Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.255
Filter
1.
Microb Pathog ; : 106780, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969189

ABSTRACT

This study was designed to assess the possibility of using bacteriophage-encoded endolysins for controlling planktonic and biofilm cells. The endolysins, LysEP114 and LysEP135, were obtained from plasmid vectors containing the endolysin genes derived from Escherichia coli phages. The high identity (>96%) was observed between LysEP114 and LysEP135. LysEP114 and LysEP135 were characterized by pH, thermal, and lactic acid stability, lytic spectrum, antibacterial activity, and biofilm eradication. The molecular masses of LysEP114 and LysEP135 were 18.2 kDa, identified as muramidases. LysEP114 and LysEP135 showed high lytic activity against the outer membrane-permeabilized E. coli KCCM 40405 at below 37°C, between pH 5 to 11, and below 70 mM of lactic acid. LysEP114 and LysEP135 showed the broad rang of lytic activity against E. coli KACC 10115, S. Typhimurium KCCM 40253, S. Typhimurium CCARM 8009, tetracycline-resistant S. Typhimurium, polymyxin B-resistant S. Typhimurium, chloramphenicol-resistant S. Typhimurium, K. pneumoniae ATCC 23357, K. pneumoniae CCARM 10237, and Shigella boydii KACC 10792. LysEP114 and LysEP135 effectively reduced the numbers of planktonic E. coli KCCM by 1.7 and 2.1 log, respectively, when treated with 50 mM lactic acid. The numbers of biofilm cells were reduced from 7.3 to 4.1 log CFU/ml and 2.2 log CFU/ml, respectively, when treated with LysEP114- and LysEP135 in the presence of 50 mM lactic acid. The results suggest that the endolysins in combination with lactic acid could be potential alternative therapeutic agents for controlling planktonic and biofilm cells.

2.
Phytomedicine ; 132: 155845, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38964154

ABSTRACT

BACKGROUND: Compounds of natural origin are potent source of drugs with unique mechanisms of action. Among phytochemicals, trans-cinnamaldehyde (t-CA) exhibits a wide range of biological activity, thus has been used for centuries to fight bacterial and fungal infections. However, the molecular basis of these properties has not been fully covered. Considering that difficult-to-control infections are becoming a rising global problem, there is a need to elucidate the molecular potential of t-CA. PURPOSE: To evaluate the antibacterial activity of t-CA against Shiga-toxigenic E. coli strains and elucidate its mechanism of action based on the inhibition of the virulence factor expression. METHODS: The antimicrobial potential of t-CA was assessed with two-fold microdilution and time-kill assays. Further evaluation included bioluminescence suppression assays, quantification of reactive oxygen species (ROS) and assessment of NAD+/NADH ratios. Morphological changes post t-CA exposure were examined using transmission electron microscopy. RNA sequencing and radiolabeling of nucleotides elucidated the metabolic alterations induced by t-CA. Toxin expression level was monitored through the application of fusion proteins, monitoring of bacteriophage development, and fluorescence microscopy studies. Lastly, the therapeutic efficacy in vivo was assessed using Galleria mellonella infection model. RESULTS: A comprehensive study of t-CA's bioactivity showed unique properties affecting bacterial metabolism and morphology, resulting in significant bacterial cell deformation and effective virulence inhibition. Elucidation of the underlying mechanisms indicated that t-CA activates the global regulatory system, the stringent response, manifested by its alarmone, (p)ppGpp, overproduction mediated by the RelA enzyme, thereby inhibiting bacterial proliferation. Intriguingly, t-CA effectively downregulates Shiga toxin gene expression via alarmone molecules, indicating its potential for therapeutic effect. In vivo validation demonstrated a significant improvement in larval survival rates post- t-CA treatment with 50 mg/kg (p < 0.05), akin to the efficacy observed with azithromycin, thus indicating its effectiveness against EHEC infections (p < 0.05). CONCLUSIONS: Collectively, these results reveal the robust antibacterial capabilities of t-CA, warranting its further exploration as a viable anti-infective agent.

3.
Subcell Biochem ; 104: 181-205, 2024.
Article in English | MEDLINE | ID: mdl-38963488

ABSTRACT

Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.


Subject(s)
DNA, Viral , Viral Proteins , DNA, Viral/genetics , DNA, Viral/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Viral Genome Packaging/physiology , DNA Packaging , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/metabolism , Genome, Viral
4.
Arch Microbiol ; 206(7): 335, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953983

ABSTRACT

Salmonella is considered as one of the most common zoonotic /foodborne pathogens in the world. The application of bacteriophages as novel antibacterial agents in food substrates has become an emerging strategy. Bacteriophages have the potential to control Salmonella contamination.We have isolated and characterized a broad-spectrum Salmonella phage, SP154, which can lyse 9 serotypes, including S. Enteritidis, S. Typhimurium, S. Pullorum, S. Arizonae, S. Dublin, S. Cholerasuis, S. Chester, S. 1, 4, [5], 12: i: -, and S. Derby, accounting for 81.9% of 144 isolates. SP154 showed a short latent period (40 min) and a high burst size (with the first rapid burst size at 107 PFUs/cell and the second rapid burst size at approximately 40 PFUs/cell). Furthermore, SP154 activity has higher survival rates across various environmental conditions, including pH 4.0-12.0 and temperatures ranging from 4 to 50 °C for 60 min, making it suitable for diverse food processing and storage applications. Significant reductions in live Salmonella were observed in different foods matrices such as milk and chicken meat, with a decrease of up to 1.9 log10 CFU/mL in milk contamination and a 1 log10 CFU/mL reduction in chicken meat. Whole genome sequencing analysis revealed that SP154 belongs to the genus Ithacavirus, subfamily Humphriesvirinae, within the family Schitoviridae. Phylogenetic analysis based on the terminase large subunit supported this classification, although an alternate tree using the tail spike protein gene suggested affiliation with the genus Kuttervirus, underscoring the limitations of relying on a single gene for phylogenetic inference. Importantly, no virulence or antibiotic resistance genes were detected in SP154. Our research highlights the potential of using SP154 for biocontrol of Salmonella in the food industry.


Subject(s)
Food Microbiology , Genome, Viral , Salmonella Phages , Salmonella , Whole Genome Sequencing , Salmonella Phages/genetics , Salmonella Phages/isolation & purification , Salmonella Phages/classification , Salmonella Phages/physiology , Animals , Salmonella/virology , Salmonella/genetics , Salmonella/classification , Salmonella/isolation & purification , Chickens , Milk/microbiology , Milk/virology , Meat/microbiology , Meat/virology , Phylogeny
5.
Sci Rep ; 14(1): 15347, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961138

ABSTRACT

The escalating incidence of foodborne salmonellosis poses a significant global threat to food safety and public health. As antibiotic resistance in Salmonella continues to rise, there is growing interest in bacteriophages as potential alternatives. In this study, we isolated, characterized, and evaluated the biocontrol efficacy of lytic phage L223 in chicken meat. Phage L223 demonstrated robust stability across a broad range of temperatures (20-70 °C) and pH levels (2-11) and exhibited a restricted host range targeting Salmonella spp., notably Salmonella Typhimurium and Salmonella Enteritidis. Characterization of L223 revealed a short latent period of 30 min and a substantial burst size of 515 PFU/cell. Genomic analysis classified L223 within the Caudoviricetes class, Guernseyvirinae subfamily and Jerseyvirus genus, with a dsDNA genome size of 44,321 bp and 47.9% GC content, featuring 72 coding sequences devoid of antimicrobial resistance, virulence factors, toxins, and tRNA genes. Application of L223 significantly (p < 0.005) reduced Salmonella Typhimurium ATCC 14,028 counts by 1.24, 2.17, and 1.55 log CFU/piece after 2, 4, and 6 h of incubation, respectively, in experimentally contaminated chicken breast samples. These findings highlight the potential of Salmonella phage L223 as a promising biocontrol agent for mitigating Salmonella contamination in food products, emphasizing its relevance for enhancing food safety protocols.


Subject(s)
Chickens , Genome, Viral , Salmonella Phages , Animals , Salmonella Phages/genetics , Salmonella Phages/isolation & purification , Salmonella Phages/physiology , Chickens/microbiology , Genomics/methods , Salmonella/virology , Salmonella/genetics , Poultry/microbiology , Salmonella typhimurium/virology , Salmonella typhimurium/genetics , Host Specificity , Food Microbiology , Phenotype , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Poultry Diseases/virology
6.
Evol Appl ; 17(7): e13742, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38975285

ABSTRACT

The number of multidrug-resistant strains of bacteria is increasing rapidly, while the number of new antibiotic discoveries has stagnated. This trend has caused a surge in interest in bacteriophages as anti-bacterial therapeutics, in part because there is near limitless diversity of phages to harness. While this diversity provides an opportunity, it also creates the dilemma of having to decide which criteria to use to select phages. Here we test whether a phage's ability to coevolve with its host (evolvability) should be considered and how this property compares to two previously proposed criteria: fast reproduction and thermostability. To do this, we compared the suppressiveness of three phages that vary by a single amino acid yet differ in these traits such that each strain maximized two of three characteristics. Our studies revealed that both evolvability and reproductive rate are independently important. The phage most able to suppress bacterial populations was the strain with high evolvability and reproductive rate, yet this phage was unstable. Phages varied due to differences in the types of resistance evolved against them and their ability to counteract resistance. When conditions were shifted to exaggerate the importance of thermostability, one of the stable phages was most suppressive in the short-term, but not over the long-term. Our results demonstrate the utility of biological therapeutics' capacities to evolve and adjust in action to resolve complications like resistance evolution. Furthermore, evolvability is a property that can be engineered into phage therapeutics to enhance their effectiveness.

7.
ACS Biomater Sci Eng ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976823

ABSTRACT

RNA bacteriophage MS2-derived virus-like particles (VLPs) have been widely used in biomedical research as model systems to study virus assembly, structure-function relationships, vaccine development, and drug delivery. Considering the diverse utility of these VLPs, a systemic engineering approach has been utilized to generate smaller particles with optimal serum stability and tissue penetrance. Additionally, it is crucial to demonstrate the overall stability of these mini MS2 VLPs, ensuring cargo protection until they reach their target cell/organ. However, no detailed analysis of the thermal stability and heat-induced disassembly of MS2 VLPs has yet been attempted. In this work, we investigated the thermal stability of both wild-type (WT) MS2 VLP and its "mini" variant containing S37P mutation (mini MS2 VLP). The mini MS2 VLP exhibits a higher capsid melting temperature (Tm) when compared to its WT MS2 VLP counterpart, possibly attributed to its smaller interdimer angle. Our study presents that the thermal unfolding of MS2 VLPs follows a sequential process involving particle destabilization, nucleic acid exposure/melting, and disassembly of VLP. This observation underscores the disruption of cooperative intersubunit interactions and protein-nucleic acid interactions, shedding light on the mechanism of heat-induced VLP disassembly.

8.
FEMS Microbiol Lett ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970360

ABSTRACT

Salmonella enterica (S. enterica) is the most common food and waterborne pathogen worldwide. The growing trend of antibiotic-resistant S. enterica poses severe healthcare threats. As an alternative antimicrobial agent, bacteriophage-encoded endolysins (endolysin) are a potential agent in controlling S. enterica infection. Endolysins are enzymes that particularly target the peptidoglycan layer of bacterial cells, leading to their rupture and destruction. However, the application of bacteriophage-encoded endolysin against Gram-negative bacteria is limited due to the presence of the outer membrane in the cell wall, which hinders the permeation of externally applied endolysins. This study aimed the prokaryotic expression system to produce the recombinant endolysin ENDO-1252, encoded by the Salmonella bacteriophage-1252 associated with S. Enteritidis. Subsequently, ENDO-1252 had strong lytic activity not only against S. Enteritidis but also against S. Typhimurium. In addition, ENDO-1252 showed optimal thermostability and lytic activity at 25°C with a pH of 7.0. In combination with 0.1 mM EDTA, the effect of 120 µg of ENDO-1252 for 6 hours exhibited the highest lytic activity, resulting in a reduction of 1.15 log or 92.87% on S. Enteritidis. These findings suggest that ENDO-1252 can be used as a potential and innovative antibacterial agent for controlling the growth of S. Enteritidis.

9.
Microbiol Resour Announc ; : e0050424, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980043

ABSTRACT

LBerry, Pembroke, and Zolita are newly isolated bacteriophages that infect Mycobacterium smegmatis mc²155. Based on gene content similarity, LBerry and Pembroke are assigned to cluster A3, and Zolita is assigned to cluster A5. LBerry and Pembroke are 99% identical to Anaysia and Caviar, and Zolita is 99% identical to SydNat.

10.
Article in English | MEDLINE | ID: mdl-38980574

ABSTRACT

Diabetic wound healing remains a healthcare challenge due to co-occurring multidrug-resistant (MDR) bacterial infections and the constraints associated with sustained drug delivery. Here, we integrate two new species of phages designated as PseuPha1 and RuSa1 respectively lysing multiple clinical MDR strains of P. aeruginosa and S. aureus into a novel polyvinyl alcohol-eudragit (PVA-EU†) nanofiber matrix through electrospinning for rapid diabetic wound healing. PVA-EU† evaluated for characteristic changes that occurred due to electrospinning and subjected to elution, stability and antibacterial assays. The biocompatibility and wound healing ability of PVA-EU† were assessed through mouse fibroblast cell line NIH3T3, followed by validation through diabetic mice excision wound co-infected with P. aeruginosa and S. aureus. The electrospinning resulted in the incorporation of ~ 75% active phages at PVA-EU†, which were stable at 25 °C for 30 days and at 4 °C for 90 days. PVA-EU† showed sustained release of phages for 18 h and confirmed to be detrimental to both mono- and mixed-cultures of target pathogens. The antibacterial activity of PVA-EU† remained unaltered in the presence of high amounts of glucose, whereas alkaline pH promoted the activity. The matrix exerted no cytotoxicity on NIH3T3, but showed significant (p < 0.0001) wound healing in vitro and the process was rapid as validated through a diabetic mice model. The sustained release, quick wound closure, declined abundance of target MDR bacteria in situ and histopathological signs of recovery corroborated the therapeutic efficacy of PVA-EU†. Taken together, our data signify the potential application of PVA-EU† in the rapid treatment of diabetic wounds without the aid of antibiotics.

11.
BMC Microbiol ; 24(1): 234, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951769

ABSTRACT

BACKGROUND: Klebsiella aerogenes is an opportunistic pathogen that causes a wide variety of infections. Due to the rising problem of antibiotic resistance, novel antibiotics and strategies to combat bacterial infections are needed. Host-specific bacteriophages are natural enemies of bacteria and can be used in phage therapy as an alternative form of treatment against bacterial infections. Jumbo phages are defined as phages with genomes larger than 200 kb. Relatively few studies have been done on jumbo phages compared to smaller phages. RESULTS: A novel phage, fENko-Kae01, was isolated from a commercial phage cocktail. Genomic analysis revealed that fENko-Kae01 is a lytic jumbo phage with a 360 kb genome encoding 578 predicted genes. No highly similar phage genomes were identified and fENko-Kae01 may be a completely new genus representative. No known genes associated with lysogenic life cycle, bacterial virulence, or antibiotic resistance were identified. The phage had myovirus morphology and a narrow host range. Phage resistant bacterial mutants emerged under phage selection. Whole genome sequencing revealed that the biogenesis of the flagellum was affected in four mutants and the lack of functional flagellum was confirmed in motility assays. Furthermore, phage fENKo-Kae01 failed to adsorb on the non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSIONS: fENko-Kae01 is a novel jumbo bacteriophage that is considered safe for phage therapy. fENko-Kae01 uses the flagellum as the phage-binding receptor and may represent a completely novel genus.


Subject(s)
Bacteriophages , Enterobacter aerogenes , Flagella , Genome, Viral , Host Specificity , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/physiology , Flagella/virology , Flagella/genetics , Enterobacter aerogenes/virology , Enterobacter aerogenes/genetics , Whole Genome Sequencing , Myoviridae/genetics , Myoviridae/isolation & purification , Myoviridae/classification , Myoviridae/physiology
12.
Microbiol Resour Announc ; : e0029324, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990022

ABSTRACT

Bacteriophages Uzumaki and Argan infect Arthrobacter globiformis B-2880 isolated from soil samples in Long Island, New York. These bacteriophages have lambda-like morphology with prolate capsid and share 97% gene content similarity. These traits place them in cluster AU6 with other related Arthrobacter phages.

13.
Microbiol Spectr ; : e0387523, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949386

ABSTRACT

Bacteriophages (hereafter "phages") are ubiquitous predators of bacteria in the natural world, but interest is growing in their development into antibacterial therapy as complement or replacement for antibiotics. However, bacteria have evolved a huge variety of antiphage defense systems allowing them to resist phage lysis to a greater or lesser extent. In addition to dedicated phage defense systems, some aspects of the general stress response also impact phage susceptibility, but the details of this are not well known. In order to elucidate these factors in the opportunistic pathogen Pseudomonas aeruginosa, we used the laboratory-conditioned strain PAO1 as host for phage infection experiments as it is naturally poor in dedicated phage defense systems. Screening by transposon insertion sequencing indicated that the uncharacterized operon PA3040-PA3042 was potentially associated with resistance to lytic phages. However, we found that its primary role appeared to be in regulating biofilm formation, particularly in a clinical isolate of P. aeruginosa in which it also altered tobramycin resistance. Its expression was highly growth-phase dependent and responsive to phage infection and cell envelope stress. Our results suggest that this operon may be a cryptic but important locus for P. aeruginosa stress tolerance. IMPORTANCE: An important category of bacterial stress response systems is bacteriophage defense, where systems are triggered by bacteriophage infection and activate a response which may either destroy the phage genome or destroy the infected cell so that the rest of the population survives. In some bacteria, the cell envelope stress response is activated by bacteriophage infection, but it is unknown whether this contributes to the survival of the infection. We have found that a conserved uncharacterized operon (PA3040-PA3042) of the cell envelope stress regulon in Pseudomonas aeruginosa, which has very few dedicated phage defense systems, responds to phage infection and stationary phase as well as envelope stress and is important for growth and biofilm formation in a clinical isolate of P. aeruginosa, even in the absence of phages. As homologs of these genes are found in other bacteria, they may be a novel component of the general stress response.

14.
ISME Commun ; 4(1): ycae082, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38988700

ABSTRACT

The development of phage resistance by bacteria is a major barrier that impedes the therapeutic use of phages. Phage training has been proposed as a novel tool that harnesses the evolutionary potential of phages to improve phage infectivity. Both evolutionary and co-evolutionary phage training models have been previously reported to train phages. However, both of these phage training models have been reported able to effectively suppress the emergence of phage-resistant bacteria mutants, thus presenting a contradictory phenomenon. Therefore, in this study, we set out to systematically compare the effectiveness of both evolutionary and co-evolutionary phage training models with regard to phage physiology, infectivity, and genotype. To this end, a natural lytic phage capable of infecting a Klebsiella pneumonia strain was isolated from wastewater and subjected to evolutionary and co-evolutionary phage training for 30 days. After the phage training, the physiology and genomic characteristics of evolved and co-evolved phages were assessed. Our results demonstrated that both evolved and co-evolved phages exhibit improved bacterial suppression activity and are able to delay the emergence of phage resistance. Furthermore, both phages harbored unique genome mutational changes in different functionally associated phage proteins. Similarly, evolved and co-evolved phage-resistant bacteria mutants that arose post phage infection displayed varying phage resistance sensitivities, which may be correlated to the unique genome mutational change identified in cell membrane structure. In particular, co-evolved phage-resistant bacteria mutants exhibited less phage resistance compared to evolved phage-resistant bacteria mutants. These results highlighted the finding that the co-evolutionary phage training model serves as a better phage training model as it endows phage with improved infectivity, but also selects for phage-resistant bacteria with a lower phage resistance when compared to evolutionary phage training.

15.
Front Microbiol ; 15: 1429504, 2024.
Article in English | MEDLINE | ID: mdl-38983624

ABSTRACT

Salmonella, a prevalent pathogen with significant implications for the poultry industry and food safety, presents a global public health concern. The rise in antibiotic resistance has exacerbated the challenge of prevention. Accurate and sensitive detection methods are essential in combating Salmonella infections. Bacteriophages, viruses capable of targeting and destroying bacteria, leverage their host specificity for accurate microbial detection. Notably, the tail fiber protein of bacteriophages plays a crucial role in recognizing specific hosts, making it a valuable tool for targeted microbial detection. This study focused on the tail fiber protein 35Q of Salmonella pullorum (SP) bacteriophage YSP2, identified through protein sequencing and genome analysis. Bioinformatics analysis revealed similarities between 35Q and other Salmonella bacteriophage tail fiber proteins. The protein was successfully expressed and purified using an Escherichia coli expression system, and its binding activity and specificity were confirmed. ELISA assays and adsorption experiments demonstrated that 35Q interacts with the outer membrane protein (OMP) receptor on bacterial surfaces. This investigation provides valuable insights for targeted Salmonella detection, informs the development of specific therapeutics, and enhances our understanding of the interaction between Salmonella bacteriophages and their hosts.

16.
Avian Dis ; 68(2): 129-133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885054

ABSTRACT

The phage endolysin PlyCP41 when purified from Escherichia coli exhibits lytic activity against Clostridium perfringens (CP) in vitro. The anti-clostridial activity of PlyCP41 endolysin expressed in transgenic yeast (Saccharomyces cerevisiae) was verified in phosphate buffered saline via mixing experiments with cultured CP and transgenic yeast slurries followed by serial dilution plating and colony counts on tryptose sulfite cycloserine (CP indicator) plates. The transgenic yeast containing PlyCP41 resulted in a log10 4.5 reduction (99.997%; P < 0.01) of the cultured CP. In addition, this serial dilution plating assay was used to demonstrate that transgenic yeast slurries could reduce the endogenous CP content in fluids from three different gastrointestinal regions (proximal, medial, and distal) from 21-day-old broiler chickens. The transgenic yeast treatment of gut slurries resulted in a log 10 1.19, 4.53, and 1.28 reduction in proximal, medial, and distal gut slurries (90% to 99.99% of the endogenous CP; P < 0.01), respectively, compared to nontreatment controls. These results indicate that the phage endolysin PlyCP41 expressed in S. cerevisiae is effective at reducing the endogenous CP in gastrointestinal fluids of broiler chickens. Future studies will measure the anti-CP effect in vivo by administering transgenic yeast to broiler chickens in the feed.


Levadura que expresa una fago-endolisina reduce la presencia endógena de Clostridium perfringens Ex vivo en fluidos intestinales de pollos de engorde de 21 días. La fago endolisina PlyCP41, cuando se purifica a partir de Escherichia coli, exhibe actividad lítica contra Clostridium perfringens (Cp) in vitro. La actividad anticlostridial de la endolisina PlyCP41 expresada en levadura transgénica (Saccharomyces cerevisiae) se verificó en solución salina amortiguada con fosfato mediante experimentos de mezclas con cultivos de C. perfringens y suspensiones de levadura transgénica, seguido de cultivos de diluciones en serie y recuentos de colonias en placas de triptosa sulfito cicloserina (TSC; indicador para C. perfringens). La levadura transgénica que contenía PlyCP41 dio como resultado una reducción de log10 4.5 (99.997%; P <0.01) en el cultivo de C. perfringens. Además, este ensayo de dilución en serie en placas se utilizó para demostrar que las suspensiones de levadura transgénica podrían reducir el contenido de C. perfringens endógeno en fluidos de tres regiones gastrointestinales diferentes (proximal, medial y distal) de pollos de engorde de 21 días de edad. El tratamiento con levadura transgénica de las suspensiones intestinales dio como resultado una reducción de log10 de 1.19, 4.53 y 1.28 en las suspensiones intestinales proximal, medial y distal (90% a 99.99 % de C. perfringens endógena; P < 0.01), respectivamente, en comparación con los controles no tratados. Estos resultados indican que la fago-endolisina PlyCP41 expresada en S. cerevisiae es eficaz para reducir el contenido endógeno de C. perfringens en los fluidos gastrointestinales de pollos de engorde. Los estudios futuros medirán el efecto contra C. perfringens in vivo mediante la administración de levadura transgénica a pollos de engorde en el alimento.


Subject(s)
Chickens , Clostridium Infections , Clostridium perfringens , Endopeptidases , Saccharomyces cerevisiae , Animals , Clostridium perfringens/physiology , Endopeptidases/metabolism , Endopeptidases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Bacteriophages/physiology , Intestines
17.
Food Res Int ; 190: 114607, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945617

ABSTRACT

Salmonella, a prominent foodborne pathogen, has posed enduring challenges to the advancement of food safety and global public health. The escalating concern over antibiotic misuse, resulting in the excessive presence of drug residues in animal-derived food products, necessitates urgent exploration of alternative strategies for Salmonella control. Bacteriophages emerge as promising green biocontrol agents against pathogenic bacteria. This study delineates the identification of two novel virulent Salmonella phages, namely phage vB_SalS_ABTNLsp11241 (referred to as sp11241) and phage 8-19 (referred to as 8-19). Both phages exhibited efficient infectivity against Salmonella enterica serotype Enteritidis (SE). Furthermore, this study evaluated the effectiveness of two phages to control SE in three different foods (whole chicken eggs, raw chicken meat, and lettuce) at different MOIs (1, 100, and 10000) at 4°C. It's worth noting that sp11241 and 8-19 achieved complete elimination of SE on eggs after 3 h and 6 h at MOI = 100, and after 2 h and 5 h at MOI = 10000, respectively. After 12 h of treatment with sp11241, a maximum reduction of 3.17 log10 CFU/mL in SE was achieved on raw chicken meat, and a maximum reduction of 3.00 log10 CFU/mL was achieved on lettuce. Phage 8-19 has the same effect on lettuce as sp11241, but is slightly less effective than sp11241 on chicken meat (a maximum 2.69 log10 CFU/mL reduction). In conclusion, sp11241 and 8-19 exhibit considerable potential for controlling Salmonella contamination in food at a low temperature and represent viable candidates as green antibacterial agents for food applications.


Subject(s)
Chickens , Eggs , Food Microbiology , Lactuca , Meat , Salmonella Phages , Salmonella enteritidis , Lactuca/microbiology , Animals , Eggs/microbiology , Eggs/virology , Chickens/microbiology , Salmonella enteritidis/virology , Meat/microbiology , Food Safety , Food Contamination/prevention & control , Virulence
18.
Virology ; 597: 110155, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38943783

ABSTRACT

The increasing prevalence of drug-resistant Escherichia coli (E. coli) resulting from the excessive utilization of antibiotics necessitates the immediate exploration of alternative approaches to counteract pathogenic E. coli. Phages, with their unique antibacterial mechanisms, are considered promising candidates for treating bacterial infections. Herein, we isolated a lytic Escherichia phage Tequatrovirus YZ2 (phage YZ2), which belongs to the genus Tequatrovirus. The genome of phage YZ2 consists of 168,356 base pairs with a G + C content of 35.34% and 269 putative open reading frames (ORFs). Of these, 146 ORFs have been annotated as functional proteins associated with nucleotide metabolism, structure, transcription, DNA replication, translation, and lysis. In the mouse model of a skin wound infected by E. coli, phage YZ2 therapy significantly promoted the wound healing. Furthermore, histopathological analysis revealed reductions in IL-1ß and TNF-α and increased VEGF levels, indicating the potential of phages as effective antimicrobial agents against E. coli infection.

19.
Viruses ; 16(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38932188

ABSTRACT

Bacteriophages (phages) are viruses that infect the bacteria within which their reproduction cycle takes place, a process that ends in the lysis and death of the bacterial cell. Some phages are also able to destroy bacterial biofilms. Due to increased antibiotics resistance, Pseudomonas aeruginosa, another biofilm-forming pathogen, is a problem in many parts of the world. Zinc oxide (ZnO) and other metal nanoparticles (NPs) are biologically active and also possess anti-biofilm properties. ZnO-NPs were prepared by the green synthesis method using orange peels. The vibrational peaks of the ZnO-NPs were analyzed using FTIR analysis, and their size and morphological properties were determined using scanning electron microscopy (SEM). The ability of the ZnO-NPs to reduce or eliminate P. aeruginosa biofilm alone or in combination with phages PB10 and PA19 was investigated. The P. aeruginosa cells were effectively killed in the preformed 48 h biofilms during a 24 h incubation with the ZnO-NP-phage combination, in comparison with the control or ZnO-NPs alone. The treatments on growing biofilms were most efficient in the final stages of biofilm development. All five treatment groups showed a significant biofilm reduction compared to the control group (p < 0.0001) at 48 h of incubation. The influence of the ZnO-NPs and phages on the quorum sensing system of P. aeruginosa was monitored by quantitative real-time PCR (qRT-PCR) of the autoinducer biosynthesis gene lasI. While the ZnO-NPs repressed the lasI gene transcription, the phages slightly activated it at 24 and 48 h of incubation. Also, the effect of the ZnO-NPs and phage PA19 on the viability of HFF2 cells was investigated and the results showed that the combination of NPs with PA19 reduced the toxic effect of ZnO-NPs and also stimulated the growth in normal cells.


Subject(s)
Biofilms , Metal Nanoparticles , Pseudomonas aeruginosa , Zinc Oxide , Zinc Oxide/pharmacology , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Biofilms/drug effects , Metal Nanoparticles/chemistry , Green Chemistry Technology , Bacteriophages/physiology , Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry
20.
Viruses ; 16(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932268

ABSTRACT

Experimental evolution studies, in which biological populations are evolved in a specific environment over time, can address questions about the nature of spontaneous mutations, responses to selection, and the origins and maintenance of novel traits. Here, we review more than 30 years of experimental evolution studies using the bacteriophage (phage) Φ6 cystovirus. Similar to many lab-studied bacteriophages, Φ6 has a high mutation rate, large population size, fast generation time, and can be genetically engineered or cryogenically frozen, which facilitates its rapid evolution in the laboratory and the subsequent characterization of the effects of its mutations. Moreover, its segmented RNA genome, outer membrane, and capacity for multiple phages to coinfect a single host cell make Φ6 a good non-pathogenic model for investigating the evolution of RNA viruses that infect humans. We describe experiments that used Φ6 to address the fitness effects of spontaneous mutations, the consequences of evolution in the presence of coinfection, the evolution of host ranges, and mechanisms and consequences of the evolution of thermostability. We highlight open areas of inquiry where further experimentation on Φ6 could inform predictions for pathogenic viruses.


Subject(s)
Bacteriophage phi 6 , Mutation , Bacteriophage phi 6/genetics , Bacteriophage phi 6/physiology , Host Specificity , Evolution, Molecular , Cystoviridae/genetics , Genome, Viral , Humans , Directed Molecular Evolution , Biological Evolution
SELECTION OF CITATIONS
SEARCH DETAIL
...