Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.971
Filter
1.
Planta ; 260(3): 67, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088064

ABSTRACT

MAIN CONCLUSION: Overexpression of VvmybA1 transcription factor in 'Hamlin' citrus enhances cold tolerance by increasing anthocyanin accumulation. This results in improved ROS scavenging, altered gene expression, and stomatal regulation, highlighting anthocyanins' essential role in citrus cold acclimation. Cold stress is a significant threat to citrus cultivation, impacting tree health and productivity. Anthocyanins are known for their role as pigments and have emerged as key mediators of plant defense mechanisms against environmental stressors. This study investigated the potential of anthocyanin overexpression regulated by grape (Vitis vinifera) VvmybA1 transcription factor to enhance cold stress tolerance in citrus trees. Transgenic 'Hamlin' citrus trees overexpressing VvmybA1 were exposed to a 30-day cold stress period at 4 °C along with the control wild-type trees. Our findings reveal that anthocyanin accumulation significantly influences chlorophyll content and their fluorescence parameters, affecting leaf responses to cold stress. Additionally, we recorded enhanced ROS scavenging capacity and distinct expression patterns of key transcription factors and antioxidant-related genes in the transgenic leaves. Furthermore, VvmybA1 overexpression affected stomatal aperture regulation by moderating ABA biosynthesis, resulting in differential responses in a stomatal opening between transgenic and wild-type trees under cold stress. Transgenic trees exhibited reduced hydrogen peroxide levels, enhanced flavonoids, radical scavenging activity, and altered phytohormonal profiles. These findings highlighted the role of VvmybA1-mediated anthocyanin accumulation in enhancing cold tolerance. The current study also underlines the potential of anthocyanin overexpression as a critical regulator of the cold acclimation process by scavenging ROS in plant tissues.


Subject(s)
Anthocyanins , Citrus sinensis , Cold-Shock Response , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Anthocyanins/metabolism , Citrus sinensis/genetics , Citrus sinensis/metabolism , Citrus sinensis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Cold-Shock Response/genetics , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Vitis/genetics , Vitis/physiology , Vitis/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Chlorophyll/metabolism , Cold Temperature , Plant Stomata/physiology , Plant Stomata/genetics , Abscisic Acid/metabolism , Plant Growth Regulators/metabolism
2.
Int J Biol Macromol ; 275(Pt 1): 133576, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950802

ABSTRACT

To optimize the stability of oil-based inks and ensure their wide application in freshness indication, new natural indicator inks were prepared using a stable oil-in-water structure. This study selected natural Lycium ruthenicum anthocyanin as the dye and glucose as the pigment carrier. Soybean oil was introduced as a linker and xanthan gum as a thickener, and an oil-in-water ink with the function of freshness indication was successfully developed. In ensuring the safety of ink labels for use on food packaging, particular attention is paid to the origin and properties of the materials used. All ingredients are of food-grade or bio-friendly provenance, thereby ensuring the safety of the product when in direct contact with food. We measured the viscosity, particle size and fineness of the ink for micro characterization and evaluated its macro printing performance by its printing effect on A4 paper. According to the experimental results, when the water-oil ratio of the ink is 10:5, the average particle size of the emulsion system is 822.83 nm, and the fineness reaches 5 µm. These values are relatively low, which indicates that the stability of the ink system is high at this time, and the ink shows excellent rheological and printing characteristics. With this water-to-oil ratio, the ink can show the best results when printed on A4 paper, clearly displaying image details. In addition, in fresh pork applications, inks with a 10: 5 water-to-oil ratio provide an accurate and highly sensitive indication of the freshness of pork. When the freshness of the pork changes, the ink color responds promptly. This high sensitivity makes the ink ideal for use as a food freshness indication tool, providing consumers with an intuitive and reliable reference for pork freshness. As a further innovation, combining this ink-printed label with a WeChat app not only allows consumers to know the freshness of the food in real-time but also tracks the supply chain information of the food, providing a more comprehensive application prospect for freshness-indicating products.

3.
Int J Biol Macromol ; : 133628, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964689

ABSTRACT

Understanding the interplay among salt ions, anthocyanin and starch within food matrices under thermal conditions is important for the development of starch-based foods with demanded quality attributes. However, how salt ions presence influences the microstructure and properties of starch/anthocyanin binary system remains largely unclear. Herein, indica rice starch (IRS) and rice anthocyanin (RA) were used to construct an IRS-RA binary system, with thermal treatment under different concentrations of Na+ (10-40 mM) and types of salt ions (Na+ and Ca2+). The incorporation of salt ions induced the formation of a porous gel matrix, and destroyed the hydrogen bond between starch and anthocyanin through electrostatic interactions, reducing the storage modulus and radius of gyration of the binary system, and increasing the relative crystallinity (from 1.08 % to 1.51 % (20 mM Na+) and 1.69 % (20 mM Ca+)) of the IRS-RA binary system at 90 °C. Also, the DPPH radical scavenging ability of the binary system at 90 °C was enhanced upon incorporating salt ions (0.93 for Na+ condition and 0.94 for Ca2+ condition at 20 mM ion concentration). It is noteworthy that Ca2+ inclusion had more significant effects than the case for Na+ presence, presumably due to the increased charge density.

4.
Heliyon ; 10(12): e32778, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975202

ABSTRACT

Maca (Lepidium meyenii), mainly grown in Peru, is a traditional herbal medicine that is mostly used to improve sperm motility and serum hormone levels. Maca phenotypes are represented by purple, black, yellow, white, and mixed colors. Recently, a method for Maca cultivation has been established in Japan. Therefore, we determined the effects of different phenotypes and portions on the antioxidant activities and total polyphenols, anthocyanins, and benzyl-glucosinolate contents in Japanese Maca. Purple Maca skin possessed the highest contents of both total polyphenols, antioxidant activity and anthocyanin content in all Macas. Regarding the benzyl-glucosinolate content, white maca had the highest content and was not correlated with antioxidant activity. In the present study, we revealed that purple Maca skin is recommended for high polyphenol content, antioxidant activity, and anthocyanin content. The results of this study will be useful for selecting phenotypes for the improvement of antioxidant activity or hormone balance.

5.
Biochem Biophys Res Commun ; 729: 150344, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38976946

ABSTRACT

Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic ß-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.

6.
Chem Biodivers ; : e202400883, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985537

ABSTRACT

This work aimed to assess the antioxidant and antimicrobial properties of Oxalis corymbosa extracts. Biochemical analyses were conducted on various plant parts, utilizing enzymatic and non-enzymatic assays. Parameters such as total soluble protein, chlorophyll, and carotenoid contents were also evaluated to elucidate the role of bioactive chemical compounds. The antimicrobial screening of extracts was performed against the bacterial and fungal strains Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively. Results indicated that chlorophyll a, chlorophyll b, total chlorophyll, carotenoid content, anthocyanin content, catalase, peroxidase, and superoxide dismutase were most abundant in the O. corymbosa leaves. Moreover, total ascorbate peroxidase content, total phenolic content, and total flavonoid content were found to be higher in the roots compared to other parts. High-performance liquid chromatography analysis identified chlorogenic acid as the major component, followed by gallic acid, caffeic acid, quercetin, and salicylic acid. Regarding antibacterial potential, each extract exhibited significant activity, with methanolic and ethyl acetate extracts demonstrating the maximum inhibition zone against S. aureus and E. coli, respectively. These findings highlight the substantial antioxidant and antibacterial potential of different parts of O. corymbosa, suggesting their promising applications as ingredients in various nutraceutical products.

