Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 892
Filter
1.
Blood Lymphat Cancer ; 14: 63-69, 2024.
Article in English | MEDLINE | ID: mdl-39100972

ABSTRACT

Background: The aim of the study was to evaluate the efficacy and safety of induction and consolidation with all-trans retinoic acid (ATRA) +arsenic trioxide (ATO) +anthracyclines and maintenance with ATRA +Realgar-Indigo naturalis formula (RIF) for high-risk APL. Methods: Twenty-one patients with high-risk APL treated with ATRA+ATO+ anthracyclines for induction and consolidation and ATRA+RIF for maintenance from 2012 to 2021 were analyzed. Endpoints include morphological complete remission (CR) and complete molecular remission (CMR), early death (ED) and relapse, survival and adverse events (AEs). Results: After induction treatment, all 21 patients (100%) achieved morphological CR and 14 people (66.7%) achieved CMR. Five of the 21 patients did not undergo immunological minimal residual disease (MRD) examination after induction; however, 14 of the remaining 16 patients were MRD negative (87.5%). The median time to achieve CR and CMR was 26 days (range: 16-44) and 40 days (range: 22-75), respectively. The cumulative probability of achieving CR and CMR in 45 days was 100% and 76.2% (95% CI: 56.9-91.3%), respectively. All patients achieved CMR and MRD negativity after the three courses of consolidation treatment. The median follow-up was 66 months (25-142), with no central nervous system relapse and bone marrow morphological or molecular relapse until now, and all patients survived with 100% overall survival and 100% event-free survival. Grade 4 adverse events (AEs) were observed in 3 patients (14.3%) during the induction period including arrhythmia (n = 1), pulmonary infection (n = 1) and respiratory failure (n = 1); and the most frequent grade 3 AEs were pulmonary infection, accounting for 62.0% and 28.6%, respectively, during induction and consolidation treatment, followed by neutropenia, accounting for 42.9% and 38.1%, respectively. Conclusion: For newly diagnosed high-risk APL patients, induction and consolidation with ATRA+ATO+anthracyclines and maintenance with ATRA+RIF is a highly curative treatment approach.

2.
J Transl Med ; 22(1): 737, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103915

ABSTRACT

BACKGROUND: Cancer stem-like cells (CSCs) play an important role in initiation and progression of aggressive cancers, including esophageal cancer. Natural killer (NK) cells are key effector lymphocytes of innate immunity that directly attack a wide variety of cancer cells. NK cell-based therapy may provide a new treatment option for targeting CSCs. In this study, we aimed to investigate the sensitivity of human esophageal CSCs to NK cell-mediated cytotoxicity. METHODS: CSCs were enriched from human esophageal squamous cell carcinoma cell lines via sphere formation culture. Human NK cells were selectively expanded from the peripheral blood of healthy donors. qRT-PCR, flow cytometry and ELISA assays were performed to examine RNA expression and protein levels, respectively. CFSE-labeled target cells were co-cultured with human activated NK cells to detect the cytotoxicity of NK cells by flow cytometry. RESULTS: We observed that esophageal CSCs were more resistant to NK cell-mediated cytotoxicity compared with adherent counterparts. Consistently, esophageal CSCs showed down-regulated expression of ULBP-1, a ligand for NK cells stimulatory receptor NKG2D. Knockdown of ULBP-1 resulted in significant inhibition of NK cell cytotoxicity against esophageal CSCs, whereas ULBP-1 overexpression led to the opposite effect. Finally, the pro-differentiation agent all-trans retinoic acid was found to enhance the sensitivity of esophageal CSCs to NK cell cytotoxicity. CONCLUSIONS: This study reveals that esophageal CSCs are more resistant to NK cells through down-regulation of ULBP-1 and provides a promising approach to promote the activity of NK cells targeting esophageal CSCs.


Subject(s)
Cytotoxicity, Immunologic , Down-Regulation , Esophageal Neoplasms , Killer Cells, Natural , Neoplastic Stem Cells , Humans , Killer Cells, Natural/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/immunology , Esophageal Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Down-Regulation/drug effects , Cell Line, Tumor , Cytotoxicity, Immunologic/drug effects , GPI-Linked Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects
3.
Heliyon ; 10(14): e34300, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108872

ABSTRACT

All-trans retinoic acid (ATRA) has promising activity against breast cancer. However, the exact mechanisms of ATRA's anticancer effects remain complex and not fully understood. In this study, a network pharmacology and molecular docking approach was applied to identify key target genes related to ATRA's anti-breast cancer activity. Gene/disease enrichment analysis for predicted ATRA targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID), the Comparative Toxicogenomics Database (CTD), and the Gene Set Cancer Analysis (GSCA) database. Protein-Protein Interaction Network (PPIN) generation and analysis was conducted via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and cytoscape, respectively. Cancer-associated genes were evaluated using MyGeneVenn from the CTD. Differential expression analysis was conducted using the Tumor, Normal, and Metastatic (TNM) Plot tool and the Human Protein Atlas (HPA). The Glide docking program was used to predict ligand-protein binding. Treatment response predication and clinical profile assessment were performed using Receiver Operating Characteristic (ROC) Plotter and OncoDB databases, respectively. Cytotoxicity and gene expression were measured using MTT/fluorescent assays and Real-Time PCR, respectively. Molecular functions of ATRA targets (n = 209) included eicosanoid receptor activity and transcription factor activity. Some enriched pathways included inclusion body myositis and nuclear receptors pathways. Network analysis revealed 35 hub genes contributing to 3 modules, with 16 of them were associated with breast cancer. These genes were involved in apoptosis, cell cycle, androgen receptor pathway, and ESR-mediated signaling, among others. CCND1, ESR1, MMP9, MDM2, NCOA3, and RARA were significantly overexpressed in tumor samples. ATRA showed a high affinity towards CCND1/CDK4 and MMP9. CCND1, ESR1, and MDM2 were associated with poor treatment response and were downregulated after treatment of the breast cancer cell line with ATRA. CCND1 and ESR1 exhibited differential expression across breast cancer stages. Therefore, some part of ATRA's anti-breast cancer activity may be exerted through the CCND1/CDK4 complex.

4.
Biol Trace Elem Res ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186227

ABSTRACT

The SH-SY5Y cell line is widely used in neurotoxicity studies. However, the effects of inducing cell differentiation on the cytotoxic effects of heavy metals are unclear. Therefore, we investigated the effects of mercuric chloride (HgCl2), cadmium chloride (CdCl2), arsenic trioxide (As2O3), and methylmercury (MeHg) on SH-SY5Y cells differentiated in the presence of insulin-like growth factor-I (IGF-I) or all-trans retinoic acid (ATRA). Neurite outgrowth with distinct changes in neuronal marker expression, phenotype, and cell cycle was induced in SH-SY5Y cells by IGF-I treatment for 1 day or ATRA treatment for up to 7 days. The cytotoxic effects of HgCl2 decreased at lower concentrations and increased at higher concentrations in both IGF-I- and ATRA-differentiated cells compared with those in undifferentiated cells. Differentiation with IGF-I, but not with ATRA, increased the cytotoxic effects of CdCl2. Decreased cytotoxic effects of As2O3 and MeHg were observed at lower concentrations in IGF-I-differentiated cells, whereas increased cytotoxic effects of As2O3 and MeHg were observed at higher concentrations in ATRA-differentiated cells. Changes in the cytotoxic effects of heavy metals were observed even after 1 day of ATRA exposure in SH-SY5Y cells. Our results demonstrate that the differentiation of SH-SY5Y cells by IGF-I and ATRA induces different cellular characteristics, resulting in diverse changes in sensitivity to heavy metals, which depend not only on the differentiation agents and treatment time but also on the heavy metal species and concentration.

5.
Expert Rev Hematol ; : 1-7, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39120131

ABSTRACT

INTRODUCTION: Acute promyelocytic leukemia (APL) is a distinct form of acute myeloid leukemia characterized by the presence of t(15;17)(q24;21) and the PML:RARA gene fusion. Frontline use of intravenous arsenic trioxide (i.v.-ATO) and all-trans retinoic acid (ATRA) has vastly improved cure rates in APL. Researchers in Hong Kong invented the oral formulation of ATO (oral-ATO) and have confirmed a bioavailability comparable to i.v.-ATO. A plethora of studies have confirmed the safety and efficacy of oral-ATO-based regimens in the frontline and relapsed setting. AREAS COVERED: Aspects on the development of oral-ATO-based regimens for APL in the frontline and relapsed setting are discussed. The short-term and long-term safety and efficacy of oral-ATO-based regimens are discussed. The frontline use of oral-ATO in combination with ATRA and ascorbic acid (AAA) induction in a 'chemotherapy-free' is highlighted. EXPERT OPINION: Current and ongoing data on the use of oral-ATO-based regimens in APL support the use of oral-ATO as an alternative to i.v.-ATO allowing a more convenient and economical approach to the management of APL.

6.
Oman J Ophthalmol ; 17(2): 278-280, 2024.
Article in English | MEDLINE | ID: mdl-39132101

ABSTRACT

An 18-year-old female presented with sudden onset bilateral vision loss. Extensive retinal hemorrhages were seen in both eyes. Systemic examination lead to a diagnosis of acute promyelocytic leukemia. The patient was treated with all trans retinoic acid (ATRA) and other medications in the induction phase. Bilateral disc edema was noted during the second consolidation cycle with ATRA. Complete resolution of bilateral disc edema was attained in three weeks' time after discontinuing ATRA.

7.
Nagoya J Med Sci ; 86(2): 223-236, 2024 May.
Article in English | MEDLINE | ID: mdl-38962411

ABSTRACT

Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of Sasa veitchii extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that all-trans-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with Sasa veitchii extract repressed all-trans-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with Sasa veitchii extract protected all-trans-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, Sasa veitchii extract suppressed all-trans-retinoic acid-induced miR-4680-3p expression. Additionally, the expression levels of the genes that function downstream of the target genes ( ERBB2 and JADE1 ) of miR-4680-3p in signaling pathways were enhanced by cotreatment with Sasa veitchii extract and all-trans-retinoic acid compared to all-trans-retinoic acid treatment. These results suggest that Sasa veitchii extract suppresses all-trans-retinoic acid-induced inhibition of cell proliferation via modulation of miR-4680-3p expression.


Subject(s)
Cell Proliferation , Cleft Palate , Palate , Plant Extracts , Tretinoin , Humans , Tretinoin/pharmacology , Cell Proliferation/drug effects , Palate/drug effects , Palate/embryology , Palate/cytology , Plant Extracts/pharmacology , MicroRNAs/metabolism , MicroRNAs/genetics , MicroRNAs/drug effects , Cyclin D1/metabolism , Cyclin D1/genetics , Cells, Cultured , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Signal Transduction/drug effects
8.
Front Pharmacol ; 15: 1404092, 2024.
Article in English | MEDLINE | ID: mdl-39027338

ABSTRACT

All-trans retinoic acid (ATRA) plays a role in tissue development, neural function, reproduction, vision, cell growth and differentiation, tumor immunity, and apoptosis. ATRA can act by inducing autophagic signaling, angiogenesis, cell differentiation, apoptosis, and immune function. In the blood system ATRA was first used with great success in acute promyelocytic leukemia (APL), where ATRA differentiated leukemia cells into mature granulocytes. ATRA can play a role not only in APL, but may also play a role in other hematologic diseases such as immune thrombocytopenia (ITP), myelodysplastic syndromes (MDS), non-APL acute myeloid leukemia (AML), aplastic anemia (AA), multiple myeloma (MM), etc., especially by regulating mesenchymal stem cells and regulatory T cells for the treatment of ITP. ATRA can also increase the expression of CD38 expressed by tumor cells, thus improving the efficacy of daratumumab and CD38-CART. In this review, we focus on the mechanism of action of ATRA, its role in various hematologic diseases, drug combinations, and ongoing clinical trials.

9.
Toxicol Lett ; 398: 150-160, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38971454

ABSTRACT

Activation of pregnane X receptor (PXR) by xenobiotics has been associated with metabolic diseases. This study aimed to reveal the impact of PXR activation on hepatic metabolome and explore novel mechanisms underlying PXR-mediated lipid metabolism disorder in the liver. Wild-type and PXR-deficient male C57BL/6 mice were used as in vivo models, and hepatic steatosis was induced by pregnenolone-16α-carbonitrile, a typical rodent PXR agonist. Metabolomic analysis of liver tissues showed that PXR activation led to significant changes in metabolites involved in multiple metabolic pathways previously reported, including lipid metabolism, energy homeostasis, and amino acid metabolism. Moreover, the level of hepatic all-trans retinoic acid (ATRA), the main active metabolite of vitamin A, was significantly increased by PXR activation, and genes involved in ATRA metabolism exhibited differential expression following PXR activation or deficiency. Consistent with previous research, the expression of downstream target genes of peroxisome proliferator-activated receptor α (PPARα) was decreased. Analysis of fatty acids by Gas Chromatography-Mass Spectrometer further revealed changes in polyunsaturated fatty acid metabolism upon PXR activation, suggesting inhibition of PPARα activity. Taken together, our findings reveal a novel metabolomic signature of hepatic steatosis induced by PXR activation in mice.


Subject(s)
Fatty Acids, Unsaturated , Fatty Liver , Liver , Metabolomics , Mice, Inbred C57BL , PPAR alpha , Pregnane X Receptor , Tretinoin , Animals , Male , Pregnane X Receptor/metabolism , Pregnane X Receptor/genetics , Tretinoin/metabolism , Liver/metabolism , Liver/drug effects , Fatty Liver/metabolism , Fatty Liver/chemically induced , Fatty Acids, Unsaturated/metabolism , PPAR alpha/metabolism , PPAR alpha/genetics , Lipid Metabolism/drug effects , Mice , Mice, Knockout , Pregnenolone Carbonitrile/pharmacology , Disease Models, Animal
10.
Adv Exp Med Biol ; 1459: 321-339, 2024.
Article in English | MEDLINE | ID: mdl-39017850

ABSTRACT

The transformation of acute promyelocytic leukemia (APL) from the most fatal to the most curable subtype of acute myeloid leukemia (AML), with long-term survival exceeding 90%, has represented one of the most exciting successes in hematology and in oncology. APL is a paradigm for oncoprotein-targeted cure.APL is caused by a 15/17 chromosomal translocation which generates the PML-RARA fusion protein and can be cured by the chemotherapy-free approach based on the combination of two therapies targeting PML-RARA: retinoic acid (RA) and arsenic. PML-RARA is the key driver of APL and acts by deregulating transcriptional control, particularly RAR targets involved in self-renewal or myeloid differentiation, also disrupting PML nuclear bodies. PML-RARA mainly acts as a modulator of the expression of specific target genes: genes whose regulatory elements recruit PML-RARA are not uniformly repressed but also may be upregulated or remain unchanged. RA and arsenic trioxide directly target PML-RARA-mediated transcriptional deregulation and protein stability, removing the differentiation block at promyelocytic stage and inducing clinical remission of APL patients.


Subject(s)
Leukemia, Promyelocytic, Acute , Oncogene Proteins, Fusion , Tretinoin , Humans , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Tretinoin/therapeutic use , Tretinoin/pharmacology , Arsenic Trioxide/therapeutic use , Arsenic Trioxide/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Arsenicals/therapeutic use , Arsenicals/pharmacology , Oxides/therapeutic use , Oxides/pharmacology , Animals
11.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063039

ABSTRACT

Acute myeloid leukemia (AML) is characterized by the abnormal proliferation and differentiation arrest of myeloid progenitor cells. The clinical treatment of AML remains challenging. Promoting AML cell differentiation is a valid strategy, but effective differentiation drugs are lacking for most types of AML. In this study, we generated Tg(drl:hoxa9) zebrafish, in which hoxa9 overexpression was driven in hematopoietic cells and myeloid differentiation arrest was exhibited. Using Tg(drl:hoxa9) embryos, we performed chemical screening and identified four FDA-approved drugs, ethacrynic acid, khellin, oxcarbazepine, and alendronate, that efficiently restored myeloid differentiation. The four drugs also induced AML cell differentiation, with ethacrynic acid being the most effective. By an RNA-seq analysis, we found that during differentiation, ethacrynic acid activated the IL-17 and MAPK signaling pathways, which are known to promote granulopoiesis. Furthermore, we found that ethacrynic acid enhanced all-trans retinoic acid (ATRA)-induced differentiation, and both types of signaling converged on the IL-17/MAPK pathways. Inhibiting the IL-17/MAPK pathways impaired ethacrynic acid and ATRA-induced differentiation. In addition, we showed that ethacrynic acid is less toxic to embryogenesis and less disruptive to normal hematopoiesis than ATRA. Thus, the combination of ethacrynic acid and ATRA may have broader clinical applications. In conclusion, through zebrafish-aided screening, our study identified four drugs that can be repurposed to induce AML differentiation, thus providing new agents for AML therapy.


Subject(s)
Cell Differentiation , Leukemia, Myeloid, Acute , Zebrafish , Animals , Zebrafish/embryology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Cell Differentiation/drug effects , Humans , Embryo, Nonmammalian/drug effects , Tretinoin/pharmacology , Ethacrynic Acid/pharmacology , Antineoplastic Agents/pharmacology
12.
Rinsho Ketsueki ; 65(6): 498-501, 2024.
Article in Japanese | MEDLINE | ID: mdl-38960647

ABSTRACT

A 43-year-old man with pancytopenia was diagnosed with acute promyelocytic leukemia (APL). On the first day of induction therapy with all-trans retinoic acid (ATRA) alone, he presented with high fever and was found to have coronavirus disease 2019 (COVID-19) infection by SARS-CoV2 antigen test. While it is generally recommended to delay treatment for APL patients with COVID-19 unless urgent APL treatment is required, this patient needed to continue treatment due to APL-induced disseminated intravascular coagulation (DIC). Considering the challenge of distinguishing between differentiation syndrome (DS) and COVID-19 exacerbation, the ATRA dosage was reduced to 50%. The patient was able to continue treatment without development of DS or exacerbation of DIC, leading to his recovery from COVID-19 and remission of APL.


Subject(s)
COVID-19 , Leukemia, Promyelocytic, Acute , Remission Induction , Tretinoin , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/complications , Tretinoin/administration & dosage , Tretinoin/therapeutic use , Male , Adult , COVID-19/complications , Treatment Outcome , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/etiology
13.
Cell Biochem Funct ; 42(5): e4094, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001564

ABSTRACT

Nuclear factor-erythroid-2-related factor-2 (NRF-2) is a cellular resistance protein to oxidants. We investigated the effect of exogenous all-trans retinoic acid (ATRA) on the antioxidant system and NRF-2 in mice kidneys under hyperoxia-induced oxidative stress. Mice were divided into four groups. Daily, two groups were given either peanut-oil/dimethyl sulfoxide (PoDMSO) mixture or 50 mg/kg ATRA. Oxidative stress was induced by hyperoxia in the remaining groups. They were treated with PoDMSO or ATRA as described above, following hyperoxia (100% oxygen) for 72 h. NRF-2 and active-caspase-3 levels, lipid peroxidation (LPO), activities of antioxidant enzymes, xanthine oxidase (XO), paraoxonase1 (PON1), lactate dehydrogenase (LDH), tissue factor (TF), and prolidase were assayed in kidneys. Hyperoxia causes kidney damage induced by oxidative stress and apoptosis. Increased LPO, LDH, TF, and XO activities and decreased PON1 and prolidase activities contributed to kidney damage in hyperoxic mice. After hyperoxia, increases in the activities of antioxidant enzymes and NRF-2 level could not prevent this damage. ATRA attenuated damage via its oxidative stress-lowering effect. The decreased LDH and TF activities increased PON1 and prolidase activities, and normalized antioxidant statuses are indicators of the positive effects of ATRA. We recommend that ATRA can be used as a renoprotective agent against oxidative stress induced-kidney damage.


Subject(s)
Apoptosis , NF-E2-Related Factor 2 , Oxidative Stress , Tretinoin , Animals , Oxidative Stress/drug effects , Apoptosis/drug effects , Mice , Tretinoin/pharmacology , NF-E2-Related Factor 2/metabolism , Male , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Hyperoxia/metabolism , Hyperoxia/drug therapy , Antioxidants/pharmacology , Lipid Peroxidation/drug effects
14.
Mol Neurobiol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900367

ABSTRACT

This study investigates the role of all-trans retinoic acid (ATRA) in modulating the expression of heat shock protein 90 (Hsp90) and its influence on the uptake and degradation of tau proteins in immortalized human microglia cells. We demonstrate that ATRA significantly upregulates Hsp90 expression in a concentration-dependent manner, enhancing both extracellular and intracellular Hsp90 levels. Our results show that ATRA-treated cells exhibit increased tau protein uptake via caveolae/raft-dependent endocytosis pathways. This uptake is mediated by surface Hsp90, as evidenced by the inhibition of tau internalization using an extracellular Hsp90-selective inhibitor. Further, we establish that the exogenously added full-sized monomeric tau proteins bind to Hsp90. The study also reveals that ATRA-enhanced tau uptake is followed by effective degradation through both lysosomal and proteasomal pathways. We observed a significant reduction in intracellular tau levels in ATRA-treated cells, which was reversed by lysosome or proteasome inhibitors, suggesting the involvement of both degradation pathways. Our findings highlight the potential therapeutic role of ATRA in Alzheimer's disease and related tauopathies. By enhancing Hsp90 expression and facilitating tau degradation, ATRA could contribute to the clearance of pathological tau proteins, offering a promising strategy for mitigating neurodegeneration. This research underscores the need for further exploration into the molecular mechanisms of tau protein internalization and degradation, which could provide valuable insights into the treatment of neurodegenerative diseases.

15.
Sci Rep ; 14(1): 13737, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877119

ABSTRACT

Acute promyelocytic leukemia (APL) is characterized by rearrangements of the retinoic acid receptor, RARα, which makes all-trans retinoic acid (ATRA) highly effective in the treatment of this disease, inducing promyelocytes differentiation. Current therapy, based on ATRA in combination with arsenic trioxide, with or without chemotherapy, provides high rates of event-free survival and overall survival. However, a decline in the drug activity, due to increased ATRA metabolism and RARα mutations, is often observed over long-term treatments. Furthermore, dedifferentiation can occur providing relapse of the disease. In this study we evaluated fenretinide, a semisynthetic ATRA derivative, encapsulated in nanomicelles (nano-fenretinide) as an alternative treatment to ATRA in APL. Nano-fenretinide was prepared by fenretinide encapsulation in a self-assembling phospholipid mixture. Physico-chemical characterization was carried out by dinamic light scattering and spectrophotometry. The biological activity was evaluated by MTT assay, flow cytometry and confocal laser-scanning fluorescence microscopy. Nano-fenretinide induced apoptosis in acute promyelocytic leukemia cells (HL60) by an early increase of reactive oxygen species and a mitochondrial potential decrease. The fenretinide concentration that induced 90-100% decrease in cell viability was about 2.0 µM at 24 h, a concentration easily achievable in vivo when nano-fenretinide is administered by oral or intravenous route, as demonstrated in previous studies. Nano-fenretinide was effective, albeit at slightly higher concentrations, also in doxorubicin-resistant HL60 cells, while a comparison with TK6 lymphoblasts indicated a lack of toxicity on normal cells. The results indicate that nano-fenretinide can be considered an alternative therapy to ATRA in acute promyelocytic leukemia when decreased efficacy, resistance or recurrence of disease emerge after protracted treatments with ATRA.


Subject(s)
Apoptosis , Fenretinide , Leukemia, Promyelocytic, Acute , Humans , Fenretinide/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/metabolism , HL-60 Cells , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Cell Survival/drug effects , Micelles , Membrane Potential, Mitochondrial/drug effects
16.
Discov Oncol ; 15(1): 223, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861104

ABSTRACT

BACKGROUND: Pediatric acute promyelocytic leukemia (APL) accounts for 5 to 15% of all myelocytic leukemia. A retrospective analysis of pediatric patients diagnosed and treated with APL was conducted at CCHE from July 2012 to the end of December 2019, to report the prevalence, clinical characteristics, results, and risk factors associated with induction failure and early death. RESULT: Sixty-two patients were reported, with an age greater than ten, an initial poor coagulation profile, and a total leukocyte count (TLC) greater than 30 103/mm3 influencing 5-year overall (OS) and event-free survival (EFS), as well as a high promyelocyte count affecting 5-year EFS. Patients received a regimen based on the COG AAML0631 protocol. High-risk patients with an initial TLC > 10 × 103/mm3 and an initial promyelocytic count of 30% or more with a substantial P-value are prognostic markers for early death during induction. In females, wild FLT3 increases the risk of differentiation syndrome (DS). Receiving steroids with all-trans retinoic acid (ATRA) induction may reduce the occurrence of DS. Relapse alters the outcome. In the current study, 45 patients are alive in complete remission, with a 5-year OS of 72.5% and a 5-year EFS of 69.4%, respectively. CONCLUSION: Pediatric APL outcomes are influenced by age above 10, an initial poor coagulation profile, and a promyelocyte count of more than 10%. An initial leukocyte count of more than 10 × 103/mm and an initial promyelocytic count of more than 30% increase the risk of early death. Receiving steroids with ATRA may reduce the occurrence of DS.

17.
Biotechnol J ; 19(6): e2300659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863121

ABSTRACT

All-trans retinoic acid (atRA) is an endogenous ligand of the retinoic acid receptors, which heterodimerize with retinoid X receptors. AtRA is generated in tissues from vitamin A (retinol) metabolism to form a paracrine signal and is locally degraded by cytochrome P450 family 26 (CYP26) enzymes. The CYP26 family consists of three subtypes: A1, B1, and C1, which are differentially expressed during development. This study aims to develop and validate a high throughput screening assay to identify CYP26A1 inhibitors in a cell-free system using a luminescent P450-Glo assay technology. The assay performed well with a signal to background ratio of 25.7, a coefficient of variation of 8.9%, and a Z-factor of 0.7. To validate the assay, we tested a subset of 39 compounds that included known CYP26 inhibitors and retinoids, as well as positive and negative control compounds selected from the literature and/or the ToxCast/Tox21 portfolio. Known CYP26A1 inhibitors were confirmed, and predicted CYP26A1 inhibitors, such as chlorothalonil, prochloraz, and SSR126768, were identified, demonstrating the reliability and robustness of the assay. Given the general importance of atRA as a morphogenetic signal and the localized expression of Cyp26a1 in embryonic tissues, a validated CYP26A1 assay has important implications for evaluating the potential developmental toxicity of chemicals.


Subject(s)
High-Throughput Screening Assays , Retinoic Acid 4-Hydroxylase , High-Throughput Screening Assays/methods , Retinoic Acid 4-Hydroxylase/metabolism , Retinoic Acid 4-Hydroxylase/genetics , Humans , Tretinoin/pharmacology , Tretinoin/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Reproducibility of Results
18.
Nutrients ; 16(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732639

ABSTRACT

The combination of vitamin A and D derivatives with classical chemotherapeutic treatments results in more satisfactory outcomes. The use of drug combinations, such as 9cUAB130 with carboplatin and cisplatin with TAC-101, shows enhanced cytotoxic effects and reductions in ovarian tumor volume compared to single-drug treatments. Combining cisplatin with calcitriol and progesterone increases VDR expression, potentially enhancing the effectiveness of anticancer therapy in ovarian cancer. The effectiveness of vitamin derivatives in anticancer treatment may vary depending on the characteristics of the tumor and the cell line from which it originated. An increase in thiamine intake of one unit is associated with an 18% decrease in HPV infection. Higher intake of vitamin C by 50 mg/day is linked to a lower risk of cervical neoplasia. Beta-carotene, vitamin C, and vitamin E are associated with risk reductions of 12%, 15%, and 9% in endometrial cancer, respectively. A balanced daily intake of vitamins is important, as both deficiency and excess can influence cancer development. It has been observed that there is a U-shaped relationship between group B vitamins and metabolic markers and clinical outcomes.


Subject(s)
Genital Neoplasms, Female , Vitamins , Humans , Female , Vitamins/pharmacology , Vitamins/administration & dosage , Ovarian Neoplasms , Vitamin D/administration & dosage , Dietary Supplements , Antineoplastic Combined Chemotherapy Protocols , Vitamin A , Antineoplastic Agents/pharmacology , Vitamin E/pharmacology
19.
Pharmaceutics ; 16(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38794242

ABSTRACT

The development of numerous drugs is often arrested at clinical testing stages, due to their unfavorable biopharmaceutical characteristics. It is the case of fenretinide (4-HPR), a second-generation retinoid, that demonstrated promising in vitro cytotoxic activity against several cancer cell lines. Unfortunately, response rates in early clinical trials with 4-HPR did not confirm the in vitro findings, mainly due to the low bioavailability of the oral capsular formulation that was initially developed. Capsular 4-HPR provided variable and insufficient drug plasma levels attributable to the high hepatic first-pass effect and poor drug water solubility. To improve 4-HPR bioavailability, several approaches have been put forward and tested in preclinical and early-phase clinical trials, demonstrating generally improved plasma levels and minimal systemic toxicities, but also modest antitumor efficacy. The challenge is thus currently still far from being met. To redirect the diminished interest of pharmaceutical companies toward 4-HPR and promote its further clinical development, this manuscript reviewed the attempts made so far by researchers to enhance 4-HPR bioavailability. A comparison of the available data was performed, and future directions were proposed.

20.
Cell Commun Signal ; 22(1): 291, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802835

ABSTRACT

A promising new therapy option for acute kidney injury (AKI) is mesenchymal stem cells (MSCs). However, there are several limitations to the use of MSCs, such as low rates of survival, limited homing capacity, and unclear differentiation. In search of better therapeutic strategies, we explored all-trans retinoic acid (ATRA) pretreatment of MSCs to observe whether it could improve the therapeutic efficacy of AKI. We established a renal ischemia/reperfusion injury model and treated mice with ATRA-pretreated MSCs via tail vein injection. We found that AKI mice treated with ATRA-MSCs significantly improved renal function compared with DMSO-MSCs treatment. RNA sequencing screened that hyaluronic acid (HA) production from MSCs promoted by ATRA. Further validation by chromatin immunoprecipitation experiments verified that retinoic acid receptor RARα/RXRγ was a potential transcription factor for hyaluronic acid synthase 2. Additionally, an in vitro hypoxia/reoxygenation model was established using human proximal tubular epithelial cells (HK-2). After co-culturing HK-2 cells with ATRA-pretreated MSCs, we observed that HA binds to cluster determinant 44 (CD44) and activates the PI3K/AKT pathway, which enhances the anti-inflammatory, anti-apoptotic, and proliferative repair effects of MSCs in AKI. Inhibition of the HA/CD44 axis effectively reverses the renal repair effect of ATRA-pretreated MSCs. Taken together, our study suggests that ATRA pretreatment promotes HA production by MSCs and activates the PI3K/AKT pathway in renal tubular epithelial cells, thereby enhancing the efficacy of MSCs against AKI.


Subject(s)
Acute Kidney Injury , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Tretinoin , Acute Kidney Injury/therapy , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Tretinoin/pharmacology , Tretinoin/therapeutic use , Humans , Mice , Male , Mice, Inbred C57BL , Hyaluronic Acid/pharmacology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Reperfusion Injury/therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Disease Models, Animal , Apoptosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL