins, the full tuneable range can be accessed by a set of variants that each contains a single substitution. Indeed, in some globular proteins, the full tuneable range can be accessed by the set of site-saturating substitutions at an individual "rheostat" position. However, in proteins with intrinsically disordered regions (IDRs), most functional studies-which would also detect tuneability-used multiple substitutions or small deletions. In disordered transcriptional activation domains (ADs), studies with multiple substitutions led to the "acidic exposure" model, which does not anticipate the existence of rheostat positions. In the few studies that did assess effects of single substitutions on AD function, results were mixed: the ADs of two full-length transcription factors did not show tuneability, whereas a fragment of a third AD was tuneable by single substitutions. In this study, we tested tuneability in the AD of full-length human class II transactivator (CIITA). Sequence analyses and experiments showed that CIITA's AD is an IDR. Functional assays of singly-substituted AD variants showed that CIITA's function was highly tuneable, with outcomes not predicted by the acidic exposure model. Four tested positions showed rheostat behavior for transcriptional activation. Thus, tuneability of different IDRs can vary widely. Future studies are needed to illuminate the biophysical features that govern whether an IDR is tuneable by single substitutions.


Subject(s)
Nuclear Proteins , Transcriptional Activation , Humans , Amino Acid Substitution , Intrinsically Disordered Proteins/chemistry , Nuclear Proteins/metabolism , Trans-Activators/chemistry
5.
Plant Cell Rep ; 43(1): 22, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38150091

ABSTRACT

KEY MESSAGE: A novel plant binary expression system was developed from the compactin biosynthetic pathway 27 of Penicillium citrinum ML-236B. The system achieved >fivefold activation of gene expression in 28 transgenic tobacco. A diverse and well-characterized genetic toolset is fundamental to achieve the overall goals of plant synthetic biology. To properly coordinate expression of a multigene pathway, this toolset should include binary systems that control gene expression at the level of transcription. In plants, few highly functional, orthogonal transcriptional regulators have been identified. Here, we describe the process of developing synthetic plant transcription factors using regulatory elements from the Penicillium citrinum ML-236B (compactin) pathway. This pathway contains several genes including mlcA and mlcC that are transcriptionally regulated in a dose-dependent manner by the activator mlcR. In Nicotiana benthamiana, we first expressed mlcR with several cognate synthetic promoters driving expression of GFP. Synthetic promoters contained operator sequences from the compactin gene cluster. Following identification of the most active synthetic promoter, the DNA-binding domain from mlcR was used to generate chimeric transcription factors containing variable activation domains, including QF from the Neurospora crassa Q-system. Activity was measured at both protein and RNA levels which correlated with an R2 value of 0.94. A synthetic transcription factor with a QF activation domain increased gene expression from its synthetic promoter up to sixfold in N. benthamiana. Two systems were characterized in transgenic tobacco plants. The QF-based plants maintained high expression in tobacco, increasing expression from the cognate synthetic promoter by fivefold. Transgenic plants and non-transgenic plants were morphologically indistinguishable. The framework of this study can easily be adopted for other putative transcription factors to continue improvement of the plant synthetic biology toolbox.


Subject(s)
Penicillium , Synthetic Biology , Nicotiana/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics
6.
Genetics ; 225(2)2023 10 04.
Article in English | MEDLINE | ID: mdl-37431893

ABSTRACT

The process of gametogenesis is orchestrated by a dynamic gene expression program, where a vital subset constitutes the early meiotic genes. In budding yeast, the transcription factor Ume6 represses early meiotic gene expression during mitotic growth. However, during the transition from mitotic to meiotic cell fate, early meiotic genes are activated in response to the transcriptional regulator Ime1 through its interaction with Ume6. While it is known that binding of Ime1 to Ume6 promotes early meiotic gene expression, the mechanism of early meiotic gene activation remains elusive. Two competing models have been proposed whereby Ime1 either forms an activator complex with Ume6 or promotes Ume6 degradation. Here, we resolve this controversy. First, we identify the set of genes that are directly regulated by Ume6, including UME6 itself. While Ume6 protein levels increase in response to Ime1, Ume6 degradation occurs much later in meiosis. Importantly, we found that depletion of Ume6 shortly before meiotic entry is detrimental to early meiotic gene activation and gamete formation, whereas tethering of Ume6 to a heterologous activation domain is sufficient to trigger early meiotic gene expression and produce viable gametes in the absence of Ime1. We conclude that Ime1 and Ume6 form an activator complex. While Ume6 is indispensable for early meiotic gene expression, Ime1 primarily serves as a transactivator for Ume6.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Nuclear Proteins/genetics , Meiosis/genetics , Gametogenesis/genetics , Gene Expression , Gene Expression Regulation, Fungal , Repressor Proteins/metabolism
7.
Genetics ; 225(2)2023 10 04.
Article in English | MEDLINE | ID: mdl-37462277

