Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Funct Biomater ; 15(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38921521

ABSTRACT

Computer-aided design and computer-aided manufacturing (CAD/CAM) techniques are based on either subtractive (milling prefabricated blocks) or additive (3D printing) methods, and both are used for obtaining dentistry materials. Our in vitro study aimed to investigate the behavior of human gingival fibroblasts exposed to methacrylate (MA)-based CAD/CAM milled samples in comparison with that of MA-based 3D-printed samples to better elucidate the mechanisms of cell adaptability and survival. The proliferation of human gingival fibroblasts was measured after 2 and 24 h of incubation in the presence of these samples using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the membrane integrity was assessed through the lactate dehydrogenase release. The level of reactive oxygen species, expression of autophagy-related protein LC3B-I, and detection of GSH and caspase 3/7 were evaluated by fluorescence staining. The MMP-2 levels were measured using a Milliplex MAP kit. The incubation with MA-based 3D-printed samples significantly reduced the viability, by 16% and 28% from control after 2 and 24 h, respectively. There was a 25% and 55% decrease in the GSH level from control after 24 h of incubation with the CAD/CAM milled and 3D-printed samples, respectively. In addition, higher levels of LC3B-I and MMP-2 were obtained after 24 h of incubation with the MA-based 3D samples compared to the CAD/CAM milled ones. Therefore, our results outline that the MA-CAD/CAM milled samples displayed good biocompatibility during 24-h exposure, while MA-3D resins are proper for short-term utilization (less than 24 h).

2.
Front Surg ; 10: 1019410, 2023.
Article in English | MEDLINE | ID: mdl-36816003

ABSTRACT

In clinical practice, laminectomy is a commonly used procedure for spinal decompression in patients suffering from spinal disorders such as ossification of ligamentum flavum, lumbar stenosis, severe spinal fracture, and intraspinal tumors. However, the loss of posterior column bony support, the extensive proliferation of fibroblasts and scar formation after laminectomy, and other complications (such as postoperative epidural fibrosis and iatrogenic instability) may cause new symptoms requiring revision surgery. Implantation of an artificial lamina prosthesis is one of the most important methods to avoid post-laminectomy complications. Artificial lamina is a type of synthetic lamina tissue made of various materials and shapes designed to replace the resected autologous lamina. Artificial laminae can provide a barrier between the dural sac and posterior soft tissues to prevent postoperative epidural fibrosis and paravertebral muscle compression and provide mechanical support to maintain spinal alignment. In this paper, we briefly review the complications of laminectomy and the necessity of artificial lamina, then we review various artificial laminae from clinical practice and laboratory research perspectives. Based on a combination of additive manufacturing technology and finite element analysis for spine surgery, we propose a new designing perspective of artificial lamina for potential use in clinical practice.

3.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498952

ABSTRACT

This study evaluated the mid-term (12-month) biomechanical, biocompatibility, and biological performance of additive-manufactured bioabsorbable iron-based interference screws (ISs). Two bioabsorbable iron IS types-manufactured using pure iron powder (iron_IS) and using pure iron powder with 0.2 wt% tricalcium phosphate (TCP_IS)-were compared with conventional metallic IS (control) using in vitro biocompatibility and degradation analyses and an in vivo animal study. The in vitro ultimate failure strength was significantly higher for iron_IS and TCP_IS than for control ISs at 3 months post-operatively; however, the difference between groups were nonsignificant thereafter. Moreover, at 3 months after implantation, iron_IS and TCP_IS increased bone volume fraction, bone surface area fraction, and percent intersection surface; the changes thereafter were nonsignificant. Iron_IS and TCP_IS demonstrated degradation over time with increased implant surface, decreased implant volume, and structure thickness; nevertheless, the analyses of visceral organs and biochemistry demonstrated normal results, except for time-dependent iron deposition in the spleen. Therefore, compared with conventional ISs, bioabsorbable iron-based ISs exhibit higher initial mechanical strength. Although iron-based ISs demonstrate high biocompatibility 12 months after implantation, their corrosive iron products may accumulate in the spleen. Because they demonstrate mechanical superiority along with considerable absorption capability after implantation, iron-based ISs may have potential applications in implantable medical-device development in the future.


Subject(s)
Calcium Phosphates , Iron , Animals , Rabbits , Iron/chemistry , Porosity , Absorbable Implants
4.
Front Bioeng Biotechnol ; 10: 856562, 2022.
Article in English | MEDLINE | ID: mdl-35795161

ABSTRACT

Burn injuries requires post-accident medical treatment. However, the treatment of burns does not end with first aid because scarred skin must be managed for many years, and in some circumstances, for life. The methods used to evaluate the state of a burn scar based, for instance, on Patient and Observer Scar Assessment Scale or similar ones, often lacks in univocally assessing the scarred skin's state of health. As a result, the primary aim of this research is to design and build a prototype that can support the doctor during scar assessment, and eventually therapy, by providing objective information on the state of the lesion, particularly the value of skin pliability. The developed tool is based on the depressomassage treatment probe named LPG, currently used to treat burn scars in a number of hospitals. It consists of a non-invasive massage technique using a mechanical device to suction and mobilize scar tissue and is used as a post-operative treatment to speed up the healing process to make the mark of the scar less visible. The prototype is specifically designed to be manufactured using Additive Manufacturing and was validated comparing its performances against the ones of a certified instrument (i.e., the Romer Absolute ARM with RS1 probe). Validation was carried out by designing and developing a tool to put the RS1 probe in the same measurement conditions of the new prototype probe. Tests performed to assess the performance of the devised prototype show that the probe developed in this work is able to provide measurements with a sufficient degree of accuracy (maximum error ±0.1 mm) to be adopted for a reliable estimation of the pliability value in a hospital environment.

5.
Materials (Basel) ; 15(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35208149

ABSTRACT

The aim of this review is to present the recent developments in heat pipe production, which respond to the current technical problems related to the wide implementation of this technology. A novel approach in HP manufacturing is to utilise hi-tech additive manufacturing techniques where the most complicated geometries are fabricated layer-by-layer directly from a digital file. This technology might be a solution to various challenges that exist in HP production, i.e., (1) manufacturing of complex or unusual geometries HPs; (2) manufacturing complicated and efficient homogenous wick structures with desired porosity, uniform pore sizes, permeability, thickness and where the pores are evenly distributed; (3) manufacturing a gravity friendly wick structures; (4) high customisation and production time; (5) high costs; (6) difficulties in the integration of the HP into a unit chassis that enables direct thermal management of heated element and decrease its total thermal resistance; (7) high weight and material use of the part; (8) difficulties in sealing; (9) deformation of the flat shape HPs caused by the high pressure and uneven distribution of stress in the casing, among others.

6.
Mater Sci Eng C Mater Biol Appl ; 130: 112461, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34702536

ABSTRACT

Laser powder bed fusion (LPBF) additive manufacturing of pure tantalum and their graded lattice structures was systematically investigated, with emphasis on their microstructure evolution, phase formation, surface energy and biological properties in comparison with conventionally forged pure Ta. The LPBF fabricated Ta (LPBF-Ta) exhibited lower contact angles and higher surface energy than the forged-Ta which indicated the better wettability of the LPBF-Ta. The adhesion and proliferation of rat bone marrow stromal cells (rBMSCs) were also enhanced for the LPBF-Ta when compared to forged-Ta. Three different Ta graded gyroid lattice structures (i.e., uniform structure, Y-gradient structure, Z-gradient structure) were designed and fabricated using the same optimised LPBF parameters. Y-gradient structures exhibited the best plateau stress and compressive modulus among three different graded structures due to the maximum local volume fraction on the fracture plane. In fatigue response, Y-gradient outperformed the other two gyroid structures under varying stresses. In terms of cell culture response, the uniform structures performed the best biocompatibility due to its suitable pore size for cell adhesion and growth. This study provides new and in-depth insights into the LPBF additive manufacturing of pure Ta graded lattice structures with desired fatigue and biological properties for load-bearing orthopaedic applications.


Subject(s)
Orthopedics , Tantalum , Animals , Materials Testing , Porosity , Rats , Weight-Bearing
7.
Front Microbiol ; 12: 696473, 2021.
Article in English | MEDLINE | ID: mdl-34413839

ABSTRACT

The efficient delivery of electrochemically in situ produced H2 can be a key advantage of microbial electrosynthesis over traditional gas fermentation. However, the technical details of how to supply large amounts of electric current per volume in a biocompatible manner remain unresolved. Here, we explored for the first time the flexibility of complex 3D-printed custom electrodes to fine tune H2 delivery during microbial electrosynthesis. Using a model system for H2-mediated electromethanogenesis comprised of 3D fabricated carbon aerogel cathodes plated with nickel-molybdenum and Methanococcus maripaludis, we showed that novel 3D-printed cathodes facilitated sustained and efficient electromethanogenesis from electricity and CO2 at an unprecedented volumetric production rate of 2.2 L CH4 /L catholyte /day and at a coulombic efficiency of 99%. Importantly, our experiments revealed that the efficiency of this process strongly depends on the current density. At identical total current supplied, larger surface area cathodes enabled higher methane production and minimized escape of H2. Specifically, low current density (<1 mA/cm2) enabled by high surface area cathodes was found to be critical for fast start-up times of the microbial culture, stable steady state performance, and high coulombic efficiencies. Our data demonstrate that 3D-printing of electrodes presents a promising design tool to mitigate effects of bubble formation and local pH gradients within the boundary layer and, thus, resolve key critical limitations for in situ electron delivery in microbial electrosynthesis.

8.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298988

ABSTRACT

This study evaluated the biocompatibility and biological performance of novel additive-manufactured bioabsorbable iron-based porous suture anchors (iron_SAs). Two types of bioabsorbable iron_SAs, with double- and triple-helical structures (iron_SA_2_helix and iron_SA_3_helix, respectively), were compared with the synthetic polymer-based bioabsorbable suture anchor (polymer_SAs). An in vitro mechanical test, MTT assay, and scanning electron microscope (SEM) analysis were performed. An in vivo animal study was also performed. The three types of suture anchors were randomly implanted in the outer cortex of the lateral femoral condyle. The ultimate in vitro pullout strength of the iron_SA_3_helix group was significantly higher than the iron_SA_2_helix and polymer_SA groups. The MTT assay findings demonstrated no significant cytotoxicity, and the SEM analysis showed cells attachment on implant surface. The ultimate failure load of the iron_SA_3_helix group was significantly higher than that of the polymer_SA group. The micro-CT analysis indicated the iron_SA_3_helix group showed a higher bone volume fraction (BV/TV) after surgery. Moreover, both iron SAs underwent degradation with time. Iron_SAs with triple-helical threads and a porous structure demonstrated better mechanical strength and high biocompatibility after short-term implantation. The combined advantages of the mechanical superiority of the iron metal and the possibility of absorption after implantation make the iron_SA a suitable candidate for further development.


Subject(s)
Absorbable Implants , Biocompatible Materials , Suture Anchors , Alanine Transaminase/blood , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Biomechanical Phenomena , Blood Urea Nitrogen , Calcium Phosphates/chemistry , Calcium Phosphates/toxicity , Calcium Sulfate/administration & dosage , Calcium Sulfate/chemistry , Calcium Sulfate/toxicity , Creatinine/blood , Equipment Design , Femur/diagnostic imaging , Femur/ultrastructure , Iron , Lasers , Materials Testing , Microscopy, Electron, Scanning , Molecular Structure , Osseointegration , Polymers/chemistry , Polymers/toxicity , Porosity , Rabbits , Random Allocation , Tensile Strength , Viscera , X-Ray Microtomography
9.
BMC Musculoskelet Disord ; 22(1): 171, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33573634

ABSTRACT

BACKGROUND: We developed a porous Ti alloy/PEEK composite interbody cage by utilizing the advantages of polyetheretherketone (PEEK) and titanium alloy (Ti alloy) in combination with additive manufacturing technology. METHODS: Porous Ti alloy/PEEK composite cages were manufactured using various controlled porosities. Anterior intervertebral lumbar fusion and posterior augmentation were performed at three vertebral levels on 20 female pigs. Each level was randomly implanted with one of the five cages that were tested: a commercialized pure PEEK cage, a Ti alloy/PEEK composite cage with nonporous Ti alloy endplates, and three composite cages with porosities of 40, 60, and 80%, respectively. Micro-computed tomography (CT), backscattered-electron SEM (BSE-SEM), and histological analyses were performed. RESULTS: Micro-CT and histological analyses revealed improved bone growth in high-porosity groups. Micro-CT and BSE-SEM demonstrated that structures with high porosities, especially 60 and 80%, facilitated more bone formation inside the implant but not outside the implant. Histological analysis also showed that bone formation was higher in Ti alloy groups than in the PEEK group. CONCLUSION: The composite cage presents the biological advantages of Ti alloy porous endplates and the mechanical and radiographic advantages of the PEEK central core, which makes it suitable for use as a single implant for intervertebral fusion.


Subject(s)
Spinal Fusion , Titanium , Animals , Benzophenones , Bone Development , Female , Ketones , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Polyethylene Glycols , Polymers , Porosity , Swine , X-Ray Microtomography
10.
Mater Chem Phys ; 258: 123943, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33106717

ABSTRACT

The outbreak of coronavirus disease in 2019 (COVID-19) caused by the SARS-CoV-2 virus and its pandemic effects have created a demand for essential medical equipment. To date, there are no specific, clinically significant licensed drugs and vaccines available for COVID-19. Hence, mapping out COVID-19 problems and preventing the spread with relevant technology are very urgent. This study is a review of the work done till October, 2020 on solving COVID-19 with 3D printing. Many patients who need to be hospitalized because of COVID-19 can only survive on bio-macromolecules antiviral respiratory assistance and other medical devices. A bio-cellular face shield with relative comfortability made of bio-macromolecules polymerized polyvinyl chloride (BPVC) and other biomaterials are produced with 3D printers. Summarily, it was evident from this review study that additive manufacturing (AM) is a proffered technology for efficient production of an improved bio-macromolecules capable of significant COVID-19 test and personal protective equipment (PPE) to reduce the effect of COVID-19 on the world economy. Innovative AM applications can play an essential role to combat invisible killers (COVID-19) and its hydra-headed pandemic effects on humans, economics and society.

11.
Materials (Basel) ; 13(15)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32727050

ABSTRACT

Currently, the emergence of a novel human coronavirus disease, named COVID-19, has become a great global public health concern causing severe respiratory tract infections in humans. Yet, there is no specific vaccine or treatment for this COVID-19 where anti-disease measures rely on preventing or slowing the transmission of infection from one person to another. In particularly, there is a growing effort to prevent or reduce transmission to frontline healthcare professionals. However, it is becoming an increasingly international concern respecting the shortage in the supply chain of critical single-use personal protective equipment (PPE). To that scope, we aim in the present work to provide a comprehensive overview of the latest 3D printing efforts against COVID-19, including professional additive manufacturing (AM) providers, makers and designers in the 3D printing community. Through this review paper, the response to several questions and inquiries regarding the following issues are addressed: technical factors connected with AM processes; recommendations for testing and characterizing medical devices that additively manufactured; AM materials that can be used for medical devices; biological concerns of final 3D printed medical parts, comprising biocompatibility, cleaning and sterility; and limitations of AM technology.

12.
Curr Drug Targets ; 20(8): 823-838, 2019.
Article in English | MEDLINE | ID: mdl-30648506

ABSTRACT

With the advent of inexpensive and highly accurate 3D printing devices, a tremendous flurry of research activity has been unleashed into new resorbable, polymeric materials that can be printed using three approaches: hydrogels for bioprinting and bioplotting, sintered polymer powders, and solid cured (photocrosslinked) resins. Additionally, there is a race to understand the role of extracellular matrix components and cell signalling molecules and to fashion ways to incorporate these materials into resorbable implants. These chimeric materials along with microfluidic devices to study organs or create labs on chips, are all receiving intense attention despite the limited number of polymer systems that can accommodate the biofabrication processes necessary to render these constructs. Perhaps most telling is the limited number of photo-crosslinkable, resorbable polymers and fabrication additives (e.g., photoinitiators, solvents, dyes, dispersants, emulsifiers, or bioactive molecules such as micro-RNAs, peptides, proteins, exosomes, micelles, or ceramic crystals) available to create resins that have been validated as biocompatible. Advances are needed to manipulate 4D properties of 3D printed scaffolds such as pre-implantation cell culture, mechanical properties, resorption kinetics, drug delivery, scaffold surface functionalization, cell attachment, cell proliferation, cell maturation, or tissue remodelling; all of which are necessary for regenerative medicine applications along with expanding the small set of materials in clinical use. This manuscript presents a review of the foundation of the most common photopolymerizable resins for solidcured scaffolds and medical devices, namely, polyethylene glycol (PEG), poly(D, L-lactide) (PDLLA), poly-ε-caprolactone (PCL), and poly(propylene fumarate) (PPF), along with methodological advances for 3D Printing tissue engineered implants (e.g., via stereolithography [SLA], continuous Digital Light Processing [cDLP], and Liquid Crystal Display [LCD]).


Subject(s)
Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Humans , Materials Testing , Printing, Three-Dimensional , Regenerative Medicine , Tissue Engineering/methods
13.
Prog Mater Sci ; 93: 45-111, 2018 Apr.
Article in English | MEDLINE | ID: mdl-31406390

ABSTRACT

Biomaterials are used to engineer functional restoration of different tissues to improve human health and the quality of life. Biomaterials can be natural or synthetic. Additive manufacturing (AM) is a novel materials processing approach to create parts or prototypes layer-by-layer directly from a computer aided design (CAD) file. The combination of additive manufacturing and biomaterials is very promising, especially towards patient specific clinical applications. Challenges of AM technology along with related materials issues need to be realized to make this approach feasible for broader clinical needs. This approach is already making a significant gain towards numerous commercial biomedical devices. In this review, key additive manufacturing methods are first introduced followed by AM of different materials, and finally applications of AM in various treatment options. Realization of critical challenges and technical issues for different AM methods and biomaterial selections based on clinical needs are vital. Multidisciplinary research will be necessary to face those challenges and fully realize the potential of AM in the coming days.

SELECTION OF CITATIONS
SEARCH DETAIL