Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Metabolites ; 14(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39330491

ABSTRACT

Rhododendron is a traditional ornamental and medicinal plant in China, renowned for its aesthetic appeal and therapeutic properties. Regarding Rhododendron decorum Franch., mainly distributed in Yunnan Province, its corolla is regarded as an edible food by the Bai ethnic group in Yunnan Province. However, it is still unclear why the Bai people choose to use the Rhododendron species in their seasonal diet. Here, we employed comparative metabolomics analysis to explore the variations in the metabolites and the enriched biosynthesis pathways within the different floral organs of R. decorum Franch. from Heqing and Yulong County. The metabolite analysis showed that 1340 metabolites were identified from the floral organs in the two regions. Comparing the different flower organs of the same region, 85 differential accumulated metabolites (DAMs) were found from the androecium/gynoecium and corolla in the same region, and 66 DAMs were identified from the same organ in different regions. The KEGG pathway and network analysis revealed significant disparities in both the metabolite composition and enriched pathways among the different floral organs or when comparing the same floral organs across diverse regions, with geographical variations exerting even stronger influences. From the perspective of resource utilization, it was observed that the R. decorum Franch. populations in Heqing County exhibited the greater accumulation of secondary metabolites within their flowers, rendering them more advantageous for medicinal purposes, albeit potentially more toxic. This study provides novel insights into the utilization of corollaries for potential de novo pharmacy development.

2.
Curr Opin Plant Biol ; 80: 102550, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762927

ABSTRACT

A fascinating component of floral morphological diversity is the evolution of novel floral organ identities. Perhaps the best-understood example of this is the evolutionary sterilization of stamens to yield staminodes, which have evolved independently numerous times across angiosperms and display a considerable range of morphologies. We are only beginning to understand how modifications of the ancestral stamen developmental program have produced staminodes, but investigating this phenomenon has the potential to help us understand both the origin of floral novelty and the evolution of genetic networks more broadly.


Subject(s)
Biological Evolution , Flowers , Flowers/growth & development , Flowers/genetics , Magnoliopsida/genetics , Magnoliopsida/growth & development , Gene Expression Regulation, Plant
3.
PhytoKeys ; 239: 73-105, 2024.
Article in English | MEDLINE | ID: mdl-38523734

ABSTRACT

Garcinia L. is a pantropically distributed genus comprised of at least 250 species of shrubs and trees and has centers of diversity located in Africa/Madagascar, Australasia, and Southeast Asia. The genus is notable due to its extreme diversity of floral form, common presence in lowland tropical rainforests worldwide, and potential pharmacological value. Across its entire geographic range, Garcinia lacks a recent taxonomic revision, with the last genus-level taxonomic treatment of Garcinia conducted over 40 years ago. In order to provide an evolutionary-based framework for a revised infrageneric classification of the genus and to investigate in more detail the systematics of New Caledonian species, we conducted molecular phylogenetic analyses using DNA sequence data for the nuclear ITS region on all samples, and for three chloroplast intergenic spacers (psbM-trnD, trnQ-rps16 and rps16-trnK) on a subset of our overall sampling. Our phylogenetic analyses are the most comprehensive to date for the genus, containing 111 biogeographically and morphologically diverse Garcinia species. The analyses support a broad circumscription of Garcinia, including several previously segregated genera (e.g. Allanblackia, Clusianthemum, Ochrocarpos p.p., Pentaphalangium, Rheedia, and Tripetalum). We recovered nine major clades falling within two major lineages, and we delimit 11 sections. We discuss each of the clades, assign them sectional names, discuss their distinguishing morphological features, compare our taxonomic treatment with the most recent sectional treatment, list representative species, note geographic distribution, and highlight some questions that deserve future investigations. We propose nine new nomenclatural combinations, four new names, and three new lectotypes. In New Caledonia (NC), a total of ten, all endemic, species are recognized and were included in our phylogenetic analyses, with several replicates per species (with the exception of G.virgata and G.urceolata, represented by a single accession each). New Caledonian species were retrieved within three separate clades, respectively including 1) G.balansae; 2) G.comptonii, G.neglecta, G.urceolata, G.virgata; and 3) G.amplexicaulis, G.densiflora, G.pedicellata, G.puat, G.vieillardii. Within NC, the phylogenies did not support the distinction between a putative undescribed species and G.balansae. However, it confirmed the distinction between NC species and both G.vitiensis (found in Fiji and Vanuatu) and G.adinantha (found in Fiji), suggesting that all NC species should be considered as endemics.

4.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068950

ABSTRACT

Despite extensive research on orchid reproductive strategies, the genetic studies of sex differentiation in the orchid family are still lacking. In this study, we compared three sexual phenotypes of Cymbidium tortisepalum bisexual flowers as well as female and male unisexual mutants. Through comparative transcriptomes, we analyzed the sex-biased differentially expressed genes (DEGs) and gene co-expression networks of sex organs (gynostemium and ovary) among them, identified the candidate genes of sex differentiation, and validated their expression by qRT-PCR. The C. tortisepalum unisexual mutants with degenerated phenotypes were compared to the bisexual plants with respect to both the flower organs and plant morphologies. Totally, 12,145, 10,789, and 14,447 genes were uniquely expressed in the female, male, and hermaphrodite sex organs, respectively. A total of 4291 sex-biased DEGs were detected among them, with 871, 2867, and 1937 DEGs in the comparisons of bisexual vs. female, bisexual vs. male, and male vs. female flowers, respectively. Two co-expressed network modules, with 81 and 419 genes were tightly correlated with female sexual traits, while two others with 265 and 135 genes were highly correlated with male sexual traits. Two female-biased hub genes (CtSDR3b and CtSDR3b-like) nested in the female modules, the homologs of maize sex determinant tasselseed2, may control the feminization of C. tortisepalum. At the same time, two male-biased hub genes (CtYAB2 and CtYAB5) nested in the male modules, the homologs of grape sex determinant VviYABBY3, may control the androphany of C. tortisepalum. This study discovered the molecular regulation networks and proposed a model for orchid sex differentiation, therefore providing for the first time the genetic basis for the sex separation in the orchid family.


Subject(s)
Orchidaceae , Sexual and Gender Minorities , Female , Humans , Transcriptome , Gene Regulatory Networks , Flowers/genetics , Orchidaceae/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling
5.
Am J Bot ; 110(8): e16213, 2023 08.
Article in English | MEDLINE | ID: mdl-37459475

ABSTRACT

PREMISE: Recent studies of floral disparity in the asterid order Ericales have shown that flowers vary strongly among families and that disparity is unequally distributed between the three flower modules (perianth, androecium, gynoecium). However, it remains unknown whether these patterns are driven by heterogeneous rates of morphological evolution or other factors. METHODS: Here, we compiled a data set of 33 floral characters scored for 414 species of Ericales sampled from 346 genera and all 22 families. We conducted ancestral state reconstructions using an equal-rates Markov model for each character. We estimated rates of morphological evolution for Ericales and for a separate angiosperm-wide data set of 19 characters and 792 species, creating "rate profiles" for Ericales, angiosperms, and major angiosperm subclades. We compared morphological rates among flower modules within each data set separately and between data sets, and we compared rates among angiosperm subclades using the angiosperm data set. RESULTS: The androecium exhibits the highest evolutionary rates across most characters, whereas most perianth and gynoecium characters evolve more slowly in both Ericales and angiosperms. Both high and low rates of morphological evolution can result in high floral disparity in Ericales. Analyses of an angiosperm-wide floral data set reveal that this pattern appears to be conserved across most major angiosperm clades. CONCLUSIONS: Elevated rates of morphological evolution in the androecium of Ericales may explain the higher disparity reported for this floral module. Comparing rates of morphological evolution through rate profiles proves to be a powerful tool in understanding floral evolution.


Subject(s)
Ericales , Magnoliopsida , Magnoliopsida/genetics , Magnoliopsida/anatomy & histology , Biological Evolution , Phylogeny , Flowers/genetics , Flowers/anatomy & histology
6.
Am J Bot ; 110(5): e16171, 2023 05.
Article in English | MEDLINE | ID: mdl-37070618

ABSTRACT

PREMISE: Staminodes are commonly studied in hermaphroditic flowers, in which a fraction of the androecium evolves into infertile structures, but few studies have addressed the evolution of staminodes as they occur through the loss of stamen function in carpellate flowers. Plants of Paronychia (Caryophyllaceae) are monoecious with hermaphroditic flowers with one staminodial whorl, except for the dioecious P. chartacea and P. minima. Dioecious species have carpellate flowers that evolved an additional whorl of staminodes, providing an exceptional opportunity to study a second origin of staminodes in the same flower. METHODS: Using scanning electron microscopy, we observed the development of carpellate and staminate flowers to determine whether the developmental pathway of the staminodes in hermaphroditic flowers was co-opted during the evolutionary transition to unisexual flowers. RESULTS: In carpellate flowers, antesepalous staminodes initiate as sterile anthers that develop similar to functioning stamens, but arrest before full development, leaving a rudimentary anther with lateral lobes that correspond to thecae. After antesepalous staminodes arrest, alternisepalous staminodes initiate as structures that correspond with filaments, as they do in staminate and hermaphroditic flowers. CONCLUSIONS: The second origin of staminodes in carpellate flowers evolved using a different developmental pathway than what had previously evolved in the alternisepalous whorl. The two androecial whorls in the same flowers are serialogous as members of the androecium, but are paralogous as staminodes on the basis of structural and developmental differences.


Subject(s)
Flowers , Microscopy, Electron, Scanning
7.
Biology (Basel) ; 11(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36290434

ABSTRACT

The vast majority of angiosperms attracts animal pollinators with the nectar secreted through specialized floral nectaries (FNs). Although there is evidence that principal patterns of regulation of FN development are conserved in large angiosperm clades, these structures are very diverse considering their morphology and position within a flower. Most data on genetic control of FN formation were obtained in surveys of a model plant species, Arabidopsis thaliana (Brassicaceae). There are almost no data on genetic factors affecting FN development in Leguminosae, the plant family of a high agricultural value and possessing outstandingly diverse flowers. In this work, the morphology of FNs was examined in a set of leguminous species, both wild-type and developmental mutants, by the means of a scanning electron microscopy. Unlike Brassicaceae, FNs in legumes are localized between stamens and a carpel instead of being associated with a certain floral organ. FNs were found stable in most cases of mutants when perianth and/or androecium morphology was affected. However, regulation of FN development by BLADE-ON-PETIOLE-like genes seems to be a shared feature between legumes (at least Pisum) and Arabidopsis. In some legumes, the adaxial developmental program (most probably CYCLOIDEA-mediated) suppresses the FN development. The obtained results neither confirm the role of orthologues of UNUSUAL FLORAL ORGANS and LEAFY in FN development in legumes nor reject it, as two studied pea mutants were homozygous at the weakest alleles of the corresponding loci and possessed FNs similar to those of wild-type.

8.
Dokl Biol Sci ; 506(1): 160-171, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36301425

ABSTRACT

Similarities (features of the family Crassulaceae) and differences in anther development and structure were observed between Aeonium balsamiferum and A. ciliatum. Microsporangia are rounded in A. ciliatum and elongate oval in A. balsamiferum. The septum between microsporangia is consequently longer in A. ciliatum and extremely short in A. balsamiferum. In the latter, pollen can spill out through both the stomium and the apical pore (the phenomenon first discovered in the family Crassulaceae), and both modes of theca opening occur simultaneously, suggesting a greater specialization for pollination for the A. balsamiferum anther. The outer tapetum is single-layered in both species, but its cells are mononuclear in A. ciliatum and binuclear in A. balsamiferum. The inner tapetum is usually single-layered and irregularly two-layered in rare cases; its cells increase in size by a factor of 2 in A. ciliatum and 3-4 in A. balsamiferum (resembling papilloid cells in structure in the latter). Similarities in anther structure were observed between the genera Aeonium and Sedum. In both genera, the anther was isobilateral (on a transverse section) and had an epiconnective, a four-beamed connective, and an annular fibrous layer on the inner side of the connective in the lower region, where there is no fusion of the anther and filament; pollen grains were of the same structural type: tricolporate with a striated surface. The findings were consistent with the cladistic reconstructions that put species of the polyphyletic genus Sedum in the tribes Aeonieae, Semperviveae, and Sedeae. Aeonium balsamiferum and A. ciliatum fall into the Aeonium clade and occupy an intermediate position between the Telephium clade (Sedum kamtschaticum) and the Acre clade (S. palmeri).


Subject(s)
Crassulaceae , Flowers , Pollen , Reproduction
9.
J Plant Res ; 135(5): 659-680, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35802292

ABSTRACT

The androecium of Melastomataceae presents notable modifications in its merosity, morphology between whorls and in prolonged connectives and appendages. We carried out a comparative study of six Melastomataceae species to shed light on the developmental processes that originate such stamen diversity. The development of stamens was studied using scanning electron microscopy and histological observations. The stamens of all species studied have a curved shape because they emerge on a plane displaced by the perigynous hypanthium. They are the last flower organs to initiate and therefore their growth is inwards and towards the floral center. Despite the temporal inversion between carpels and stamens in Melastomataceae, the androecium maintains the centripetal pattern of development, the antepetalous stamens emerging after antesepalous stamens. The isomerous androecium can be the result of abortion of the antepetalous stamens, whereas heterostemony seems to be caused by differences in position and the stamen development time. Pedoconnectives and ventral appendages originate from the basal expansion of the anther late in floral development. The delay in stamen development may be a consequence of their dependence on the formation of a previous space so that they can grow. Most of the stamen diversity is explained by the formation of the connectives and their appendages. The formation of a basal-ventral anther prolongation, which culminates in the development of the pedoconnective, does not differ from other types of sectorial growth of the connective, which form shorter structures.


Subject(s)
Melastomataceae , Flowers/anatomy & histology , Melastomataceae/anatomy & histology , Microscopy, Electron, Scanning
10.
Am J Bot ; 108(5): 883-892, 2021 05.
Article in English | MEDLINE | ID: mdl-34018178

ABSTRACT

PREMISE: Early Eocene ambers of the Cambay lignite in Gujarat, India, are well known for their diverse insect fauna and dispersed pollen, but the included flowers have received limited attention. The fossil record of Apocynaceae is relatively poor, and the distinctive floral characters of this family have not been recognized in the fossil record before. METHODS: Remains of tiny flowers in amber were studied by micro-CT scanning, reflected light, and epifluorescence microscopy. RESULTS: Flowers of Maryendressantha succinifera gen. et. sp. n. have actinomorphic, pentamerous, tubular corollas 2.2-2.3 mm wide, and 1.7-2.1 mm deep with sinistrorse aestivation and androecia consisting of a whorl of five stamens attached by short filaments to the lower half of the corolla tube. Anthers are ovate, rounded basally and apically tapered with their connectives convergent with one another in a conical configuration. The pollen is globose, psilate, tricolporate, and very small (10-11 µm). The combined characters indicate a position within the grade known as subfamily Rauvolfioideae. CONCLUSIONS: These fossils, as the oldest remains of Rauvolfioids, complement the fossil records of Apocynoid and Asclepioid fossil seeds from other regions, demonstrating that the Apocynaceae were well established by the early Eocene, mostly consistent with prior divergence estimates for the phylogeny of this family. Potential pollinators, also preserved in the Cambay amber, include mosquitos, gnats, small moths, and stingless bees.


Subject(s)
Amber , Apocynaceae , Animals , Flowers , Fossils , India
11.
Rev. biol. trop ; Rev. biol. trop;68(1)mar. 2020.
Article in English | LILACS, SaludCR | ID: biblio-1507643

ABSTRACT

Loranthaceae hemiparasitic family comprises 76 genera and about 1 050 species distributed in temperate and tropical regions.The subtribe Psittacanthinae contains 14 genera of neotropical mistletoe including Psittacanthus with over 120 species, characterized by large, brightly colored (red, orange, yellow) flowers that are mostly pollinated by hummingbirds. During the 20th century, a number of morphological and embryological studies were conducted mainly on Old World Loranthaceae genera. More recently, attention has been focused on neotropical Psittacanthinae where among the 14 genera, floral anatomy has been examined in only seven.The aim of this study is to describe the floral anatomy of Psittacanthus schiedeanus and compares the results with those derived from related mistletoe, interpreting the variation of the floral characters of the calyculus, nectary, gynoecium and from floral dissections and serial histological sections, detailing the structure of androecium and gynoecium and anthers in the context of the new phylogenetic information. Flowers of P. schiedeanus at different developmental stages were examined using stained serial sections visualized with light microscopy. These flowers have a vascularized, cupular pedicel fused to a bracteole, a non-vascularized calyculus, an annular nectary, a unilocular gynoecium with a single central mamelon and an androecium formed by epipetalous septate stamens. The morphological comparison of pedicel, bracteole and calyculus provides support for the interpretation of the calyculus as a reduced calyx. The annular nectary seems to be a character shared by the entire subtribe Psittacanthinae, which distinguishes it from Ligarinae which has stylar nectary. The unilocular gynoecium formed by a single central structure is a character shared with other genera in Psittacanthinae except Tripodanthus. The androecium is composed of dithecal, tetrasporangiate stamens with septate locules that are here considered an adaptation for pollen releasing over an extended time period rather than previous suggestions that they result from evolutionary pressure to reduce anther size or to facilitate the nutrition of microspores in large anthers.


La familia hemiparásita Loranthaceae comprende 76 géneros y aproximadamente 1 050 especies distribuidas en regiones templadas y tropicales. La subtribu Psittacanthinae contiene 14 géneros de muérdagos neotropicales que incluyen Psittacanthus con más de 120 especies, caracterizadas por presentar flores grandes de colores brillantes (rojo, naranja y amarillo) que son polinizadas principalmente por colibríes. Durante el siglo XX se desarrollaron una serie de estudios morfológicos y embriológicos de géneros de Loranthaceae del Viejo Mundo. Recientemente, la atención se ha centrado en la subfamilia neotropical Psittacanthinae, en donde de los 14 géneros que la conforman, la anatomía floral se ha examinado solamente en siete. El objetivo de este estudio es describir la anatomía floral de Psittacanthus schiedeanus y comparar los resultados con los de otros muérdagos relacionados, interpretando la variación de los caracteres florales del calículo, nectario, gineceo y anteras en el contexto de la nueva información filogenética. Flores de P. schiedeanus en diferentes estados de desarrollo fueron examinadas mediante secciones seriadas teñidas utilizando microscopía óptica. Estas flores tienen un pedículo vascularizado y cupular fusionado con una bracteola, un cáliz no vascularizado, un nectario anular, un gineceo unilocular con un solo mamelón central y un androceo formado por estambres septados epipétalos. La comparación morfológica de pedicelo, bracteola y calículo proporciona apoyo para la interpretación del calículo como un cáliz reducido. El nectario anular parece ser un carácter compartido por toda la subtribu Psittacanthinae, que lo diferencia de la subtribu Ligarinae con nectario estilar. El gineceo unilocular formado por una estructura central única es un carácter compartido con otros géneros de la subtribu Psittacanthinae, con la excepción de Tripodanthus. El androceo está formado por estambres bitecados, tetrasporangiados con lóculos septados que aquí se consideran una adaptación para liberar polen durante un período prolongado de tiempo, en lugar de sugerencias previas que lo explican como resultado de la presión evolutiva para reducir el tamaño de la antera o para facilitar la nutrición de microesporas en anteras grandes.


Subject(s)
Loranthaceae/anatomy & histology , Costa Rica , Loranthaceae/classification
12.
Rev. biol. trop ; Rev. biol. trop;68(1)mar. 2020.
Article in English | LILACS, SaludCR | ID: biblio-1507663

ABSTRACT

Introduction: Most of the New World members of the Loranthaceae comprise a clade that corresponds to the tribe Psittacantheae. Previous studies on floral anatomy and development in this tribe have concentrated on the highly diversified subtribe Psittacanthinae, while the smaller subtribe Ligarineae has received less attention. A detailed anatomical description of Tristerix longebracteatus helps to fill this information gap. Objetive: The present research analyzes the anatomy of Tristerix longebracteatus flowers, detailing the structure of androecium and gynoecium, including megasporogenesis and microsporogenesis. Methodology: Anatomical serial sections of flowers at different stages of development were prepared, following processing with fixation techniques, incorporation in paraffin, microtome sectioning and staining with Astra-blue and basic fuchsin. Results: The large-sized flowers of Tristerix longebracteatus present a complex pattern of vascularization with 18-20 vascular bundles at the base of the inferior ovary. A group of three vascular bundles irrigate the 4-5 petals and associated stamens, and ten bundles continue through the gynoecium. The androecium is composed of four or five anthers with simultaneous microsporogenesis. The gynoecium as a single ovarian cavity with a central mamelon in which the archesporial tissue is oriented towards the style. The base of the style forms a nectary similar to that found in the sister genus Ligaria. Conclusions: The gynoecium with a single ovarian cavity and central mamelon is a condition shared by Tristerix (subtribe Ligarinae) and all the genera of the subtribe Psittacanthinae, except Tripodanthus. The base of the style forms a nectary similar to that found in the sister genus Ligaria. This type of stylar nectary is of taxonomic value for grouping species of the subtribe Ligarinae and difers from the annular nectary of subtribe Psittacanthinae.


Introducción: La mayoría de los miembros de la familia de Loranthaceae del nuevo mundo comprenden un clado que corresponde a la tribu Psittacantheae. Estudios previos de la anatomía floral y desarrollo en esta tribu se han concentrado en la alta diversidad de la subtribu Psittacanthinae, en tanto que la subtribu Ligarinae ha presentado menor atención. Una descripción detallada de la anatomía de Tristerix longebracteatus contribuye a llenar vacíos de información. Objetivo: la presente investigación analiza la anatomía floral de Tristerix longebracteatus detallando la estructura del androceo, gineceo, incluyendo los procesos de megaesporogenesis y microesporogenesis. Metodología: Se prepararon secciones anatómicas seriadas de flores en diferentes etapas de desarrollo, con técnicas de fijación, incorporación en parafina, corte en micrótomo y doble tinción con azul de astra y fucsina. Resultados: Las flores de gran tamaño de Tristerix longebracteatus presentan un complejo patrón de vascularización con 18-20 haces vasculares en la base del ovario inferior. Un grupo de tres haces vasculares irrigan los 4-5 pétalos y estambres asociados, y 10 haces vasculares continúan a través del gineceo. El androecio está compuesto por cuatro o cinco anteras con microsporogénesis simultánea. El gineceo presenta una sola cavidad ovárica con un mamelón central en el que el tejido arquesporial está orientado hacia el estilo. La base del estilo forma un nectario similar al que se encuentra en el género hermano Ligaria. Conclusiones: El gineceo con una sola cavidad ovárica y un mamelón central es una condición compartida por Tristerix (subtribu Ligarinae) y todos los géneros de la subtribu Psittacanthinae, excepto Tripodanthus. La base del estilo forma un nectario similar al que se encuentra en el género hermano Ligaria. Este tipo de nectario estilar tiene valor taxonómico agrupando las especies de la subtribu Ligarinae en contraste con el anillo nectarífero presente en la subtribu Psittacanthinae.


Subject(s)
Loranthaceae/anatomy & histology , Colombia , Gametogenesis, Plant
13.
J Plant Res ; 131(3): 429-441, 2018 May.
Article in English | MEDLINE | ID: mdl-29564658

ABSTRACT

We present a comparative flower ontogenetic study in five species of the genus Eucryphia with the aim of testing whether differences in the organ number observed can be explained by changes in the meristematic size of floral meristem and floral organs. Species native to Oceania, viz. E. milliganii, E. lucida and E. moorei, have the smallest gynoecia with ca. 6 carpels, while the Chilean E. glutinosa and E. cordifolia present more than ten carpels. E. milliganii has the smallest flower with the lowest stamen number (ca. 50), while the other species produce around 200 stamens and more. Standardized measurements of meristematic sectors were taken in 49 developing flowers that were classified into three well-defined ontogenetic stages. Sizes of meristems varied significantly among species within each developmental stage as revealed by ANOVA analyses. Significant regressions between organ number and corresponding meristem size were consistent with the premise that a larger meristem size prior to organ initiation could be determining for a higher organ number. Flower organogenesis in Eucryphia also involves relevant meristem expansion while the organs are initiated, which results in a particular androecium patterning with a chaotic stamen arrangement. Meristem expansion also appears to be slower but more extensive in species with larger initial meristematic size, suggesting that flower phenotype can be determined in ontogeny by this heterochronic interplay of space and time.


Subject(s)
Flowers/growth & development , Magnoliopsida/growth & development , Meristem/growth & development , Organogenesis, Plant , Flowers/genetics , Flowers/physiology , Flowers/ultrastructure , Magnoliopsida/genetics , Magnoliopsida/physiology , Magnoliopsida/ultrastructure , Meristem/genetics , Meristem/physiology , Meristem/ultrastructure , Phenotype
14.
Ann Bot ; 121(1): 161-174, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29267929

ABSTRACT

Background and Aims: Comparative floral ontogeny represents a valuable tool to understand angiosperm evolution. Such an approach may elucidate subtle changes in development that discretely modify floral architecture and underlie reproductive lability in groups with superficial homogeneous morphology. This study presents a comparative survey of floral development in Eugenia (Myrtaceae), one of the largest genera of angiosperms, and shows how previously undocumented ontogenetic trends help to explain the evolution of its megadiversity in contrast to its apparent flower uniformity. Methods: Using scanning electron microscopy, selected steps of the floral ontogeny of a model species (Eugenia punicifolia) are described and compared with 20 further species representing all ten major clades in the Eugenia phylogenetic tree. Additional floral trait data are contrasted for correlation analysis and character reconstructions performed against the Myrtaceae phylogenetic tree. Key results: Eugenia flowers show similar organ arrangement patterns: radially symmetrical, (most commonly) tetramerous flowers with variable numbers of stamens and ovules. Despite a similar general organization, heterochrony is evident from size differences between tissues and structures at similar developmental stages. These differences underlie variable levels of investment in protection, subtle modifications to symmetry, herkogamic effects and independent androecium and gynoecium variation, producing a wide spectrum of floral display and contributing to fluctuations in fitness. During Eugenia's bud development, the hypanthium (as defined here) is completely covered by stamen primordia, unusual in other Myrtaceae. This is the likely plesiomorphic state for Myrteae and may have represented a key evolutionary novelty in the tribe. Conclusions: Floral evolution in Eugenia depends on heterochronic patterns rather than changes in complexity to promote flexibility in floral strategies. The successful early establishment of Myrteae, previously mainly linked to the key innovation of fleshy fruit, may also have benefitted from changes in flower structure.


Subject(s)
Eugenia/physiology , Flowers/physiology , Biological Evolution , Eugenia/anatomy & histology , Eugenia/growth & development , Flowers/anatomy & histology , Flowers/growth & development , Phylogeny , Reproduction
15.
Mol Phylogenet Evol ; 76: 227-40, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24632147

ABSTRACT

The palm subtribe Ptychospermatinae (Arecaceae: Arecoideae) is naturally distributed in the South West Pacific area and contains 12 genera and around 60 species, including numerous popular ornamentals. Like many palms, Ptychospermatinae flowers are small, trimerous, unisexual and always grouped into inflorescences of various sizes. However they exhibit a wide diversity in stamen number (a few to several dozen or even hundreds) that is poorly understood from an evolutionary point of view. Although advances have been made in elucidating phylogenetic relationships within Ptychospermatinae, some relationships among and within genera still remain to be clarified. Here we used a combination of five nuclear markers (nrITS2, the conserved nuclear intron BRSC10 and three low copy genes, PRK, RPB2 and AGAMOUS) and three chloroplast markers (matK, ndhA and rps15-ycf1) to propose a new phylogenetic hypothesis for the subtribe. The combination of all these markers improved the resolution and robustness of phylogenetic relationships within the subtribe, allowing us to identify four major clades. This phylogenetic framework was used to examine the evolution of stamen number in the clade. The optimization of stamen number on the phylogeny highlighted the high level of interspecific variability, showing that the character is highly labile and raising questions about the evolutionary and functional significance of this lability.


Subject(s)
Arecaceae/classification , Arecaceae/genetics , Flowers/anatomy & histology , Flowers/genetics , Phylogeny , Arecaceae/anatomy & histology , Cell Nucleus/genetics , Plastids/genetics , Sequence Alignment , Sequence Analysis, DNA
16.
Am J Bot ; 101(2): 225-43, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24509798

ABSTRACT

PREMISE OF THE STUDY: The holoparasitic plant family Rafflesiaceae include the world's largest flowers. Despite their iconic status, relatively little is known about the morphology and development of their flowers. A recent study clarified the organization of the outer (sterile) floral organs, surprisingly revealing that their distinctive floral chambers arose via different developmental pathways in the two major genera of the family. Here, we expand that research to investigate the structure and development of the reproductive organs of Rafflesiaceae. METHODS: Serial sectioning, scanning electron microscopy, and x-ray tomography of floral buds were employed to reconstruct the structure and development of all three Rafflesiaceae genera. KEY RESULTS: Unlike most angiosperms, which form their shoot apex from the primary morphological surface, the shoot apex of Rafflesiaceae instead forms secondarily via internal cell separation (schizogeny) along the distal boundary of the host-parasite interface. Similarly, the radially directed ovarial clefts of the gynoecium forms via schizogeny within solid tissue, and no carpels are initiated from the floral apex. CONCLUSIONS: The development of the shoot apex and gynoecium of Rafflesiaceae are highly unusual. Although secondary formation of the morphological surface from the shoot apex has been documented in other plant groups, secondary derivation of the inner gynoecium surface is otherwise unknown. Both features are likely synapomorphies of Rafflesiaceae. The secondary derivation of the shoot apex may protect the developing floral shoot as it emerges from within dense host tissue. The secondary formation of the ovarial clefts may generate the extensive placental area necessary to produce hundreds of thousands of ovules.


Subject(s)
Flowers/growth & development , Magnoliopsida/growth & development , Meristem/growth & development , Flowers/anatomy & histology , Magnoliopsida/anatomy & histology , Ovule/growth & development
17.
J Plant Res ; 110(1): 45-54, 1997 Mar.
Article in English | MEDLINE | ID: mdl-27520043

ABSTRACT

The floral anatomy ofCamellia japonica is described and the origin of its multistaminate androecium is considered. Of significance is the observation that the complex polyandry of the genus overlies a basic vascular obdiplostemonous pattern. This is evidenced by two systems of staminal bundles. The first diverges from a set of five common petal-stamen bundles and subsequently divides further. The second set of five staminal trunk bundles emerges from the central cylinder slightly above the petal-stamen bundles which are antepetalous. The observations will aid phylogenetic reconstruction for members of the polyphyletic order Dilleniidae to whichCamellia belongs, and in which the polyandry has been too simply and sometimes incorrectly interpreted as a primitive condition.

SELECTION OF CITATIONS
SEARCH DETAIL