ABSTRACT

Transcription factors activate gene expression in development, homeostasis, and stress with DNA binding domains and activation domains. Although there exist excellent computational models for predicting DNA binding domains from protein sequence, models for predicting activation domains from protein sequence have lagged, particularly in metazoans. We recently developed a simple and accurate predictor of acidic activation domains on human transcription factors. Here, we show how the accuracy of this human predictor arises from the clustering of aromatic, leucine, and acidic residues, which together are necessary for acidic activation domain function. When we combine our predictor with the predictions of convolutional neural network (CNN) models trained in yeast, the intersection is more accurate than individual models, emphasizing that each approach carries orthogonal information. We synthesize these findings into a new set of activation domain predictions on human transcription factors.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Humans , DNA-Binding Proteins/genetics , Transcriptional Activation , Transcription Factors/metabolism , Amino Acid Sequence , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA/metabolism
8.
Mol Med ; 29(1): 80, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365502

ABSTRACT

c-Jun activation domain binding protein-1 (JAB1) is a multifunctional regulator that plays vital roles in diverse cellular processes. It regulates AP-1 transcriptional activity and also acts as the fifth component of the COP9 signalosome complex. While JAB1 is considered an oncoprotein that triggers tumor development, recent studies have shown that it also functions in neurological development and disorders. In this review, we summarize the general features of the JAB1 gene and protein, and present recent updates on the regulation of JAB1 expression. Moreover, we also highlight the functional roles and regulatory mechanisms of JAB1 in neurodevelopmental processes such as neuronal differentiation, synaptic morphogenesis, myelination, and hair cell development and in the pathogenesis of some neurological disorders such as Alzheimer's disease, multiple sclerosis, neuropathic pain, and peripheral nerve injury. Furthermore, current challenges and prospects are discussed, including updates on drug development targeting JAB1.


Subject(s)
COP9 Signalosome Complex , Intracellular Signaling Peptides and Proteins , Peptide Hydrolases , COP9 Signalosome Complex/genetics , Intracellular Signaling Peptides and Proteins/genetics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Humans
9.
Mol Cell ; 83(3): 373-392, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36693380

ABSTRACT

Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.


Subject(s)
Enhancer Elements, Genetic , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic , Gene Expression Regulation , Base Sequence , Chromatin/genetics
10.
Genetics ; 222(2)2022 09 30.
Article in English | MEDLINE | ID: mdl-35939561

ABSTRACT

Transcription factors regulate gene expression by binding to regulatory DNA and recruiting regulatory protein complexes. The DNA-binding and protein-binding functions of transcription factors are traditionally described as independent functions performed by modular protein domains. Here, I argue that genome binding can be a 2-part process with both DNA-binding and protein-binding steps, enabling transcription factors to perform a 2-step search of the nucleus to find their appropriate binding sites in a eukaryotic genome. I support this hypothesis with new and old results in the literature, discuss how this hypothesis parsimoniously resolves outstanding problems, and present testable predictions.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Binding Sites , DNA/metabolism , DNA-Binding Proteins/genetics , Protein Binding , Transcription Factors/metabolism
11.
Curr Res Struct Biol ; 4: 118-133, 2022.
Article in English | MEDLINE | ID: mdl-35573459

ABSTRACT

Transcription factors play key roles in orchestrating a plethora of cellular mechanisms and controlling cellular homeostasis. Transcription factors share distinct DNA binding domains, which allows to group them into protein families. Among them, the Forkhead box O (FOXO) family contains transcription factors crucial for cellular homeostasis, longevity and response to stress. The dysregulation of FOXO signaling is linked to drug resistance in cancer therapy or cellular senescence, however, selective drugs targeting FOXOs are limited, thus knowledge about structure and dynamics of FOXO proteins is essential. Here, we provide an extensive study of structure and dynamics of all FOXO family members. We identify residues accounting for different dynamic and structural features. Furthermore, we show that the auto-inhibition of FOXO proteins by their C-terminal trans-activation domain is conserved throughout the family and that these interactions are not only possible intra-, but also inter-molecularly. This indicates a model in which FOXO transcription factors would modulate their activities by interacting mutually.

12.
Cell Tissue Res ; 388(2): 259-271, 2022 May.
Article in English | MEDLINE | ID: mdl-35260935

ABSTRACT

Thrombospondin-1 (Tsp-1), a matricellular protein, could protect retinal neurons from endogenous or exogenous insults; however, its underlying mechanism remains unclear. Thus, this study aimed to investigate Tsp-1-mediated neuron-protection effect in retinal cells. Our data showed that Tsp-1 downregulation would aggravate UV irradiation-induced DNA damage in 661 W cells and cone photoreceptor cells. The increasing levels of poly (ADP ribose) polymer (PAR) and γ-H2AX in Tsp-1-silenced 661 W cells indicate severe DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). By utilizing an error-prone substrate, Tsp-1 silencing significantly increased deleted DNA end joining in 661 W cells with spontaneous DNA damage (SDD). Moreover, Tsp-1 is indirectly involved in DNA stability in 661 W cells as UV treatment caused a significant Tsp-1 decreasing in cytoplasm, but no obvious Tsp-1 alteration in cell nuclear of 661 W cells. Furthermore, our data indicate that Tgf-ß1 activation domain in Tsp-1 plays a critical role in DNA stability in 661 W cells through expressing mutated exogenous Tsp-1 and Tgf-ß inhibitor, LSKL. Therefore, this study provides new insights into the mechanism of the neuroprotective action positively mediated by Tsp-1, which might be a therapeutic target for the treatment of retinal pathology.


Subject(s)
Retinal Cone Photoreceptor Cells , Transforming Growth Factor beta1 , Down-Regulation , Retinal Cone Photoreceptor Cells/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
13.
Cell Syst ; 13(4): 334-345.e5, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35120642

ABSTRACT

Acidic activation domains are intrinsically disordered regions of the transcription factors that bind coactivators. The intrinsic disorder and low evolutionary conservation of activation domains have made it difficult to identify the sequence features that control activity. To address this problem, we designed thousands of variants in seven acidic activation domains and measured their activities with a high-throughput assay in human cell culture. We found that strong activation domain activity requires a balance between the number of acidic residues and aromatic and leucine residues. These findings motivated a predictor of acidic activation domains that scans the human proteome for clusters of aromatic and leucine residues embedded in regions of high acidity. This predictor identifies known activation domains and accurately predicts previously unidentified ones. Our results support a flexible acidic exposure model of activation domains in which the acidic residues solubilize hydrophobic motifs so that they can interact with coactivators. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Amino Acid Sequence , DNA-Binding Proteins/genetics , Humans , Leucine/metabolism , Transcription Factors/metabolism , Transcriptional Activation
14.
ChemMedChem ; 17(5): e202100623, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35037401

ABSTRACT

Many efforts have been made to develop inhibitors of MDM2 as potential drugs for cancer therapy. In this work, we use our previous developed conformational engineering technique to stabilize the binding conformation of the p53 transcription activation domain (TAD) peptide on gold nanoparticles (AuNPs), and create an AuNP-based anti-MDM2 artificial antibody, denoted as anti-MDM2 Goldbody, that specifically binds MDM2. Though the free TAD peptide is unstructured, circular dichroism (CD) spectra confirm that its α-helical conformation in the original p53 protein is restored on the anti-MDM2 Goldbody, and surface plasmon resonance (SPR) experiments confirm that there is strong specific interaction between the anti-MDM2 Goldbody and MDM2, demonstrating the anti-MDM2 Goldbody as a potential inhibitor of MDM2. This work demonstrates that the conformational engineering technique is not limited to the antigen-antibody systems, but can also be applied more widely in other protein-protein interfaces to create increasingly more artificial proteins for various biomedical applications.


