Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Proteins ; 92(8): 946-958, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38597224

ABSTRACT

Clostridium thermocellum is a potential microbial platform to convert abundant plant biomass to biofuels and other renewable chemicals. It efficiently degrades lignocellulosic biomass using a surface displayed cellulosome, a megadalton sized multienzyme containing complex. The enzymatic composition and architecture of the cellulosome is controlled by several transmembrane biomass-sensing RsgI-type anti-σ factors. Recent studies suggest that these factors transduce signals from the cell surface via a conserved RsgI extracellular (CRE) domain (also called a periplasmic domain) that undergoes autoproteolysis through an incompletely understood mechanism. Here we report the structure of the autoproteolyzed CRE domain from the C. thermocellum RsgI9 anti-σ factor, revealing that the cleaved fragments forming this domain associate to form a stable α/ß/α sandwich fold. Based on AlphaFold2 modeling, molecular dynamics simulations, and tandem mass spectrometry, we propose that a conserved Asn-Pro bond in RsgI9 autoproteolyzes via a succinimide intermediate whose formation is promoted by a conserved hydrogen bond network holding the scissile peptide bond in a strained conformation. As other RsgI anti-σ factors share sequence homology to RsgI9, they likely autoproteolyze through a similar mechanism.


Subject(s)
Bacterial Proteins , Clostridium thermocellum , Molecular Dynamics Simulation , Proteolysis , Clostridium thermocellum/metabolism , Clostridium thermocellum/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Sigma Factor/chemistry , Sigma Factor/metabolism , Sigma Factor/genetics , Amino Acid Sequence , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Cellulosomes/metabolism , Cellulosomes/chemistry , Crystallography, X-Ray , Tandem Mass Spectrometry , Protein Binding , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
2.
mBio ; : e0258523, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943032

ABSTRACT

Bacterial growth rate varies due to changing physiological signals and is fundamentally dependent on protein synthesis. Consequently, cells alter their transcription and translation machinery to optimize the capacity for protein production under varying conditions and growth rates. Our findings demonstrate that the post-transcriptional regulator CsrA in Escherichia coli controls the expression of genes that participate in these processes. During exponential growth, CsrA represses the expression of proteins that alter or inhibit RNA polymerase (RNAP) and ribosome activity, including the ribosome hibernation factors RMF, RaiA, YqjD, ElaB, YgaM, and SRA, as well as the anti-σ70 factor, Rsd. Upon entry into the stationary phase, RaiA, YqjD, ElaB, and SRA expression was derepressed and that of RMF, YgaM, and Rsd was activated in the presence of CsrA. This pattern of gene expression likely supports global protein expression during active growth and helps limit protein production to a basal level when nutrients are limited. In addition, we identified genes encoding the paralogous C-tail anchored inner membrane proteins YqjD and ElaB as robust, direct targets of CsrA-mediated translational repression. These proteins bind ribosomes and mediate their localization to the inner cell membrane, impacting a variety of processes including protein expression and membrane integrity. Previous studies found that YqjD overexpression inhibits cell growth, suggesting that appropriate regulation of YqjD expression might play a key role in cell viability. CsrA-mediated regulation of yqjD and ribosome hibernation factors reveals a new role for CsrA in appropriating cellular resources for optimum growth under varying conditions.IMPORTANCEThe Csr/Rsm system (carbon storage regulator or repressor of stationary phase metabolites) is a global post-transcriptional regulatory system that coordinates and responds to environmental cues and signals, facilitating the transition between active growth and stationary phase. Another key determinant of bacterial lifestyle decisions is the management of the cellular gene expression machinery. Here, we investigate the connection between these two processes in Escherichia coli. Disrupted regulation of the transcription and translation machinery impacts many cellular functions, including gene expression, growth, fitness, and stress resistance. Elucidating the role of the Csr system in controlling the activity of RNAP and ribosomes advances our understanding of mechanisms controlling bacterial growth. A more complete understanding of these processes could lead to the improvement of therapeutic strategies for recalcitrant infections.

3.
Emerg Microbes Infect ; 12(2): 2272638, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37850324

ABSTRACT

Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. Similar to other Gram-negative pathogens, B. pertussis produces the type III secretion system, but its role in the pathogenesis of B. pertussis is enigmatic and yet to be elucidated. Here, we combined RNA-seq, LC-MS/MS, and co-immunoprecipitation techniques to identify and characterize the novel CesT family T3SS chaperone BP2265. We show that this chaperone specifically interacts with the secreted T3SS regulator BtrA and represents the first non-flagellar chaperone required for the secretion of an anti-sigma factor. In its absence, secretion but not production of BtrA and most T3SS substrates is severely impaired. It appears that the role of BtrA in regulating T3SS extends beyond its activity as an antagonist of the sigma factor BtrS. Predictions made by artificial intelligence system AlphaFold support the chaperone function of BP2265 towards BtrA and outline the structural basis for the interaction of BtrA with its target BtrS. We propose to rename BP2265 to BtcB for the Bordetella type III chaperone of BtrA.In addition, the absence of the BtcB chaperone results in increased expression of numerous flagellar genes and several virulence genes. While increased production of flagellar proteins and intimin BipA translated into increased biofilm formation by the mutant, enhanced production of virulence factors resulted in increased cytotoxicity towards human macrophages. We hypothesize that these phenotypic traits result indirectly from impaired secretion of BtrA and altered activity of the BtrA/BtrS regulatory node.


Subject(s)
Bordetella pertussis , Whooping Cough , Humans , Bordetella pertussis/metabolism , Sigma Factor/genetics , Chromatography, Liquid , Artificial Intelligence , Tandem Mass Spectrometry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
4.
Commun Integr Biol ; 16(1): 2203626, 2023.
Article in English | MEDLINE | ID: mdl-37091830

ABSTRACT

Anti-sigma factor antagonists SpoIIAA and RsbV from Bacillus subtilis are the archetypes for single-domain STAS proteins in bacteria. The structures and mechanisms of these proteins along with their cognate anti-sigma factors have been well studied. SpoIIAA and RsbV utilize a partner-switching mechanism to regulate gene expression through protein-protein interactions to control the activity of their downstream anti-sigma factor partners. The Vibrio fischeri STAS domain protein SypA is also proposed to employ a partner-switching mechanism with its partner SypE, a serine kinase/phosphatase that controls SypA's phosphorylation state. However, this regulation appears opposite to the canonical pathway, with SypA being the more downstream component rather than SypE. Here we explore the commonalities and differences between SypA and the canonical single-domain STAS proteins SpoIIAA and RsbV. We use a combination of AlphaFold 2 structure predictions and computational modeling to investigate the SypA-SypE binding interface. We then test a subset of our predictions in V.fischeri by generating and expressing SypA variants. Our findings suggest that, while SypA shares many sequence and structural traits with anti-sigma factor antagonist STAS domain proteins, there are significant differences that may account for SypA's distinct regulatory output.

5.
J Bacteriol ; 205(5): e0046622, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37098979

ABSTRACT

The anaerobic pathogen Clostridioides difficile, which is a primary cause of antibiotic-associated diarrhea, faces a variety of stresses in the environment and in the mammalian gut. To cope with these stresses, alternative sigma factor B (σB) is employed to modulate gene transcription, and σB is regulated by an anti-sigma factor, RsbW. To understand the role of RsbW in C. difficile physiology, a rsbW mutant (ΔrsbW), in which σB is assumed to be "always on," was generated. ΔrsbW did not show fitness defects in the absence of stress but tolerated acidic environments and detoxified reactive oxygen and nitrogen species better compared to the parental strain. ΔrsbW was defective in spore and biofilm formation, but it displayed increased adhesion to human gut epithelia and was less virulent in a Galleria mellonella infection model. A transcriptomic analysis to understand the unique phenotype of ΔrsbW showed changes in expression of genes associated with stress responses, virulence, sporulation, phage, and several σB-controlled regulators, including the pleiotropic regulator sinRR'. While these profiles were distinct to ΔrsbW, changes in some σB-controlled stress-associated genes were similar to those reported in the absence of σB. Further analysis of ΔrsbW showed unexpected lower intracellular levels of σB, suggesting an additional post-translational control mechanism for σB in the absence of stress. Our study provides insight into the regulatory role of RsbW and the complexity of regulatory networks mediating stress responses in C. difficile. IMPORTANCE Pathogens like Clostridioides difficile face a range of stresses in the environment and within the host. Alternative transcriptional factors like sigma factor B (σB) enable the bacterium to respond quickly to different stresses. Anti-sigma factors like RsbW control sigma factors and therefore the activation of genes via these pathways. Some of these transcriptional control systems provide C. difficile with the ability to tolerate and detoxify harmful compounds. Here, we investigate the role of RsbW in C. difficile physiology. We demonstrate distinctive phenotypes for a rsbW mutant in growth, persistence, and virulence and suggest alternate σB control mechanisms in C. difficile. Understanding C. difficile responses to external stress is key to designing better strategies to combat this highly resilient bacterial pathogen.


Subject(s)
Clostridioides difficile , Sigma Factor , Animals , Humans , Sigma Factor/genetics , Sigma Factor/metabolism , Clostridioides difficile/metabolism , Clostridioides/metabolism , Complement Factor B/genetics , Complement Factor B/metabolism , Transcription Factors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Mammals/metabolism
6.
Proteins ; 90(7): 1457-1467, 2022 07.
Article in English | MEDLINE | ID: mdl-35194841

ABSTRACT

Clostridium thermocellum is actively being developed as a microbial platform to produce biofuels and chemicals from renewable plant biomass. An attractive feature of this bacterium is its ability to efficiently degrade lignocellulose using surface-displayed cellulosomes, large multi-protein complexes that house different types of cellulase enzymes. Clostridium thermocellum tailors the enzyme composition of its cellulosome using nine membrane-embedded anti-σ factors (RsgI1-9), which are thought to sense different types of extracellular carbohydrates and then elicit distinct gene expression programs via cytoplasmic σ factors. Here we show that the RsgI9 anti-σ factor interacts with cellulose via a C-terminal bi-domain unit. A 2.0 Å crystal structure reveals that the unit is constructed from S1C peptidase and NTF2-like protein domains that contain a potential binding site for cellulose. Small-angle X-ray scattering experiments of the intact ectodomain indicate that it adopts a bi-lobed, elongated conformation. In the structure, a conserved RsgI extracellular (CRE) domain is connected to the bi-domain via a proline-rich linker, which is expected to project the carbohydrate-binding unit ~160 Å from the cell surface. The CRE and proline-rich elements are conserved in several other C. thermocellum anti-σ factors, suggesting that they will also form extended structures that sense carbohydrates.


Subject(s)
Cellulosomes , Clostridium thermocellum , Bacterial Proteins/chemistry , Biomass , Cellulose/metabolism , Cellulosomes/chemistry , Clostridium thermocellum/metabolism , Proline/metabolism , Sigma Factor/chemistry
7.
J Biomol Struct Dyn ; 40(11): 4972-4986, 2022 07.
Article in English | MEDLINE | ID: mdl-33356973

ABSTRACT

RsbW, σB, and RsbV, encoded by Staphylococcus aureus and related bacteria, act as an anti-sigma factor, an sigma factor, and an anti-anti-sigma factor, respectively. The interaction between RsbW and σB blocks the transcription initiation activity of the latter protein. RsbW also functions as a serine kinase and phosphorylates RsbV in the presence of ATP. Our modeling study indicates that the RsbW-RsbV complex is stabilized by twenty-four intermolecular non-covalent bonds. Of the bond-forming RsbW residues, Arg 23, and Glu 49 are conserved residues. To understand the roles of Arg 23 in RsbW, rRsbW[R23A], a recombinant S. aureus RsbW (rRsbW) harboring Arg to Ala change at position 23, was investigated using various probes. The results reveal that rRsbW[R23A], like rRsbW, exists as the dimers in the aqueous solution. However, rRsbW[R23A], unlike rRsbW, neither interacted with a chimeric RsbV (rRsbV) nor formed the phosphorylated rRsbV in the presence of ATP. Furthermore, the tertiary structure and hydrophobic surface area of rRsbW[R23A] matched little with those of rRsbW. Conversely, both rRsbW[R23A] and rRsbW showed interaction with a recombinant σB (rσB). rRsbW and rRsbW[R23A] were also unfolded via the formation of at least one intermediate in the presence of urea. However, the thermodynamic stability of rRsbW significantly differed from that of rRsbW[R23A]. Our molecular dynamics (MD) simulation study also reveals the substantial change of structure, dimension, and stability of RsbW due to the above mutation. The ways side chain of critical Arg 23 contributes to maintaining the tertiary structure, and stability of RsbW was elaborately discussed.Communicated by Ramaswamy H. Sarma.


Subject(s)
Gene Expression Regulation, Bacterial , Sigma Factor , Adenosine Triphosphate/metabolism , Arginine/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Fibrinogen/genetics , Sigma Factor/genetics , Staphylococcus aureus/genetics
8.
Front Microbiol ; 12: 723835, 2021.
Article in English | MEDLINE | ID: mdl-34566926

ABSTRACT

Shewanella oneidensis MR-1 is a facultative anaerobe known for its ability to reduce metal oxides. Anaerobic respiration, especially metal reduction, has been the subject of extensive research. In contrast, S. oneidensis aerobic respiration has received less attention. S. oneidensis expresses cbb3 - and aa3 -type cytochrome c oxidases and a bd-type quinol oxidase. The aa3 -type oxidase, which in other bacteria is the major oxygen reductase under oxygen replete conditions, does not appear to contribute to aerobic respiration and growth in S. oneidensis. Our results indicated that although the aa3-type oxidase does not play a role in aerobic growth on lactate, the preferred carbon source for S. oneidensis, it is involved in growth on pyruvate or acetate. These results highlight the importance of testing multiple carbon and energy sources when attempting to identify enzyme activities and mutant phenotypes. Several regulatory proteins contribute to the regulation of aerobic growth in S. oneidensis including CRP and ArcA. The 3',5'-cAMP phosphodiesterase (CpdA) appears to play a more significant role in aerobic growth than either CRP or ArcA, yet the deficiency does not appear to be the result of reduced oxidase genes expression. Interestingly, the ∆cpdA mutant was more deficient in aerobic respiration with several carbon sources tested compared to ∆crp, which was moderately deficient only in the presence of lactate. To identify the reason for ∆cpdA aerobic growth deficiency, we isolated a suppressor mutant with transposon insertion in SO_3550. Inactivation of this gene, which encodes an anti-sigma factor, restored aerobic growth in the cpdA mutant to wild-type levels. Inactivation of SO_3550 in wild-type cells, however, did not affect aerobic growth. The S. oneidensis genome encodes two additional CRP-like proteins that we designated CrpB and CrpC. Mutants that lack crpB and crpC were deficient in aerobic growth, but this deficiency was not due to the loss of oxidase gene expression.

10.
J Biomol Struct Dyn ; 39(17): 6539-6552, 2021 10.
Article in English | MEDLINE | ID: mdl-32755297

ABSTRACT

Staphylococcus aureus and many related bacteria encode both anti-sigma factor RsbW and anti-anti-sigma factor RsbV to control stress response by σB, an alternative sigma factor. Our structural and thermodynamic studies of a recombinant S. aureus RsbV (rRsbV) show that the monomeric protein contains five α-helices and a mostly parallel but mixed ß-sheet composed of five ß-strands, and interacts with a chimeric S. aureus RsbW (rRsbW) in vitro. In addition, rRsbV binds rRsbW with a Kd of 0.058 µM using spectroscopy and 0.008 µM using calorimetry at 25 °C. From a gel-shift assay, the affinity of rRsbV to rRsbW was found to be higher than its affinity with a recombinant S. aureus σB (rσB). Moreover, the heat generated from the spontaneous rRsbV - rRsbW interaction changed in a compensatory manner with entropy in the 20°-35 °C range. The association between rRsbV and rRsbW yielded a negative heat capacity change, suggesting that both hydrogen bonds and hydrophobic interactions participate in the formation of the rRsbV-rRsbW complex. Computational analyses of a homology-based RsbV-RsbW model has mostly supported the formation of a 2: 2 complex verified by gel filtration chromatography, the experimental ΔG and the existence of these non-covalent bonds. Our unfolding experiments show that the thermodynamic stability of rRsbV is significantly increased in the presence of rRsbW. Thus, these studies have provided valuable insights into the structure, stability, and the anti-sigma-binding thermodynamics of an anti-anti-sigma factor.Communicated by Ramaswamy H. Sarma.


Subject(s)
Sigma Factor , Staphylococcus aureus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Gene Expression Regulation, Bacterial , Sigma Factor/genetics , Sigma Factor/metabolism , Thermodynamics
11.
Mol Oral Microbiol ; 36(1): 80-91, 2021 02.
Article in English | MEDLINE | ID: mdl-33377315

ABSTRACT

Anti-sigma factors play a critical role in regulating the expression of sigma factors in response to environmental stress signals. PG1659 is cotranscribed with an upstream gene PG1660 (rpoE), which encodes for a sigma factor that plays an important role in oxidative stress resistance and the virulence regulatory network of P. gingivalis. PG1659, which is annotated as a hypothetical gene, is evaluated in this study. PG1659, composed of 130 amino acids, is predicted to be transmembrane protein with a single calcium (Ca2+ ) binding site. In P. gingivalis FLL358 (ΔPG1659::ermF), the rpoE gene was highly upregulated compared to the wild-type W83 strain. RpoE-induced genes were also upregulated in the PG1659-defective isogenic mutant. Both protein-protein pull-down and bacterial two-hybrid assays revealed that the PG1659 protein could interact with/bind RpoE. The N-terminal domain of PG1659, representing the cytoplasmic fragment of the protein, is critical for interaction with RpoE. In the presence of PG1659, the initiation of transcription by the RpoE sigma factor was inhibited. Taken together, our data suggest that PG1659 is an anti-sigma factor which plays an important regulatory role in the modulation of the sigma factor RpoE in P. gingivalis.


Subject(s)
Porphyromonas gingivalis , Sigma Factor , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Porphyromonas gingivalis/genetics , Porphyromonas gingivalis/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism , Stress, Physiological , Virulence
12.
Front Microbiol ; 11: 588487, 2020.
Article in English | MEDLINE | ID: mdl-33304334

ABSTRACT

The partner switching system (PSS) of the SigF regulatory pathway in Mycobacterium smegmatis has been previously demonstrated to include the anti-sigma factor RsbW (MSMEG_1803) and two anti-sigma factor antagonists RsfA and RsfB. In this study, we further characterized two additional RsbW homologs and revealed the distinct roles of three RsbW homologs [RsbW1 (MSMEG_1803), RsbW2 (MSMEG_6129), and RsbW3 (MSMEG_1787)] in the SigF PSS. RsbW1 and RsbW2 serve as the anti-sigma factor of SigF and the protein kinase phosphorylating RsfB, respectively, while RsbW3 functions as an anti-SigF antagonist through its protein interaction with RsbW1. Using relevant mutant strains, RsfB was demonstrated to be the major anti-SigF antagonist in M. smegmatis. The phosphorylation state of Ser-63 was shown to determine the functionality of RsfB as an anti-SigF antagonist. RsbW2 was demonstrated to be the only protein kinase that phosphorylates RsfB in M. smegmatis. Phosphorylation of Ser-63 inactivates RsfB to render it unable to interact with RsbW1. Our comparative RNA sequencing analysis of the wild-type strain of M. smegmatis and its isogenic Δaa 3 mutant strain lacking the aa 3 cytochrome c oxidase of the respiratory electron transport chain revealed that expression of the SigF regulon is strongly induced under respiration-inhibitory conditions in an RsfB-dependent way.

13.
Front Microbiol ; 11: 558166, 2020.
Article in English | MEDLINE | ID: mdl-33013790

ABSTRACT

It has been previously shown that RskA, the anti-Sigma factor K of Mycobacterium tuberculosis, inhibits SigK and that mutations in RskA promote high expression of the SigK regulon. The latter observation led us to hypothesize that RskA mutations lead to loss of the anti-Sigma factor function. In this report, we used natural and artificial mutations in RskA to determine the basis of the SigK-RskA partnership. Consistent with predictions, the N-terminal cytoplasmic portion of RskA was sufficient on its own to inhibit SigK. Unexpectedly, RskA also served as an activator of SigK. This activation depended on the same N-terminal region and was enhanced by the membrane-extracellular portion of RskA. Based on this, we engineered similar truncations in a Gram-negative bacterium, namely Yersinia enterocolitica. Again, we observed that, with specific alterations of RskA, we were able to enhance SigK activity. Together these results support an alternative mechanism of anti-Sigma factor function, that we could term modulator (activator-inhibitor) in both Actinobacteria and Gram-negative bacteria, suggesting that Sigma factor activation by anti-Sigma factors could be under-recognized.

14.
IUCrJ ; 7(Pt 4): 737-747, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32695420

ABSTRACT

Bacillus subtilis SigB is an alternative sigma factor that initiates the transcription of stress-responsive genes. The anti-sigma factor RsbW tightly binds SigB to suppress its activity under normal growth conditions and releases it when nonphosphorylated RsbV binds to RsbW in response to stress signals. To understand the regulation of SigB activity by RsbV and RsbW based on structural features, crystal structures and a small-angle X-ray scattering (SAXS) envelope structure of the RsbV-RsbW complex were determined. The crystal structures showed that RsbV and RsbW form a heterotetramer in a similar manner to a SpoIIAA-SpoIIAB tetramer. Multi-angle light scattering and SAXS revealed that the RsbV-RsbW complex is an octamer in solution. Superimposition of the crystal structure on the SAXS envelope structure showed that the unique dimeric interface of RsbW mediates the formation of an RsbV-RsbW octamer and does not prevent RsbV and SigB from binding to RsbW. These results provide structural insights into the molecular assembly of the RsbV-RsbW complex and the regulation of SigB activity.

15.
Gene ; 755: 144883, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32565321

ABSTRACT

The anti-anti-sigma factor BldG has a pleiotropic function in Streptomyces coelicolor A3(2), regulating both morphological and physiological differentiation. Together with the anti-sigma factor UshX, it participates in a partner-switching activation of the sigma factor σH, which has a dual role in the osmotic stress response and morphological differentiation in S. coelicolor A3(2). In addition to UshX, BldG also interacts with the anti-sigma factor ApgA, although no target sigma factor has yet been identified. However, neither UshX nor ApgA phosphorylates BldG. This phosphorylation is provided by the anti-sigma factor RsfA, which is specific for the late developmental sigma factor σF. However, BldG is phosphorylated in the rsfA mutant, suggesting that some other anti-sigma factors containing HATPase_c kinase domain are capable to phosphorylate BldG in vivo. Bacterial two-hybrid system (BACTH) was therefore used to investigate the interactions of all suitable anti-sigma factors of S. coelicolor A3(2) with BldG. At least 15 anti-sigma factors were found to interact with BldG. These interactions were confirmed by native PAGE. In addition to RsfA, BldG is specifically phosphorylated on the conserved phosphorylation Ser57 residue by at least seven additional anti-sigma factors. However, only one of them, SCO7328, has been shown to interact with three sigma factors, σG, σK and σM. A mutant with deleted SCO7328 gene was prepared in S. coelicolor A3(2), however, no specific function of SCO7328 in growth, differentiation or stress response could be attributed to this anti-sigma factor. These results suggest that BldG is specifically phosphorylated by several anti-sigma factors and it plays a role in the regulation of several sigma factors in S. coelicolor A3(2). This suggests a complex regulation of the stress response and differentiation in S. coelicolor A3(2) through this pleiotropic anti-sigma factor.


Subject(s)
Sigma Factor/genetics , Streptomyces coelicolor/immunology , Streptomyces coelicolor/metabolism , Amino Acid Sequence/genetics , Antibodies, Anti-Idiotypic/immunology , Antibodies, Anti-Idiotypic/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence/genetics , Gene Expression Regulation, Bacterial/genetics , Genetic Pleiotropy/genetics , Phosphorylation/genetics , Phosphotransferases/metabolism , Promoter Regions, Genetic/genetics , Sigma Factor/immunology , Sigma Factor/metabolism , Streptomyces/genetics , Streptomyces coelicolor/genetics , Transcription, Genetic/genetics
16.
Int J Med Microbiol ; 310(1): 151380, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31784213

ABSTRACT

Previously, we characterized 7C, a laboratory-derived tigecycline-resistant mutant of Mycobacterium abscessus ATCC 19977, and found that the resistance was conferred by a mutation in MAB_3542c, which encodes an RshA-like protein. In M. tuberculosis, RshA is an anti-sigma factor that negatively regulates the SigH-dependent heat/oxidative stress response. We hypothesized that this mutation in 7C might dysregulate the stress response which has been generally linked to antibiotic resistance. In this study, we tested this hypothesis by subjecting 7C to transcriptomic dissection using RNA sequencing. We found an over-expression of genes encoding the SigH ortholog, chaperones and oxidoreductases. In line with these findings, 7C demonstrated better survival against heat shock when compared to the wild-type ATCC 19977. Another interesting observation from the RNA-Seq analysis was the down-regulation of ribosomal protein-encoding genes. This highlights the possibility of ribosomal conformation changes which could negatively affect the binding of tigecycline to its target, leading to phenotypic resistance. We also demonstrated that transient resistance to tigecycline could be induced in the ATCC 19977 by elevated temperature. Taken together, these findings suggest that dysregulated stress response may be associated with tigecycline resistance in M. abscessus.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Mycobacterium abscessus/drug effects , Stress, Physiological , Tigecycline/pharmacology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Mycobacterium abscessus/genetics , Ribosomal Proteins/genetics , Sigma Factor/genetics , Sigma Factor/metabolism , Temperature , Transcription, Genetic
17.
Front Genet ; 10: 1153, 2019.
Article in English | MEDLINE | ID: mdl-31867037

ABSTRACT

Transcription and translation in growing phase of Escherichia coli, the best-studied model prokaryote, are coupled and regulated in coordinate fashion. Accordingly, the growth rate-dependent control of the synthesis of RNA polymerase (RNAP) core enzyme (the core component of transcription apparatus) and ribosomes (the core component of translation machinery) is tightly coordinated to keep the relative level of transcription apparatus and translation machinery constant for effective and efficient utilization of resources and energy. Upon entry into the stationary phase, transcription apparatus is modulated by replacing RNAP core-associated sigma (promoter recognition subunit) from growth-related RpoD to stationary-phase-specific RpoS. The anti-sigma factor Rsd participates for the efficient replacement of sigma, and the unused RpoD is stored silent as Rsd-RpoD complex. On the other hand, functional 70S ribosome is transformed into inactive 100S dimer by two regulators, ribosome modulation factor (RMF) and hibernation promoting factor (HPF). In this review article, we overview how we found these factors and what we know about the molecular mechanisms for silencing transcription apparatus and translation machinery by these factors. In addition, we provide our recent findings of promoter-specific transcription factor (PS-TF) screening of the transcription factors involved in regulation of the rsd and rmf genes. Results altogether indicate the coordinated regulation of Rsd and RMF for simultaneous hibernation of transcription apparatus and translation machinery.

18.
Microbiol Immunol ; 62(12): 743-754, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30407657

ABSTRACT

Bordetella species, including B. pertussis, have a type III secretion system that is highly conserved among gram-negative pathogenic bacteria. Genes encoding the component proteins of the type III secretion system are localized at the bsc locus in the Bordetella genome. Here, the function of a hypothetical protein Bcr4 encoded at the bsc locus in the B. bronchiseptica genome was investigated. A Bcr4-deficient mutant was created and the amounts of type III secreted proteins (e.g., BopB, BopN and Bsp22) in both the supernatant fraction and whole-cell lysates of the Bcr4-deficient mutant were determined. It was found that the amounts of these proteins were significantly lower than in the wild-type strain. The amounts of type III secreted proteins in the supernatant fraction and whole-cell lysates were much greater in a Bcr4-overproducing strain than in the wild-type strain. The type III secreted protein BspR reportedly negatively regulates the type III secretion system. Here, it was observed that a Bcr4 + BspR double-knockout mutant did not secrete type III secreted proteins, whereas the amounts of these proteins in whole-cell lysates of this mutant were nearly equal to those in whole-cell lysates of the BspR-deficient mutant. Bcr4 thus appears to play an essential role in the extracellular secretion of type III secreted proteins. Our data also suggest that Bcr4 antagonizes the negative regulatory function of BspR.


Subject(s)
Bacterial Proteins/genetics , Bordetella bronchiseptica/genetics , Bordetella bronchiseptica/metabolism , Genes, Bacterial/genetics , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Animals , Bordetella pertussis/genetics , Carrier Proteins/genetics , Cell Line , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Molecular Weight , Mutation , Protein Transport , Rats , Transcriptome
19.
J Med Microbiol ; 67(12): 1676-1681, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30351265

ABSTRACT

In this study, we characterized 7C, a spontaneous mutant selected from tigecycline-susceptible Mycobacterium abscessus ATCC 19977. Whole-genome sequencing (WGS) was used to identify possible resistance determinants in this mutant. Compared to the wild-type, 7C demonstrated resistance to tigecycline as well as cross-resistance to imipenem, and had a slightly retarded growth rate. WGS and subsequent biological verifications showed that these phenotypes were caused by a point mutation in MAB_3542c, which encodes an RshA-like protein. In Mycobacterium tuberculosis, RshA is an anti-sigma factor that negatively regulates the heat/oxidative stress response mechanisms. The MAB_3542c mutation may represent a novel determinant of tigecycline resistance. We hypothesize that this mutation may dysregulate the stress-response pathways which have been shown to be linked to antibiotic resistance in previous studies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/genetics , Tigecycline/pharmacology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Microbial Sensitivity Tests , Mutation
20.
mSystems ; 3(5)2018.
Article in English | MEDLINE | ID: mdl-30225374

ABSTRACT

In the process of Escherichia coli K-12 growth from exponential phase to stationary, marked alteration takes place in the pattern of overall genome expression through modulation of both parts of the transcriptional and translational apparatus. In transcription, the sigma subunit with promoter recognition properties is replaced from the growth-related factor RpoD by the stationary-phase-specific factor RpoS. The unused RpoD is stored by binding with the anti-sigma factor Rsd. In translation, the functional 70S ribosome is converted to inactive 100S dimers through binding with the ribosome modulation factor (RMF). Up to the present time, the regulatory mechanisms of expression of these two critical proteins, Rsd and RMF, have remained totally unsolved. In this study, attempts were made to identify the whole set of transcription factors involved in transcription regulation of the rsd and rmf genes using the newly developed promoter-specific transcription factor (PS-TF) screening system. In the first screening, 74 candidate TFs with binding activity to both of the rsd and rmf promoters were selected from a total of 194 purified TFs. After 6 cycles of screening, we selected 5 stress response TFs, ArcA, McbR, RcdA, SdiA, and SlyA, for detailed analysis in vitro and in vivo of their regulatory roles. Results indicated that both rsd and rmf promoters are repressed by ArcA and activated by McbR, RcdA, SdiA, and SlyA. We propose the involvement of a number of TFs in simultaneous and coordinated regulation of the transcriptional and translational apparatus. By using genomic SELEX (gSELEX) screening, each of the five TFs was found to regulate not only the rsd and rmf genes but also a variety of genes for growth and survival. IMPORTANCE During the growth transition of E. coli from exponential phase to stationary, the genome expression pattern is altered markedly. For this alteration, the transcription apparatus is altered by binding of anti-sigma factor Rsd to the RpoD sigma factor for sigma factor replacement, while the translation machinery is modulated by binding of RMF to 70S ribosome to form inactive ribosome dimer. Using the PS-TF screening system, a number of TFs were found to bind to both the rsd and rmf promoters, of which the regulatory roles of 5 representative TFs (one repressor ArcA and the four activators McbR, RcdA, SdiA, and SlyA) were analyzed in detail. The results altogether indicated the involvement of a common set of TFs, each sensing a specific environmental condition, in coordinated hibernation of the transcriptional and translational apparatus for adaptation and survival under stress conditions.

SELECTION OF CITATIONS
SEARCH DETAIL