7.
BMC Plant Biol ; 24(1): 637, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971739

ABSTRACT

BACKGROUND: Based on our previous research, a full-length cDNA sequence of HvANS gene was isolated from purple and white Qingke. The open reading frame (ORF) in the purple variety Nierumuzha was 1320 base pairs (bp), encoding 439 amino acids, while the ORF in the white variety Kunlun 10 was 1197 bp, encoding 398 amino acids. A nonsynonymous mutation was found at the position of 1195 bp (T/C) in the coding sequence (CDS) of the HvANS gene. We carried out a series of studies to further clarify the relationship between the HvANS gene and anthocyanin synthesis in Qingke. RESULTS: The conservative structural domain prediction results showed that the encoded protein belonged to the PLN03178 superfamily. Multiple comparisons showed that this protein had the highest homology with Hordeum vulgare, at 88.61%. The approximately 2000 bp promoter sequence of the HvANS gene was identical in both varieties. The real-time fluorescence PCR (qRT-PCR) results revealed that HvANS expression was either absent or very low in the roots, stems, leaves, and awns of Nierumuzha. In contrast, the HvANS expression was high in the seed coats and seeds of Nierumuzha. Likewise, in Kunlun 10, HvANS expression was either absent or very low, indicating a tissue-specific and variety-specific pattern for HvANS expression. The subcellular localization results indicated that HvANS was in the cell membrane. Metabolomic results indicated that the HvANS gene is closely related to the synthesis of three anthocyanin substances (Idaein chloride, Kinetin 9-riboside, and Cyanidin O-syringic acid). Yeast single hybridization experiments showed that the HvANS promoter interacted with HvANT1, which is the key anthocyanin regulatory protein. In a yeast two-hybrid experiment, we obtained two significantly different proteins (ZWY2020 and POMGNT2-like) and verified the results by qRT-PCR. CONCLUSIONS: These results provide a basis for further studies on the regulatory mechanism of HvANS in the synthesis of anthocyanins in Qingke purple grains.


Subject(s)
Anthocyanins , Hordeum , Plant Proteins , Seeds , Anthocyanins/biosynthesis , Seeds/genetics , Seeds/metabolism , Hordeum/genetics , Hordeum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phylogeny , Promoter Regions, Genetic/genetics , Genes, Plant
8.
Food Sci Nutr ; 12(7): 4637-4655, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055229

ABSTRACT

Juices from potato varieties with colored flesh contain a large amount of biologically active compounds, but they tend to darken enzymatically, which deteriorates the quality. One of the factors that can improve the color of juices is pasteurization. The aim of the study was to investigate the effect of pasteurization temperature on the anthocyanin content and color of juices from potatoes with colored flesh. The research material included juices from potato varieties with red and purple flesh. Juices pasteurized at 75 °C were characterized by the lightest color and an increase in the a* (red color) and b* (yellow color) parameters compared to unpasteurized juices. Pasteurization of juices reduced the amount of glycoalkaloids by an average of 54% compared to unpasteurized juices (larger losses in the content of α-chaconine than α-solanine). Purple potato juices showed a higher content of total polyphenols by an average of 30% and anthocyanins by 70% than juices from red potatoes. Pelargonidin and its derivatives were identified in red potato juices, while petunidin and peonidin were the most abundant in purple potato juices. Higher losses of total polyphenols were found in juices from red varieties of potatoes, while anthocyanins were less thermostable in juices from varieties with purple flesh.

9.
Toxicon ; 248: 108048, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053814

ABSTRACT

OBJECTIVE: The goal of the present study was to examine the repeated dose 28-day oral toxicity of curcumin, anthocyanins, and sodium nitrite in Wistar rats. METHODS: For this purpose, forty-eight male Wistar rats were randomly divided into 8 groups (n = 6 each), encompassing untreated controls and experimental groups treated with curcumin, anthocyanins, and sodium nitrite. Three rats from each group were sacrificed by cervical dislocation under di-ethyl ether anesthesia after 2 and 4 weeks of therapy, respectively. Blood samples were collected for serum chemistry. All of the animals' livers, hearts, and kidneys were removed and sent for histopathological examination. RESULTS: After two weeks of inquiry, certain groups displayed higher hematological values, while others had lower values compared to the control group. AST, CK, and LDH enzyme activity were higher in groups 2-8, but urea concentrations were higher in groups 6 and 8. After four weeks, the Hb, MCH, and MCHC values in group 4 were greater, as were the WBC levels in groups 4 and 6, whereas other groups had lower MCV and WBC values. The weekly body weight gain was insignificantly different between treatment groups. Throughout the experiment, none of the animals perished. Male rats' liver, kidney, and heart underwent histopathological changes after ingesting curcumin, sodium nitrite, and anthocyanin. CONCLUSION: Based on the findings, rats were more detrimental when curcumin, sodium nitrite, and anthocyanin were ingested together than when they were consumed individually, as evidenced by histopathological abnormalities in the liver, kidneys, and heart.

10.
World J Microbiol Biotechnol ; 40(9): 258, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954148

ABSTRACT

The aim of the present study is to develop a pH-sensing biopolymer film based on the immobilization of red cabbage extract (RCE) within bacterial cellulose (BC) to detect contamination and gamma radiation exposure in cucumbers. The results obtained show a sensitivity to pH changes for RCE in its aqueous form and that incorporated within BC films (RCE-BC), both showed color change correlated to bacterial growth (R2 = 0.91), this was supported with increase in pH values from 2 to 12 (R2 = 0.98). RCE and RCE-BC exposure to gamma radiation (0, 2.5, 5, 10, 15, 20, 25 kGy) resulted in gradual decrease in color that was more evident in RCE aqueous samples. To sense bacterial contamination of cucumbers, the total count was followed at 0, 5, 10 and 15 days in cold storage conditions and was found to reach 9.13 and 5.47 log cfu/mL for non-irradiated and 2 kGy irradiated samples, respectively. The main isolates detected throughout this storage period were identified as Pseudomonas fluorescens, Erwinia sp. Pantoea agglomerans using matrix assisted laser desorption ionization-time of flight-ms (MALDI-TOF-MS). Bacterial growth in stored irradiated cucumbers was detected by color change within 5 and 10 days of storage, after which there was no evident change. This is very useful since contamination within the early days of storage cannot be sensed with the naked eye. This study is the first to highlight utilizing RCE and RCE-BC as eco-friendly pH-sensing indicator films for intelligent food packaging to detect both food contamination and gamma preservation for refrigerator stored cucumbers.


Subject(s)
Brassica , Cellulose , Cucumis sativus , Gamma Rays , Plant Extracts , Brassica/microbiology , Brassica/chemistry , Cellulose/chemistry , Cucumis sativus/microbiology , Cucumis sativus/chemistry , Cucumis sativus/radiation effects , Hydrogen-Ion Concentration , Plant Extracts/chemistry , Food Microbiology , Bacteria/radiation effects , Bacteria/growth & development , Bacteria/isolation & purification , Food Packaging/methods , Food Contamination/analysis , Food Storage , Food Irradiation/methods , Colony Count, Microbial
11.
Plants (Basel) ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38999704

ABSTRACT

Chrysanthemums are among the world's most popular cut flowers, with their color being a key ornamental feature. The formation of these colors can be influenced by high temperatures. However, the regulatory mechanisms that control the fading of chrysanthemum flower color under high-temperature stress remain unclear. This study investigates the impact of high temperatures on the color and biochemical responses of purple chrysanthemums. Four purple chrysanthemum varieties were exposed to both normal and elevated temperature conditions. High-temperature stress elicited distinct responses among the purple chrysanthemum varieties. 'Zi Feng Che' and 'Chrystal Regal' maintained color stability, whereas 'Zi Hong Tuo Gui' and 'Zi lian' exhibited significant color fading, particularly during early bloom stages. This fading was associated with decreased enzymatic activities, specifically of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), indicating a critical period of color development under heat stress. Additionally, the color fading of 'Zi Lian' was closely related to the increased activity of the peroxidase (POD) and polyphenol oxidase (PPO). Conversely, a reduction in ß-glucosidase (ßG) activity may contribute significantly to the color steadfastness of 'Zi Feng Che'. The genes Cse_sc027584.1_g010.1 (PPO) and Cse_sc031727.1_g010.1 (POD) might contribute to the degradation of anthocyanins in the petals of 'Zi Hong Tuo Gui' and 'Zi Lian' under high-temperature conditions, while simultaneously maintaining the stability of anthocyanins in 'Zi Feng Che' and 'Chrystal Regal' at the early bloom floral stage. The findings of this research provide new insights into the physiological and biochemical mechanisms by which chrysanthemum flower color responds to high-temperature stress.

12.
Food Chem ; 458: 140111, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38968716

ABSTRACT

Anthocyanins, natural pigments known for their vibrant hues and beneficial properties, undergo intricate genetic control. However, red vegetables grown in plant factories frequently exhibit reduced anthocyanin synthesis compared to those in open fields due to factors like inadequate light, temperature, humidity, and nutrient availability. Comprehending these factors is essential for optimizing plant factory environments to enhance anthocyanin synthesis. This review insights the impact of physiological and genetic factors on the production of anthocyanins in red lettuce grown under controlled conditions. Further, we aim to gain a better understanding of the mechanisms involved in both synthesis and degradation of anthocyanins. Moreover, this review summarizes the identified regulators of anthocyanin synthesis in lettuce, addressing the gap in knowledge on controlling anthocyanin production in plant factories, with potential implications for various crops beyond red lettuce.

13.
Foods ; 13(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998602

ABSTRACT

The color potato has the function of both a food and vegetable. The color potato not only contains various amino acids and trace elements needed by the human body but also contains anthocyanins. Anthocyanins have many functions, such as antioxidation, inflammation inhibition, vision improvement, and cancer prevention, so colored potatoes are deeply loved by consumers and have good market prospects. However, at present, the detection of anthocyanin content in color potatoes mainly depends on chemical methods, which are time-consuming and laborious, so it is necessary to study a fast and accurate detection method. In this study, microscopic hyperspectral equipment was used to collect the spectral information of the outer skin and inner skin of potatoes. The original spectrum, pretreatment spectrum, and characteristic spectrum variables of the outer skin and inner skin were predicted by the convolution neural network (CNN) algorithm and partial least squares regression (PLS) algorithm, respectively, and the performance of the model was evaluated by the prediction set correlation coefficient (Rp), prediction set root mean square error (RMSEP), correction set correlation coefficient (Rc), correction set root mean square error (RMSEC), and residual prediction deviation (RPD). The results revealed that the inner skin Raw + CNN model constructed under raw spectral data is optimal with Rc = 0.9508, RMSEC = 0.0374%, Rp = 0.9461, RMSEP = 0.2361% and RPD = 4.4933. The inner skin Savitzky-Golay (SG) + Detrend (DET) + CNN model constructed from pre-processed spectral data is optimal with Rc = 0.9499, RMSEC = 0.0359%, Rp = 0.9439, RMSEP = 0.2384%, RPD = 4.6516. The inner skin DET + competitive adaptive reweighted sampling (CARS) +CNN model constructed from the feature-based spectral data was optimal with Rc = 0.9527, RMSEC = 0.0708%, Rp = 0.9457, RMSEP = 0.2711%, and RPD = 4.1623. It can be seen that the Rp, RMSEP, Rc, RMSEC, and RPD values for modeling the spectral information of the inner skin were higher than those of the outer skin under the three different spectral data. The prediction accuracy of the model built by the CNN algorithm was better than the conventional algorithm PLS, the application of the CNN algorithm in inner skin can achieve accurate prediction of anthocyanin content in potato.

14.
Nanomaterials (Basel) ; 14(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998752

ABSTRACT

In this work, AgNPs were synthesized using an anthocyanin extract from Peruvian purple potato INIA 328-Kulli papa. The anthocyanin extract was obtained through a conventional extraction with acidified ethanolic aqueous solvent. This extract acted as both a reducing and stabilizing agent for the reduction of silver ions. Optimization of synthesis parameters, including pH, reaction time, and silver nitrate (AgNO3) concentration, led to the optimal formation of AgNPs at pH 10, with a reaction time of 30 min and an AgNO3 concentration of 5 mM. Characterization techniques such as X-ray diffraction (XRD) and dynamic light scattering (DLS) revealed that the AgNPs had a crystallite size of 9.42 nm and a hydrodynamic diameter of 21.6 nm, with a zeta potential of -42.03 mV, indicating favorable colloidal stability. Fourier Transform Infrared (FTIR) analysis confirmed the presence of anthocyanin functional groups on the surface of the AgNPs, contributing to their stability. Furthermore, the bacterial activity of the AgNPs was evaluated by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). For E. coli, the MIC was 0.5 mM (0.05 mg/mL) and the MBC was 4.5 mM (0.49 mg/mL). Similarly, for S. aureus, the MIC was 0.5 mM (0.05 mg/mL) and the MBC was 4.0 mM (0.43 mg/mL). These results highlight the potential benefits of AgNPs synthesized from Peruvian purple potato anthocyanin extract, both in biomedical and environmental contexts.

15.
PeerJ ; 12: e17736, 2024.
Article in English | MEDLINE | ID: mdl-39006012

ABSTRACT

Background: Currently, there are no reports on the HvbHLH gene family in the recent barley genome (Morex_V3). Furthermore, the structural genes related to anthocyanin synthesis that interact with HvANT2 have yet to be fully identified. Methods: In this study, a bioinformatics approach was used to systematically analyze the HvbHLH gene family. The expression of this gene family was analyzed through RNA sequencing (RNA-seq), and the gene with the most significant expression level, HvANT2, was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in different tissues of two differently colored varieties. Finally, structural genes related to anthocyanin synthesis and their interactions with HvANT2 were verified using a yeast one-hybrid (Y1H) assay. Results: The study identified 161 bHLH genes, designated as HvbHLH1 to HvbHLH161, from the most recent barley genome available. Evolutionary tree analysis categorized barley bHLH TFs into 21 subfamilies, demonstrating a pronounced similarity to rice and maize. Through RNA-Seq analysis of purple and white grain Qingke, we discovered a significant transcription factor (TF), HvANT2 (HvbHLH78), associated with anthocyanin biosynthesis. Subsequently, HvANT2 protein-motifs interaction assays revealed 41 interacting motifs, three of which were validated through Y1H experiments. These validated motifs were found in the promoter regions of key structural genes (CHI, F3'H, and GT) integral to the anthocyanin synthesis pathway. These findings provide substantial evidence for the pivotal role of HvANT2 TF in anthocyanin biosynthesis.


Subject(s)
Anthocyanins , Gene Expression Regulation, Plant , Hordeum , Plant Proteins , Anthocyanins/biosynthesis , Anthocyanins/genetics , Anthocyanins/metabolism , Hordeum/genetics , Hordeum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Computational Biology
16.
Plant Cell Environ ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049759

ABSTRACT

Fruit colour is a critical determinant for the appearance quality and commercial value of apple fruits. Viroid-induced dapple symptom severely affects the fruit coloration, however, the underlying mechanism remains unknown. In this study, we identified an apple dimple fruit viroid (ADFVd)-derived small interfering RNA, named vsiR693, which targeted the mRNA coding for a bHLH transcription factor MdPIF1 (PHYTOCHROME-INTERACTING FACTOR 1) to regulate anthocyanin biosynthesis in apple. 5' RLM-RACE and artificial microRNA transient expression system proved that vsiR693 directly targeted the mRNA of MdPIF1 for cleavage. MdPIF1 positively regulated anthocyanin biosynthesis in both apple calli and fruits, and it directly bound to G-box element in the promoter of MdPAL and MdF3H, two anthocyanin biosynthetic genes, to promote their transcription. Expression of vsiR693 negatively regulated anthocyanin biosynthesis in both apple calli and fruits. Furthermore, co-expression of vsiR693 and MdPIF1 suppressed MdPIF1-promoted anthocyanin biosynthesis in apple fruits. Infiltration of ADFVd infectious clone suppressed coloration surrounding the injection sites in apple fruits, while a mutated version of ADFVd, in which the vsiR693 producing region was mutated, failed to repress fruit coloration around the injection sites. These data provide evidence that a viroid-derived small interfering RNA targets host transcription factor to regulate anthocyanin biosynthesis in apple.

17.
J Food Sci Technol ; 61(9): 1811-1822, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39049922

ABSTRACT

An edible colorimetric label has been developed to determine the freshness level of mushrooms, i.e. white oyster mushrooms (Pleurotus ostreatus). The edible indicator label has been fabricated based on purple sweet potato (Ipomoea batatas L.) anthocyanins (PSPA) immobilized onto an edible film made of chitosan and cornstarch with added PVA. The freshness parameters of the mushrooms were pH, weight loss, texture, and sensory evaluation. The results showed that the colorimetric label was dark purple when the mushroom was fresh, and turn to light purple when the mushroom was still fresh, and finally green when the mushroom was no longer fresh. The color value (mean Red) of the label was measured using the ImageJ program, where its color value (mean Red) increased with decreasing freshness level of the mushrooms. The edible label can distinguish fresh mushrooms from spoilage, making it suitable to be used in a packaged mushroom as a freshness indicator.

18.
Front Nutr ; 11: 1403427, 2024.
Article in English | MEDLINE | ID: mdl-39050136

ABSTRACT

Introduction: Some evidence suggests that fruit and alcohol consumption may be related to cognitive impairment. Methods: This study conducted a cross-sectional study on the "correlation between eating habits and cognitive function of the middle-aged and elderly population in China." The purpose of this study is to explore the relationship between fruit consumption, drinking habits and cognitive impairment in Chinese people over 50 years old. Results: The results show that the protective factors of cognitive impairment are the preference for berries and the daily intake of 100-200 grams grapes in Chinese middle-aged and elderly people with objective cognitive unimpaired. The habit of drinking red wine is a protective factor for cognitive impairment in Chinese middle-aged and elderly people with mild cognitive impairment (MCI). However, this study did not find the relationship between white wine, beer, yellow rice wine, liquor and cognitive impairment. Discussion: Therefore, we believe that berries, grapes and red wine consumption can protect the cognitive function of the middle-aged and elderly people in China, and the protective function is related to the basic cognitive state.

19.
Turk J Med Sci ; 54(2): 401-410, 2024.
Article in English | MEDLINE | ID: mdl-39050394

ABSTRACT

Background/aim: Obesity is a chronic metabolic disease involving dysregulation of fat metabolism that affects 13% of the world's population. Obesity has been linked to dyslipidemia with a lot of complication, including stroke, chronic kidney disease, fatty liver disease, and so on. One of the natural resources that have several potential effects including anticholesterol, antiobesity, and antidyslipidemia is the butterfly pea (Clitoria ternatea/CT). CT's petal has been found to contain high levels of anthocyanins and tannins that can inhibit the biosynthesis of cholesterol and lipid. This study aims to investigate the antiobesity and antidyslipidemic effects of Clitoria ternatea extract (CTE). Materials and methods: The CTE was obtained through the aqueous extract method and then was investigated using spectrophotometry to determine anthocyanin and tannin content. The effect of CTE against a high-fat diet (HFD)-induced rat model was measured by weight and obesity index, lipid profile (total cholesterol (TC), triglycerides (TG), and HDL-C), and histopathology analysis. Results: CTE showed total anthocyanin and tannin content of 78.0943 mg/100 g and 1424.90 mg/100 g, respectively. The data analysis also showed significantly different within groups (p < 0,05), especially between HFD and HFD + CT750 groups on the cholesterol (MD 111.12 mg/dL; 95% CI (99.57 to 122.67); p < 0.001), LDL (MD; 76.38 mg/dL; 95% CI (56.77 to 96.00); p < 0.001), VLDL (MD 0.37 mg/dL; 95% CI (0.18 to 0.57); p < 0.001), body weight (MD: 56.20 g; 95% CI (13.89 to 98.51); p = 0.012); and thickening of tunica layer in the thoracic aorta (MD 22.76 µm; 95% CI (20.11 to 24.4); p < 0.001). Conclusion: This study shows that Clitoria ternatea petals aqueous extract promotes amelioration of the lipid profile, body weight, and tunica thickness in rats with the high-fat diet.


Subject(s)
Anti-Obesity Agents , Clitoria , Diet, High-Fat , Hypolipidemic Agents , Obesity , Plant Extracts , Animals , Clitoria/chemistry , Diet, High-Fat/adverse effects , Plant Extracts/pharmacology , Rats , Male , Hypolipidemic Agents/pharmacology , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Flowers/chemistry , Rats, Sprague-Dawley
20.
Plant Cell Environ ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051467

ABSTRACT

Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold-tolerant strawberry resources 'Fragaria mandschurica' and 'Fragaria nipponica'. In conclusion, our study reveals the molecular mechanism of FveDREB1B-FveSCL23-FveDELLA module and FveDREB1B-FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources.

SELECTION OF CITATIONS
SEARCH DETAIL