Subject(s)
Metal Nanoparticles , Tumor Suppressor Protein p53 , Gold/pharmacology , Peptides/chemistry , Protein Binding , Protein Conformation , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism
15.
Mol Cell ; 82(3): 677-695.e7, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35016035

ABSTRACT

Transcription is orchestrated by thousands of transcription factors (TFs) and chromatin-associated proteins, but how these are causally connected to transcriptional activation is poorly understood. Here, we conduct an unbiased proteome-scale screen to systematically uncover human proteins that activate transcription in a natural chromatin context. By combining interaction proteomics and chemical inhibitors, we delineate the preference of these transcriptional activators for specific co-activators, highlighting how even closely related TFs can function via distinct cofactors. We also identify potent transactivation domains among the hits and use AlphaFold2 to predict and experimentally validate interaction interfaces of two activation domains with BRD4. Finally, we show that many novel activators are partners in fusion events in tumors and functionally characterize a myofibroma-associated fusion between SRF and C3orf62, a potent p300-dependent activator. Our work provides a functional catalog of potent transactivators in the human proteome and a platform for discovering transcriptional regulators at genome scale.


Subject(s)
Proteome , Proteomics , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Activation , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , K562 Cells , Mice , Myofibroma/genetics , Myofibroma/metabolism , NIH 3T3 Cells , Serum Response Factor/genetics , Serum Response Factor/metabolism , Transcription Factors/genetics
16.
Int J Biol Macromol ; 193(Pt A): 401-413, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34673109

ABSTRACT

The trimeric CCAAT-binding NF-Y is a "pioneer" Transcription Factor -TF- known to cooperate with neighboring TFs to regulate gene expression. Genome-wide analyses detected a precise stereo-alignment -10/12 bp- of CCAAT with E-box elements and corresponding colocalization of NF-Y with basic-Helix-Loop-Helix (bHLH) TFs. We dissected here NF-Y interactions with USF1 and MAX. USF1, but not MAX, cooperates in DNA binding with NF-Y. NF-Y and USF1 synergize to activate target promoters. Reconstruction of complexes by structural means shows independent DNA binding of MAX, whereas USF1 has extended contacts with NF-Y, involving the USR, a USF-specific amino acid sequence stretch required for trans-activation. The USR is an intrinsically disordered domain and adopts different conformations based on E-box-CCAAT distances. Deletion of the USR abolishes cooperative DNA binding with NF-Y. Our data indicate that the functionality of certain unstructured domains involves adapting to small variation in stereo-alignments of the multimeric TFs sites.


Subject(s)
DNA/metabolism , Upstream Stimulatory Factors/metabolism , Gene Expression Regulation , Humans , Promoter Regions, Genetic , Protein Binding , Protein Domains
17.
J Biol Chem ; 297(4): 101192, 2021 10.
Article in English | MEDLINE | ID: mdl-34520758

ABSTRACT

Histone deacetylase 3 (HDAC3) plays an important role in signal-dependent transcription and is dysregulated in diseases such as cancer. Previous studies have shown that the function of HDAC3 requires an activation step, which is mediated by the interactions of HDAC3 with the deacetylase-activation domain (DAD) of nuclear receptor corepressors and inositol tetraphosphate (IP4). However, the role of the unique HDAC3 C-terminal region in HDAC3 activation is elusive. Here multiple biochemical, structural, and functional studies show that HDAC3 activation requires a priming step mediated by the C terminus to remodel HDAC3 conformation. We show that multiple C-terminal mutations prevent HDAC3 activation by preventing this C terminus-dependent conformational change. Mechanistically, we demonstrate that the C terminus-mediated function in altering HDAC3 conformation is required for proper complex formation of HDAC3 with DAD and IP4 by allowing HDAC3 to undergo IP4-dependent interaction with DAD. Remarkably, we found that this C terminus function is conformation dependent, being necessary for HDAC3 activation prior to but not after the conformational change. Together, our study defines two functional states of free HDAC3, reveals the complete HDAC3 activation pathway, and links the C terminus function to the specific interaction between HDAC3 and DAD. These results also have implications in how signaling pathways may converge on the C terminus to regulate HDAC3 and suggest that the C terminus-mediated conformational change could represent a new target for inhibiting HDAC3 in diseases such as cancer.


Subject(s)
Co-Repressor Proteins/metabolism , Histone Deacetylases/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Co-Repressor Proteins/genetics , Enzyme Activation , HEK293 Cells , Histone Deacetylases/genetics , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Protein Domains
18.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34445562

ABSTRACT

Synaptonemal complex protein 3 (SCP3), a member of the Cor1 family, has been implicated in cancer progression, and therapeutic resistance, as well as cancer stem cell (CSC)-like properties. Previously, we demonstrated that SCP3 promotes these aggressive phenotypes via hyperactivation of the AKT signaling pathway; however, the underlying mechanisms responsible for SCP3-induced AKT activation remain to be elucidated. In this study, we demonstrated that the EGF-EGFR axis is the primary route through which SCP3 acts to activate AKT signaling. SCP3 triggers the EGFR-AKT pathway through transcriptional activation of EGF. Notably, neutralization of secreted EGF by its specific monoclonal antibody reversed SCP3-mediated aggressive phenotypes with a concomitant reversal of EGFR-AKT activation. In an effort to elucidate the molecular mechanisms underlying SCP3-induced transcriptional activation of EGF, we identified Jun activation domain-binding protein 1 (JAB1) as a binding partner of SCP3 using a yeast two-hybrid (Y2H) assay system, and we demonstrated that SCP3 induces EGF transcription through physical interaction with JAB1. Thus, our findings establish a firm molecular link among SCP3, EGFR, and AKT by identifying the novel roles of SCP3 in transcriptional regulation. We believe that these findings hold important implications for controlling SCP3high therapeutic-refractory cancer.


Subject(s)
COP9 Signalosome Complex/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Epidermal Growth Factor/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neoplastic Stem Cells/drug effects , Peptide Hydrolases/metabolism , Uterine Cervical Neoplasms/drug therapy , COP9 Signalosome Complex/genetics , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Epidermal Growth Factor/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Peptide Hydrolases/genetics , Phosphorylation , Protein Interaction Domains and Motifs , Signal Transduction , Tumor Cells, Cultured , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
19.
J Biol Res (Thessalon) ; 28(1): 15, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34271975

ABSTRACT

E proteins are transcriptional regulators that regulate many developmental processes in animals and lymphocytosis and leukemia in Homo sapiens. In particular, E2A, a member of the E protein family, plays a major role in the transcriptional regulatory network that promotes the differentiation and development of B and T lymphocytes. E2A-mediated transcriptional regulation usually requires the formation of E2A dimers, which then bind to coregulators. In this review, we summarize the mechanisms by which E2A participates in transcriptional regulation from a structural perspective. More specifically, the C-terminal helix-loop-helix (HLH) region of the basic HLH (bHLH) domain first dimerizes, and then the activation domains of E2A bind to different coactivators or corepressors in different cell contexts, resulting in histone acetylation or deacetylation, respectively. Then, the N-terminal basic region (b) of the bHLH domain binds to or dissociates from a specific DNA motif (E-box sequence). Last, trans-activation or trans-repression occurs. We also summarize the properties of these E2A domains and their interactions with the domains of other proteins. The feasibility of developing drugs based on these domains is discussed.

20.
J Cell Biochem ; 122(10): 1544-1555, 2021 10.
Article in English | MEDLINE | ID: mdl-34224597

ABSTRACT

The nine-amino-acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3-4 and p6-7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF-kB, and p53. In this study, we analyzed the 9aaTADs-KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1-α2-α3 are influenced by sterically-associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX-L12-G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1-α2-α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX-L12-G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX-L12-G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co-operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α-helixes and enables the enhanced formation of the KIX-L12-G2 region. This contributes to free energy and is the key for the KIX-9aaTAD binding. Therefore, the 9aaTAD-KIX interactions do not operate under the rigid key-and-lock mechanism what explains the 9aaTAD natural variability.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , CREB-Binding Protein/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , NF-kappa B/metabolism , Tumor Suppressor Protein p53/metabolism , Amino Acid Motifs , Basic Helix-Loop-Helix Transcription Factors/chemistry , Binding Sites , CREB-Binding Protein/chemistry , Histone-Lysine N-Methyltransferase/chemistry , Humans , Myeloid-Lymphoid Leukemia Protein/chemistry , NF-kappa B/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Transcription Factors/metabolism , Tumor Suppressor Protein p53/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL