Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
ChemMedChem ; : e202400488, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128881

ABSTRACT

A preference for several amino acids is observed to occur at particular positions of cationic α-helical antimicrobial peptides (AMPs), which ensures the formation of amphipathic regions once they assume their correct secondary structure in membranes or membrane-mimicking environments and makes them active against pathogens. This study determined the effect of alanine mutations on the secondary structure and bioactivity of lyp1987 (GRLQAFLAKMKEIAAQTL-NH2), a  cationic α-helical AMP obtained from the venom of Lycosa poonaensis which exhibits broad range activity against Gram-positive and Gram-negative bacteria with micromolar minimum inhibitory concentrations (MIC). CD spectroscopy revealed no significant difference in the secondary structure, with all alanine-substituted analogs exhibiting predominantly α-helical structure in buffered 2,2,2-trifluoroethanol solution. Alanine substitution at Glu12 and Thr17 increased the activity of lyp1987 against Gram-positive and -negative bacteria, while alanine substitution at Lys9 increased its selectivity against Gram-positive bacteria. Further investigation can be done to determine positions and substitutions that will give less cytotoxic analogs.

2.
Monoclon Antib Immunodiagn Immunother ; 43(4): 101-107, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38836509

ABSTRACT

The C-C motif chemokine receptor 8 (CCR8) is highly and selectively expressed in regulatory T (Treg) cells and is associated with tumor progression. The massive accumulation of Treg cells into tumors suppresses the effector function of CD8+ cells against tumor cells. Therefore, selective depletion of Treg cells using anti-CCR8 monoclonal antibodies (mAbs) reinvigorates antitumor immune responses and improves responses to cancer immunotherapy. Previously, we developed an anti-mouse CCR8 (mCCR8) mAb, C8Mab-2, using the Cell-Based Immunization and Screening method. In this study, the binding epitope of C8Mab-2 was investigated using flow cytometry. The mCCR8 extracellular domain-substituted mutant analysis showed that C8Mab-2 recognizes the N-terminal region (1-33 amino acids) of mCCR8. Next, 1×alanine (or glycine) scanning and 2×alanine (or glycine) scanning were conducted in the N-terminal region. The results revealed that the 17-DFFTAP-22 sequence is important for the recognition by C8Mab-2, and Thr20 is a central amino acid of the epitope. These results revealed the involvement of the N-terminus of mCCR8 in the recognition by C8Mab-2.


Subject(s)
Antibodies, Monoclonal , Epitope Mapping , Flow Cytometry , Receptors, CCR8 , Animals , Epitope Mapping/methods , Mice , Antibodies, Monoclonal/immunology , Receptors, CCR8/immunology , Receptors, CCR8/genetics , Epitopes/immunology , Humans , T-Lymphocytes, Regulatory/immunology
3.
Int J Biol Macromol ; 268(Pt 2): 131836, 2024 May.
Article in English | MEDLINE | ID: mdl-38692553

ABSTRACT

Multiple species of Bifidobacterium exhibit the ability to bioconvert conjugated fatty acids (CFAs), which is considered an important pathway for these strains to promote host health. However, there has been limited progress in understanding the enzymatic mechanism of CFA bioconversion by bifidobacteria, despite the increasing number of studies identifying CFA-producing strains. The protein responsible for polyunsaturated fatty acid (PUFA) isomerization in B. breve CCFM683 has recently been discovered and named BBI, providing a starting point for exploring Bifidobacterium isomerases (BIs). This study presents the sequence classification of membrane-bound isomerases from four common Bifidobacterium species that produce CFA. Heterologous expression, purification, and enzymatic studies of the typical sequences revealed that all possess a single c9, t11 isomer as the product and share common features in terms of enzymatic properties and catalytic kinetics. Using molecular docking and alanine scanning, Lys84, Tyr198, Asn202, and Leu245 located in the binding pocket were identified as critical to the catalytic activity, a finding further confirmed by site-directed mutagenesis-based screening assays. Overall, these findings provide insightful knowledge concerning the molecular mechanisms of BIs. This will open up additional opportunities for the use of bifidobacteria and CFAs in probiotic foods and precision nutrition.


Subject(s)
Bifidobacterium , Fatty Acids, Unsaturated , Bifidobacterium/enzymology , Bifidobacterium/genetics , Bifidobacterium/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Molecular Docking Simulation , Isomerism , Kinetics , Amino Acid Sequence , Mutagenesis, Site-Directed , Probiotics/metabolism
4.
J Mol Biol ; 436(12): 168607, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38734203

ABSTRACT

Polyglutamine (polyQ) sequences undergo repeat-length dependent formation of disease-associated, amyloid-like cross-ß core structures with kinetics and aggregate morphologies often influenced by the flanking sequences. In Huntington's disease (HD), the httNT segment on the polyQ's N-terminal flank enhances aggregation rates by changing amyloid nucleation from a classical homogeneous mechanism to a two-step process requiring an ɑ-helix-rich oligomeric intermediate. A folded, helix-rich httNT tetrameric structure suggested to be this critical intermediate was recently reported. Here we employ single alanine replacements along the httNT sequence to assess this proposed structure and refine the mechanistic model. We find that Ala replacement of hydrophobic residues within simple httNT peptides greatly suppresses helicity, supporting the tetramer model. These same helix-disruptive replacements in the httNT segment of an exon-1 analog greatly reduce aggregation kinetics, suggesting that an ɑ-helix rich multimer - either the tetramer or a larger multimer - plays an on-pathway role in nucleation. Surprisingly, several other Ala replacements actually enhance helicity and/or amyloid aggregation. The spatial localization of these residues on the tetramer surface suggests a self-association interface responsible for formation of the octomers and higher-order multimers most likely required for polyQ amyloid nucleation. Multimer docking of the tetramer, using the protein-protein docking algorithm ClusPro, predicts this symmetric surface to be a viable tetramer dimerization interface. Intriguingly, octomer formation brings the emerging polyQ chains into closer proximity at this tetramer-tetramer interface. Further supporting the potential importance of tetramer super-assembly, computational docking with a known exon-1 aggregation inhibitor predicts ligand contacts with residues at this interface.


Subject(s)
Amyloid , Exons , Huntingtin Protein , Protein Multimerization , Humans , Amyloid/chemistry , Amyloid/metabolism , Huntingtin Protein/chemistry , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Aggregates
5.
Bioorg Med Chem Lett ; 104: 129732, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583785

ABSTRACT

Osteoporosis is a progressive systemic skeletal disease that decreases bone density and bone quality, making them fragile and easy to break. In spite of effective anti-osteoporosis potency, teriparatide, the first anabolic medications approved for the treatment of osteoporosis, was proven to exhibit various side effects. And the relevant structure-activity relationship (SAR) of teriparatide was in need. In this work, we performed a systematical alanine scanning against teriparatide and synthesized 34 teriparatide derivatives. Their biological activities were evaluated and the importance of each residue for anti-osteoporosis activity was also revealed. A remarkable decrease in activity was observed for alanine replacement of the residue Gly12, His14, Ser17, Arg20 and Leu24, showcasing the important role of these residues in teriparatide on anti-osteoporosis activity. On contrary, when Gly13 and Gln30 were mutated to Ala, the peptide derivatives exhibited the significantly increased activities, demonstrating that these two residues could be readily replaced. Our research expanded the peptide library of teriparatide analogues and presented a potential opportunity for designing the more powerful anti-osteoporosis peptide agents.


Subject(s)
Bone Density Conservation Agents , Osteoporosis , Teriparatide , Humans , Bone Density , Bone Density Conservation Agents/adverse effects , Bone Density Conservation Agents/chemistry , Osteoporosis/drug therapy , Structure-Activity Relationship , Teriparatide/adverse effects , Teriparatide/analogs & derivatives , DNA Mutational Analysis , Mutagenesis, Site-Directed , Alanine/genetics
6.
PeerJ ; 12: e17069, 2024.
Article in English | MEDLINE | ID: mdl-38549779

ABSTRACT

In this work we carried out an in silico analysis to understand the interaction between InvF-SicA and RNAP in the bacterium Salmonella Typhimurium strain LT2. Structural analysis of InvF allowed the identification of three possible potential cavities for interaction with SicA. This interaction could occur with the structural motif known as tetratricopeptide repeat (TPR) 1 and 2 in the two cavities located in the interface of the InvF and α-CTD of RNAP. Indeed, molecular dynamics simulations showed that SicA stabilizes the Helix-turn-Helix DNA-binding motifs, i.e., maintaining their proper conformation, mainly in the DNA Binding Domain (DBD). Finally, to evaluate the role of amino acids that contribute to protein-protein affinity, an alanine scanning mutagenesis approach, indicated that R177 and R181, located in the DBD motif, caused the greatest changes in binding affinity with α-CTD, suggesting a central role in the stabilization of the complex. However, it seems that the N-terminal region also plays a key role in the protein-protein interaction, especially the amino acid R40, since we observed conformational flexibility in this region allowing it to interact with interface residues. We consider that this analysis opens the possibility to validate experimentally the amino acids involved in protein-protein interactions and explore other regulatory complexes where chaperones are involved.


Subject(s)
Bacterial Proteins , Molecular Chaperones , Bacterial Proteins/genetics , Molecular Chaperones/genetics , Salmonella typhimurium/genetics , Amino Acids/metabolism , DNA/metabolism
7.
J Med Virol ; 96(2): e29443, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38373154

ABSTRACT

Cross-neutralizing activity of human antibody response against Dengue virus complex (DENV) changes importantly over time. Domain III (DIII) of the envelope protein of DENV elicits a potently neutralizing and mostly type-specific IgG response. We used sera from 24 individuals from early- or late convalescence of DENV1 infection to investigate the evolution of anti-DIII human IgG with the time lapse since the infection. We evaluated the correlation between the serotype-specific reactivity against recombinant DIII proteins and the neutralization capacity against the four serotypes, and examined its behavior with the time of convalescence. Also, we use a library of 71 alanine mutants of surface-exposed amino acid residues to investigate the dominant epitopes. In early convalescence anti-DIII titers and potency of virus neutralization were positively associated with correlation coefficients from 0.82 to 1.0 for the four serotypes. For late convalescence, a positive correlation (r = 0.69) was found only for DENV1. The dominant epitope of the type-specific response is centered in the FG-loop (G383, E384, and K385) and includes most of the lateral ridge. The dominant epitope of the anti-DIII cross-reactive IgG in secondary infections shifts from the A-strand during early convalescence to a site centered in residues E314-H317 of the AB-loop and I352-E368 of the DI/DIII interface, in late convalescence. An immunoassay based on the detection of IgG anti-DIII response can be implemented for detection of infecting serotype in diagnosis of DENV infection, either primary or secondary. Human dominant epitopes of the cross-reactive circulating antibodies change with time of convalescence.


Subject(s)
Dengue Virus , Dengue , Humans , Epitopes , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Convalescence , Viral Envelope Proteins , Recombinant Proteins/metabolism , Immunoglobulin G/metabolism , Cross Reactions
8.
Molecules ; 29(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38398632

ABSTRACT

The major histocompatibility complex (MHC) can recognize and bind to external peptides to generate effective immune responses by presenting the peptides to T cells. Therefore, understanding the binding modes of peptide-MHC complexes (pMHC) and predicting the binding affinity of pMHCs play a crucial role in the rational design of peptide vaccines. In this study, we employed molecular dynamics (MD) simulations and free energy calculations with an Alanine Scanning with Generalized Born and Interaction Entropy (ASGBIE) method to investigate the protein-peptide interaction between HLA-A*02:01 and the G9209 peptide derived from the melanoma antigen gp100. The energy contribution of individual residue was calculated using alanine scanning, and hotspots on both the MHC and the peptides were identified. Our study shows that the pMHC binding is dominated by the van der Waals interactions. Furthermore, we optimized the ASGBIE method, achieving a Pearson correlation coefficient of 0.91 between predicted and experimental binding affinity for mutated antigens. This represents a significant improvement over the conventional MM/GBSA method, which yields a Pearson correlation coefficient of 0.22. The computational protocol developed in this study can be applied to the computational screening of antigens for the MHC1 as well as other protein-peptide binding systems.


Subject(s)
Peptides , Proteins , Peptides/chemistry , Proteins/metabolism , Protein Binding , Major Histocompatibility Complex , Histocompatibility Antigens/metabolism , Alanine/metabolism
9.
Biochem Biophys Res Commun ; 691: 149316, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38039832

ABSTRACT

For certain industrial applications, the stability of protein oligomers is important. In this study, we demonstrated an efficient method to improve the thermal stability of oligomers using the trimeric protein chloramphenicol acetyltransferase (CAT) as the model. We substituted all interfacial residues of CAT with alanine to detect residues critical for oligomer stability. Mutation of six of the forty-nine interfacial residues enhanced oligomer thermal stability. Site saturation mutagenesis was performed on these six residues to optimize the side chains. About 15% of mutations enhanced thermal stability by more than 0.5 °C and most did not disrupt activity of CAT. Certain combinations of mutations further improved thermal stability and resistance against heat treatment. The quadruple mutant, H17V/N34S/F134A/D157C, retained the same activity as the wild-type after heat treatment at 9 °C higher temperature than the wild-type CAT. Furthermore, combinations with only alanine substitutions also improved thermal stability, suggesting the method we developed can be used for rapid modification of industrially important proteins.


Subject(s)
Alanine , Alanine/genetics , Mutagenesis , Mutation , Mutagenesis, Site-Directed , Chloramphenicol O-Acetyltransferase , Enzyme Stability
10.
Article in English | MEDLINE | ID: mdl-37782456

ABSTRACT

Hyperthermophilic Sulfolobus solfataricus ß-glycosidase (SS-ßGly), with higher stability and activity than mesophilic enzymes, has potential for industrial ginsenosides biotransformation. However, its relatively low ginsenoside Rd-hydrolyzing activity limits the production of pharmaceutically active minor ginsenoside compound K (CK). In this study, first, we used molecular docking to predict the key enzyme residues that may hypothetically interact with ginsenoside Rd. Then, based on sequence alignment and alanine scanning mutagenesis approach, key variant sites were identified that might improve the enzyme catalytic efficiency. The enzyme catalytic efficiency (kcat/Km) and substrate affinity (Km) of the N264D variant enzyme for ginsenoside Rd increased by 60% and decreased by 17.9% compared with WT enzyme, respectively, which may be due to a decrease in the binding free energy (∆G) between the variant enzyme and substrate Rd. In addition, Markov state models (MSM) analysis during the whole 1000-ns MD simulations indicated that altering N264 to D made the variant enzyme achieve a more stable SS-ßGly conformational state than the wild-type (WT) enzyme and corresponding Rd complex. Under identical conditions, the relative activities and the CK conversion rates of the N264D enzyme were 1.7 and 1.9 folds higher than those of the WT enzyme. This study identified an excellent hyperthermophilic ß-glycosidase candidate for industrial biotransformation of ginsenosides.

11.
In Silico Pharmacol ; 11(1): 28, 2023.
Article in English | MEDLINE | ID: mdl-37899969

ABSTRACT

The main aim of this study is to screen and develop Peptidomimetics to treat atherosclerosis (AS) which is a Cardio Vascular Disease (CVD). Peptidomimetics were obtained from the protein-protein interaction interface of TRADD (Tumor necrosis factor receptor type 1-associated DEATH domain protein) and TRAF2 (TNF receptor-associated factor 2) complex. TRADD-TRAF2 interaction is critical in AS pathogenesis since it assists a series of signal transducers that activate NF-κB. Conceptually, the triggered NF-κB makes an extensive amount of nitric oxide (NO) synthesized by inducible nitric oxide synthase (iNOS), which boons the progress of AS. The examined TRADD-TRAF2 complex (PDB ID: 1F3V) and its interaction details revealed that the sequence range W11-G165 of TRADD highly interacts with TRAF2. The sequence range W11-G165 was selected for the design and preparation of the inhibitory peptide in silico. The selected sequence was mutated with the alanine scanning method to have a range of inhibitory peptides. With the help of different in silico tools, the top three, namely MIP11-25 L, MIP131-143 h, and MIP149-164 m peptides showed the best interaction with the critical residues of TRAF2. Thus, these three peptides were used for generating peptidomimetics using pepMMsMIMIC, a peptidomimetics virtual screening tool. Around 600 peptidomimetics were identified & and retrieved for further screening by employing molecular docking tools and MD (Molecular Dynamics) simulations. Density Functional Theory (DFT) and ADMET predictions were applied to validate the screened peptidomimetics druggability. In the results, peptidomimic compounds MMs03918858 and MMs03927281 with binding energy values of -9.6 kcal/mol and - 9.1 kcal/mol respectively were screened as the best and are proposed for further pre-clinical studies.

12.
Methods Mol Biol ; 2702: 451-465, 2023.
Article in English | MEDLINE | ID: mdl-37679635

ABSTRACT

To develop reproducible results, it is critical that all reagents used in an experiment be validated in an alternative or independent method. We present two such independent methods for determining the specificity of antibodies: (1) "MILKSHAKE," which can be used to validate the liability and specificity of antibodies directed against post-translationally-modified epitopes, and (2) "Sundae," which is a more complete alanine-like scanning method that can be used to better understand the binding and bioactivity of specific residues of a protein. We apply both of these methods to the interaction between an antibody and its antigen.


Subject(s)
Alanine , Antibodies , Epitopes
13.
J Biomol Struct Dyn ; : 1-14, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37649361

ABSTRACT

ORF3a is a conserved accessory protein of SARS-CoV-2, linked to viral infection and pathogenesis, with acquired mutations at various locations. Previous studies have shown that the occurrence of the Q57H mutation is higher in comparison to other positions in ORF3a. This mutation is known to induce conformational changes, yet the extent of structural alteration and its role in the viral adaptation process remain unknown. Here we performed molecular dynamics (MD) simulations of wt-ORF3a, Q57H, and Q57A mutants to analyze structural changes caused by mutations compared to the native protein. The MD analysis revealed that Q57H and Q57A mutants show significant structural changes in the dimer conformation than the wt-ORF3a. This dimer conformer narrows down the ion channel cavity, which reduces Na + or K + permeability leading to decrease the antigenic response that can help the virus to escape the host immune system. Non-bonding interaction analysis shows the Q57H mutant has more interacting residues, resulting in more stability within dimer conformation than the wt-ORF3a and Q57A. Moreover, both mutant dimers (Q57H and Q57A) form a novel salt-bridge interaction at the same position between A:Asp142 and B:Lys61, whereas such an interaction is absent in the wt-ORF3a dimer. We have also noticed that the TM3 domain's flexibility in Q57H is increased because of strong inter-domain interactions of TM1 and TM2 within the dimer conformation. These unusual interactions and flexibility of Q57H mutant can have significant impacts on the SARS-CoV-2 adaptations, virulence, transmission, and immune system evasion. Our findings are consistent with the previous experimental data and provided details information on the structural perturbation in ORF3a caused by mutations, which can help better understand the structural change at the molecular level as well as the reason for the high virulence properties of this variant.Communicated by Ramaswamy H. Sarma.

14.
J Biomol Struct Dyn ; : 1-13, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37649387

ABSTRACT

Protein-protein and protein-peptide interactions (PPI and PPepI) belong to a similar category of interactions, yet seemingly subtle differences exist among them. To characterize differences between protein-protein (PP) and protein-peptide (PPep) interactions, we have focussed on two important classes of residues-hotspot and anchor residues. Using implicit solvation-based free energy calculations, a very large-scale alanine scanning has been performed on benchmark datasets, consisting of over 5700 interface residues. The differences in the two categories are more pronounced, if the data were divided into three distinct types, namely - weak hotspots (having binding free energy loss upon Ala mutation, ΔΔG, ∼2-10 kcal/mol), moderate hotspots (ΔΔG, ∼10-20 kcal/mol) and strong hotspots (ΔΔG ≥ ∼20 kcal/mol). The analysis suggests that for PPI, weak hotspots are predominantly populated by polar and hydrophobic residues. The distribution shifts towards charged and polar residues for moderate hotspot and charged residues (principally Arg) are overwhelmingly present in the strong hotspot. On the other hand, in the PPepI dataset, the distribution shifts from predominantly hydrophobic and polar (in the weak type) to almost similar preference for polar, hydrophobic and charged residues (in moderate type) and finally the charged residue (Arg) and Trp are mostly occupied in the strong type. The preferred anchor residues in both categories are Arg, Tyr and Leu, possessing bulky side chain and which also strike a delicate balance between side chain flexibility and rigidity. The present knowledge should aid in effective design of biologics, by augmentation or disruption of PPIs with peptides or peptidomimetics.Communicated by Ramaswamy H. Sarma.

15.
J Biol Chem ; 299(9): 104927, 2023 09.
Article in English | MEDLINE | ID: mdl-37330175

ABSTRACT

Methicillin-resistant Staphylococcus aureus, or MRSA, is one of the major causative agents of hospital-acquired infections worldwide. Novel antimicrobial strategies efficient against antibiotic-resistant strains are necessary and not only against S. aureus. Among those, strategies that aim at blocking or dismantling proteins involved in the acquisition of essential nutrients, helping the bacteria to colonize the host, are intensively studied. A major route for S. aureus to acquire iron from the host organism is the Isd (iron surface determinant) system. In particular, the hemoglobin receptors IsdH and IsdB located on the surface of the bacterium are necessary to acquire the heme moiety containing iron, making them a plausible antibacterial target. Herein, we obtained an antibody of camelid origin that blocked heme acquisition. We determined that the antibody recognized the heme-binding pocket of both IsdH and IsdB with nanomolar order affinity through its second and third complementary-determining regions. The mechanism explaining the inhibition of acquisition of heme in vitro could be described as a competitive process in which the complementary-determining region 3 from the antibody blocked the acquisition of heme by the bacterial receptor. Moreover, this antibody markedly reduced the growth of three different pathogenic strains of MRSA. Collectively, our results highlight a mechanism for inhibiting nutrient uptake as an antibacterial strategy against MRSA.


Subject(s)
Antibodies, Bacterial , Methicillin-Resistant Staphylococcus aureus , Receptors, Cell Surface , Single-Domain Antibodies , Humans , Anti-Bacterial Agents/pharmacology , Heme/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/therapeutic use , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , Staphylococcal Infections/drug therapy , Antigens, Bacterial/immunology , Antibodies, Bacterial/genetics , Antibodies, Bacterial/immunology , Camelids, New World , Animals , Protein Binding/drug effects , Models, Molecular , Molecular Dynamics Simulation
16.
Chembiochem ; 24(12): e202300165, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37170827

ABSTRACT

We developed a synthetic route for producing 3-amino-2-hydroxy acetophenone (3AHAP) from m-nitroacetophenone (3NAP) using an in vitro approach. Various reaction systems were evaluated, and a direct reaction method with crude enzyme and supersaturated substrates for optimal catalytic efficiency was chosen. The reaction system included three enzymes and was enhanced by adjusting enzyme molar ratios and optimizing ribosomal binding sites. We performed substrate docking and alanine scanning to identify key sites in the enzymes nitrobenzene nitroreductase (nbzA) and hydroxylaminobenzene mutase (habA). The optimal mutant was obtained through site-directed mutagenesis, and incorporated into the reaction system, resulting in increased product yield. After optimization, the yield of 3AHAP increased from 75 mg/L to 580 mg/L within 5 hours, the highest reported yield using biosynthesis. This work provides a promising strategy for the efficient and sustainable production of 3AHAP, which has critical applications in the chemical and pharmaceutical industries.


Subject(s)
Acetophenones , Protein Biosynthesis , Catalysis , Acetophenones/metabolism
17.
Monoclon Antib Immunodiagn Immunother ; 42(2): 68-72, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37074100

ABSTRACT

One of G protein-coupled receptors, CC chemokine receptor 3 (CCR3), is expressed in eosinophils, basophils, a subset of Th2 lymphocytes, mast cells, and airway epithelial cells. CCR3 levels in the serum of colorectal cancer patients are significantly higher than in control groups. Moreover, CCR3 is essential for recruiting eosinophils into the lung. Therefore, CCR3 is considered both a therapeutic target for colorectal cancer and allergic diseases. Previously, we established anti-mouse CCR3 (mCCR3) monoclonal antibodies (mAbs), C3Mab-6 (rat IgG1, kappa) and C3Mab-7 (rat IgG1, kappa), by immunizing a rat with an N-terminal peptide of mCCR3. These mAbs can be used in flow cytometry and enzyme-linked immunosorbent assays. In this study, we performed the epitope mapping of C3Mab-6 and C3Mab-7 using alanine scanning. The reactivity between these mAbs and point mutants of mCCR3 were analyzed using flow cytometry. The results indicated that Phe3, Asn4, Thr5, Asp6, Glu7, Lys9, Thr10, and Glu13 of mCCR3 are essential for C3Mab-6 binding, whereas Phe15 and Glu16 are essential for C3Mab-7 binding.


Subject(s)
Antibodies, Monoclonal , Colorectal Neoplasms , Animals , Rats , Receptors, CCR3 , Antibodies, Monoclonal/metabolism , Epitope Mapping , Eosinophils/metabolism , Immunoglobulin G
18.
J Mol Model ; 29(4): 108, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964229

ABSTRACT

CONTEXT: RARγ is a therapeutic target for many skin diseases and has potential in cancer treatment. In the current study, we put forward a comprehensive structure-activity relationship study of third and fourth generations of RARγ agonists, addressing multiple crystal structures of RARγ complexes and approved drugs. Adapalene and Trifarotene, through hybrid strategies including protein contacts Atlas analysis, molecular docking, dynamics simulations, MM-GBSA, ASM, and pharmacophore modeling. Our result revealed crucial amino acids Arg267, Ser278, Phe288, Phe230, Met272, Leu271, and Leu268 within the RARγ pocket, as well as pharmacophore features such as two hydrophobic groups, two aromatic rings, and negative ionic features, which are essential for the binding of RARγ agonists. Based on this study, the binding mechanism of RARγ agonists was elucidated, which will be helpful for the rational design of new RARγ agonists for skin diseases and cancer treatment. METHODS: In this study, Schrödinger suite 2021-2 with OPLS_4 force field, Discovery Studio program 3.0, LigandScout 4.3, and PyMOL are utilized in the investigation.


Subject(s)
Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Molecular Docking Simulation
19.
Monoclon Antib Immunodiagn Immunother ; 42(1): 41-47, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36853838

ABSTRACT

The epithelial cell adhesion molecule (EpCAM) is a type I transmembrane glycoprotein, and plays critical roles in cell adhesion, proliferation, and tumorigenesis. EpCAM has been considered as a promising target for tumor diagnosis and therapy. Anti-EpCAM monoclonal antibodies (mAbs) have been developed for EpCAM-overexpressed tumors, and several clinical trials have demonstrated promising outcomes. We previously established an anti-EpCAM mAb, EpMab-37 (mouse IgG1, kappa), using the Cell-Based Immunization and Screening method. EpMab-37 was revealed to recognize the conformational epitope of EpCAM. In this study, we determined the critical epitope of EpMab-37 by flow cytometry using the 1 × alanine scanning (1 × Ala-scan) and the 2 × alanine scanning (2 × Ala-scan) method. We first performed flow cytometry by 1 × Ala-scan using one alanine (or glycine)-substituted EpCAM mutants, which were expressed on Chinese hamster ovary-K1 cells, and found that the EpMab-37 did not recognize the R163A mutant of EpCAM. We next performed flow cytometry by 2 × Ala-scan using two alanine (or glycine) residues-substituted EpCAM mutants, and confirmed that EpMab-37 did not recognize R163A-including mutants of EpCAM. The results indicated that the critical binding epitope of EpMab-37 includes Arg163 of EpCAM.


Subject(s)
Alanine , Antibodies, Monoclonal , Cricetinae , Animals , Mice , Epitope Mapping , CHO Cells , Cricetulus , Epitopes , Glycine
20.
Enzyme Microb Technol ; 165: 110198, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736156

ABSTRACT

5-Hydroxytryptophan (5-HTP) is a chemical precursor of serotonin, which synthesizes melatonin and serotonin in animals and regulates mood, sleep, and behavior. Tryptophan hydroxylase (TPH) uses tetrahydrobiopterin (BH4) as a cofactor to hydroxylate L-tryptophan (L-Trp) to 5-HTP, and the low catalytic activity of TPH limits the rate of hydroxylation of L-Trp. In this study, the catalytic mechanism and structural features of L-Trp-TPH1-BH4 were investigated, and the catalytic activity was improved using a rational design strategy. Then the S337A/F318Y beneficial mutation was obtained. Molecular dynamics simulations showed that the S337A/F318Y mutant formed a salt bridge with TPH1 while forming an additional hydrogen bond with the substrate indole ring, stabilizing the indole ring and enhancing the binding affinity of the variant to L-Trp. As a result, the yield of 5-HTP was increased by 2.06-fold, resulting in the production of 0.91 g/L of 5-HTP. The rational design of the TPH structure to improve the hydroxylation efficiency of L-Trp offers the prospect of green production of 5-HTP.


Subject(s)
5-Hydroxytryptophan , Tryptophan , Animals , 5-Hydroxytryptophan/metabolism , Serotonin/metabolism , Hydroxylation , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/chemistry , Tryptophan Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL