Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(6): 7275-7287, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38304929

ABSTRACT

The synthesis, characterization, and application of a new cyanostyrylcopillar[5]arene 1 is reported. Single-crystal X-ray diffraction and other spectroscopic techniques confirm the identity of the new copillar 1. The X-ray diffraction study reveals that the copillar 1 exhibits a 1D supramolecular chain in the solid state involving π···π interactions along the crystallographic c-axis and 1D chains are further connected by interchain C-H···π interactions to establish 2D supramolecular layers within the crystallographic bc-plane. 2D supramolecular chains on further packing introduce a 3D structure with void spaces filled with hexane molecules. Through minimal deviation in the dihedral angle, the cyano-substituted ethylenic group in 1 shows a conjugation with the phenolic -OH, favoring intramolecular bond conjugation (ITBC) and colorimetrically detects the aliphatic amines over aromatic amines in CH3CN. Among the aliphatic amines, tertiary amines are differentiated from primary and secondary amines by the naked eye through color change. Both in solution and solid states, 1 displays vapor phase detection of volatile aliphatic amines. Antibacterial activity analysis shows that while 1 exhibits the antibiofilm action against Gram-positive pathogenic bacteria, Staphylococcus aureus, it promotes biofilm formation by Gram-negative pathogenic bacteria, Pseudomonas aeruginosa.


Subject(s)
Amines , Biofilms , Amines/pharmacology , Amines/chemistry , Crystallography, X-Ray , X-Ray Diffraction , Anti-Bacterial Agents/chemistry
2.
Article in English | MEDLINE | ID: mdl-38230646

ABSTRACT

The pursuit of developing sensors, characterized by their fluorescence-intensity enhancement or "turn-on" behavior, for accurately detecting noxious small molecules, such as amines, at minimal levels remains a significant challenge. Metal-organic frameworks (MOFs) have emerged as promising candidates as sensors as a result of their diverse structural features and tunable properties. This study introduces the rational synthesis of a new highly coordinated (6,12)-connected rare earth (RE) alb-MOF-3, by combining the nonanuclear 12-connected hexagonal prismatic building units, [RE9(µ3-O)2(µ3-X)12(OH)2(H2O)7(O2C-)12], with the 6-connected rigid trigonal prismatic extended triptycene ligand. The resulting Y-alb-MOF-3 material is distinguished by its high microporosity and Brunauer-Emmett-Teller surface area of approximately 1282 m2/g, which offers notable hydrolytic stability. Remarkably, it demonstrates selective detection capabilities for primary aliphatic amines in aqueous media, as evidenced by fluorescence turn-on behavior and photoluminescence (PL) titration measurements. This work emphasizes the potential of MOFs as sensors in advancing their selectivity and sensitivity toward various analytes.

3.
Molecules ; 28(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37764403

ABSTRACT

Bioactive amines are highly relevant for clinical and industrial application to ensure the metabolic status of a biological process. Apart from this, generally, amine identification is a key step in various bioorganic processes ranging from protein chemistry to biomaterial fabrication. However, many amines have a negative impact on the environment and the excess intake of amines can have tremendous adverse health effects. Thus, easy, fast, sensitive, and reliable sensing methods for amine identification are strongly searched for. In the past few years, Meldrum's acid furfural conjugate (MAFC) has been extensively explored as a starting material for the synthesis of photoswitchable donor-acceptor Stenhouse adducts (DASA). DASA formation hereby results from the rapid reaction of MAFC with primary and secondary amines, which has so far been demonstrated through numerous publications for different applications. The linear form of the MAFC-based DASA exhibits intense pink coloration due to its linear conjugated triene-2-ol conformation, which has inspired researchers to use this easy synthesizable molecule as an optical sensor for primary, secondary, and biogenic amines. Due to its new entry into amine identification, a collection of the literature exclusively on MAFC is demanded. In this mini review, we intend to present the state-of-the-art of MAFC as an optical molecular sensor in hopes to motivate researchers to find even more applications of MAFC-based sensors and methods that pave the way to their usage in medicinal applications.


Subject(s)
Biogenic Amines , Furaldehyde , Dioxanes/chemistry
4.
ACS Appl Mater Interfaces ; 14(50): 55979-55988, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36472626

ABSTRACT

Undoubtably, it is challenging to simultaneously determine the identity, enantiomeric excess (ee), and total concentration of an enantiomer by just one optical measurement. Herein, we design a chiral tetrahedron Eu4(LR)4 with circularly polarized luminescence (CPL), which presents highly selective/stereoselective, rapid, and "turn-on" CPL response to chiral diamines, rather than the monoamino compounds, such as monoamines or amino alcohols. By recording the left- and right-CPL intensities of the Eu3+ ion at 591 nm, the enantiomeric composition and concentration of chiral diamines can be simultaneously determined by monitoring the glum value and total emission intensity (IL + IR), respectively. Spectroscopy analyses demonstrate that the variations of glum depend on the inversion and maintenance of configuration around the Eu3+ ion (Δ â†” Λ), while the "turn-on" response arises from the raising of the T1 state of the ligand. The molecule/electron structural variations are proposed from the synergetic supramolecular interactions of NH2 groups with pendant diols and trifluoroacetyl groups.

5.
ACS Sens ; 6(6): 2457-2464, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34110807

ABSTRACT

Quality control in the production and processing of raw meat is currently one of the biggest concerns for food industry and would benefit from portable and wireless sensors capable of detecting the onset of spoilage. Raw meat is a natural source of biogenic and volatile amines as byproducts of decarboxylation reactions, and the levels of these compounds can be utilized as quality control parameters. We report herein a hybrid chemiresistor sensor based on inorganic nanofibers of SiO2:ZnO (an n-type material) and single-walled carbon nanotubes functionalized with 3,5-dinitrophenyls (a p-type material) with dosimetric sensitivity ∼40 times higher for amines than for other volatile organic compounds, which also provides excellent selectivity. The hybrid nanomaterial-based chemiresistor sensory material was used to convert radio-frequency identification tags into chemically actuated resonant devices, which constitute wireless sensors that can be potentially employed in packaging to report on the quality of meat. Specifically, the as-developed wireless tags report on cumulative amine exposure inside the meat package, showing a decrease in radio-frequency signals to the point wherein the sensor ceased to be smartphone-readable. These hybrid material-modified wireless tags offer a path to scalable, affordable, portable, and wireless chemical sensor technology for food quality monitoring without the need to open the packaging.


Subject(s)
Nanostructures , Nanotubes, Carbon , Amines , Food Quality , Silicon Dioxide
6.
ACS Appl Mater Interfaces ; 12(16): 19201-19209, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32216271

ABSTRACT

We convert a coordination network into a covalent solid, while maintaining the crystallinity and greatly enhancing the framework rigidity and redox-active and photochemical properties. Specifically, intensely light-absorbing push-pull functions are postsynthetically installed by reacting the electrophilic TCNE (tetracyanoethylene) guests and the electron-rich alkyne side arms on a microporous Zr-organic framework, generating black microporous crystallites with a band gap smaller than 1.0 eV. The reaction proceeds in the known [2 + 2] cycloaddition-retroelectrocyclization mechanism and extensively establishes conjugated (polyene) bridges across the linker molecules. The donor (4-methoxyphenyl) and acceptor (dicyanovinyl) couples of the polyene bridges also act as an efficient fluorescent quencher and can be selectively installed in a thin outer layer of the host crystallite to form a core-shell assembly for turn-on fluorescent sensing of small amine molecules in water solutions.

7.
ACS Appl Bio Mater ; 3(2): 772-778, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-35019281

ABSTRACT

Amines are ubiquitous in biological world, but are toxic and harmful in nature. Detection of biogenic amines that are released from spoiled seafood, meat, or dairy products is an important task to maintain the quality and safety of these packaged foods. To this endeavor, herein we report pyrylium salts that are capable of sensing various amines by rapid change of fluorescence color or intensity. In molecular level, this change of fluorescence is rooted to the formation of pyridine or analogous product that have distinct optical property. The pyrylium salts are capable of efficiently sensing amine vapors or amine solutions both in solid state and in solution state and thus demonstrating a multiphase sensing platform. Utilizing the excellent sensing property, we have employed our pyrylium compounds as spoilage indicator for food products such as fish, meat or cheese which relies on sensing biogenic amines released from these spoiled foods and provide optical response. Prominent change in visible and luminescence color was observed within 4-18 h of packaging at room temperature (∼33 °C). Considering the rapid response for biogenic amines, these molecular sensors have great potential to be utilized for food packaging industry, medical diagnostics, or other sensory devices.

8.
Polymers (Basel) ; 11(9)2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31500310

ABSTRACT

Amines are known to react with succinic anhydride (SAh), which in reactions near room temperature, undergoes a ring opening amidation reaction to form succinamic acid (succinic acid-amine). In this work, we propose to form an amine-responsive polymer by grafting SAh to a poly(lactic acid) (PLA) backbone, such that the PLA can provide chemical and mechanical stability for the functional SAh during the amidation reaction. Grafting is performed in a toluene solution at mass content from 10 wt% to 75 wt% maleic anhydride (MAh) (with respect to PLA and initiator), and films are then cast. The molecular weight and thermal properties of the various grafted polymers are measured by gel permeation chromatography and differential scanning calorimetry, and the chemical modification of these materials is examined using infrared spectroscopy. The efficiency of the grafting reaction is estimated with thermogravimetric analysis. The degree of grafting is determined to range from 5% to 42%; this high degree of grafting is desirable to engineer an amine-responsive material. The response of the graft-polymers to amines is characterized using X-ray photoelectron spectroscopy, infrared spectroscopy, and differential scanning calorimetry. Changes in the chemical and thermal properties of the graft-polymers are observed after exposure to the vapors from a 400 ppm methylamine solution. In contrast to these changes, control samples of neat PLA do not undergo comparable changes in properties upon exposure to methylamine vapor. In addition, the PLA-g-SAh do not undergo changes in structure when exposed to vapors from deionized water without amines. This work presents potential opportunities for the development of real-time amine sensors.

9.
Chemistry ; 24(29): 7369-7373, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29603443

ABSTRACT

There is significant interest in the rapid and efficient detection of amines, which are widely used in different industries and also serve as markers in many biological processes. This work reports that the coupling of a thiosemicarbazide binding motif and a naphthalimide-based chromophore affords highly sensitive sensor molecules, which can indicate the presence of amines with a pronounced and readily visible color change. It was demonstrated that the binding mechanism involves a proton transfer from the thiosemicarbazide to the analyte. This process renders the mechanism highly sensitive and broadly exploitable. The potential usefulness of the sensor is demonstrated by fabricating an indicator paper, which allows for the detection of volatile amines at concentrations as low as ca. 10 ppm.

SELECTION OF CITATIONS
SEARCH DETAIL