Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters











Publication year range
1.
Biophys Chem ; 313: 107292, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39018778

ABSTRACT

We have studied the effect of calcium ions (Ca2+) at various concentrations on the structure of lipid vesicles in the presence of amyloid-beta peptide Aß(25-35). In particular, we have investigated the influence of calcium ions on the formation of recently documented bicelle-like structures (BLSs) emerged as a result of Aß(25-35) triggered membrane disintegration. First, we have shown by using small-angle X-ray and neutron scattering that peptide molecules rigidify the lipid bilayer of gel phase DPPC unilamellar vesicles (ULVs), while addition of the calcium ions to the system hinders this effect of Aß(25-35). Secondly, the Aß(25-35) demonstrates a critical peptide concentration at which the BLSs reorganize from ULVs due to heating and cooling the samples through the lipid main phase transition temperature (Tm). However, addition of calcium ions does not affect noticeably the Aß-induced formation of BLSs and their structural parameters, though the changes in peptide's secondary structure, e.g. the increased α-helix fraction, has been registered by circular dichroism spectroscopy. Finally, according to 31P nuclear magnetic resonance (NMR) measurements, calcium ions do not affect the lipid-peptide arrangement in BLSs and their ability to align in the magnetic field of NMR spectrometer. The influences of various concentrations of calcium ions on the lipid-peptide interactions may prove biologically important because their local concentrations vary widely in in-vivo conditions. In the present work, calcium ions were investigated as a possible tool aimed at regulating the lipid-peptide interactions that demonstrated the disruptive effect of Aß(25-35) on lipid membranes.


Subject(s)
Amyloid beta-Peptides , Calcium , Peptide Fragments , Amyloid beta-Peptides/chemistry , Calcium/chemistry , Calcium/metabolism , Peptide Fragments/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Ions/chemistry , Protein Structure, Secondary , Scattering, Small Angle , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism , Circular Dichroism
2.
J Colloid Interface Sci ; 659: 833-848, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218087

ABSTRACT

MOTIVATION: Surfactants like C8E8CH2COOH have such bulky headgroups that they cannot show the common sphere-to-cylinder transition, while surfactants like C18:1E2CH2COOH are mimicking lipids and form only bilayers. Mixing these two types of surfactants allows one to investigate the competition between intramicellar segregation leading to disc-like bicelles and the temperature dependent curvature constraints imposed by the mismatch between heads and tails. EXPERIMENTS: We establish phase diagrams as a function of temperature, surfactant mole ratio, and active matter content. We locate the isotropic liquid-isotropic liquid phase separation common to all nonionic surfactant systems, as well as nematic and lamellar phases. The stability and rheology of the nematic phase is investigated. Texture determination by polarizing microscopy allows us to distinguish between the different phases. Finally, SANS and SAXS give intermicellar distances as well as micellar sizes and shapes present for different compositions in the phase diagrams. FINDINGS: In a defined mole ratio between the two components, intramicellar segregation wins and a viscoelastic discotic nematic phase is present at low temperature. Partial intramicellar mixing upon heating leads to disc growth and eventually to a pseudo-lamellar phase. Further heating leads to complete random mixing and an isotropic phase, showing the common liquid-liquid miscibility gap. This uncommon phase sequence, bicelles, lamellar phase, micelles, and water-poor packed micelles, is due to temperature induced mixing combined with dehydration of the headgroups. This general molecular mechanism explains also why a metastable water-poor lamellar phase quenched by cooling can be easily and reproducibly transformed into a nematic phase by gentle hand shaking at room temperature, as well as the entrapment of air bubbles of any size without encapsulation by bilayers or polymers.

3.
Biochim Biophys Acta Biomembr ; 1866(3): 184272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211645

ABSTRACT

Antimicrobial peptides are a promising class of potential antibiotics that interact selectively with negatively charged lipid bilayers. This paper presents the structural characterization of the antimicrobial peptides myxinidin and WMR associated with bacterial membrane mimetic micelles and bicelles by NMR, CD spectroscopy, and molecular dynamics simulations. Both peptides adopt a different conformation in the lipidic environment than in aqueous solution. The location of the peptides in micelles and bicelles has been studied by paramagnetic relaxation enhancement experiments with paramagnetic tagged 5- and 16-doxyl stearic acid (5-/16-SASL). Molecular dynamics simulations of multiple copies of the peptides were used to obtain an atomic level of detail on membrane-peptide and peptide-peptide interactions. Our results highlight an essential role of the negatively charged membrane mimetic in the structural stability of both myxinidin and WMR. The peptides localize predominantly in the membrane's headgroup region and have a noticeable membrane thinning effect on the overall bilayer structure. Myxinidin and WMR show a different tendency to self-aggregate, which is also influenced by the membrane composition (DOPE/DOPG versus DOPE/DOPG/CL) and can be related to the previously observed difference in the ability of the peptides to disrupt different types of model membranes.


Subject(s)
Antimicrobial Peptides , Micelles , Peptides/chemistry , Lipid Bilayers/chemistry , Membranes
4.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834312

ABSTRACT

Integral membrane proteins are important components of a cell. Their structural and functional studies require production of milligram amounts of proteins, which nowadays is not a routine process. Cell-free protein synthesis is a prospective approach to resolve this task. However, there are few known membrane mimetics that can be used to synthesize active membrane proteins in high amounts. Here, we present the application of commercially available "Facade" detergents for the production of active rhodopsin. We show that the yield of active protein in lipid bicelles containing Facade-EM, Facade-TEM, and Facade-EPC is several times higher than in the case of conventional bicelles with CHAPS and DHPC and is comparable to the yield in the presence of lipid-protein nanodiscs. Moreover, the effects of the lipid-to-detergent ratio, concentration of detergent in the feeding mixture, and lipid composition of the bicelles on the total, soluble, and active protein yields are discussed. We show that Facade-based bicelles represent a prospective membrane mimetic, available for the production of membrane proteins in a cell-free system.


Subject(s)
Lipid Bilayers , Membrane Proteins , Membrane Proteins/chemistry , Lipid Bilayers/chemistry , Detergents/chemistry , Cell-Free System , Micelles
5.
Biophys Chem ; 302: 107094, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37659154

ABSTRACT

Bicellar systems have become popularized as their rich morphology can be applied in biochemistry, physical chemistry, and drug delivery technology. To the biochemical field, bicelles are powerful model membranes for the study of transmembrane protein behavior, membrane transport, and environmental interactions with the cell. Their morphological responses to environmental changes reveal a profound fundamental understanding of physical chemistry related to the principle of self-assembly. Recently, they have also drawn significant attention as theranostic nanocarriers in biopharmaceutical and diagnostic research due to their superior cellular uptake compared to liposomes. It is evident that applications are becoming broader, demanding to understand how the bicelle will form and behave in various environments. To consolidate current works on the bicelle's modern applications, this review will discuss various effects of composition and environmental conditions on the morphology, phase behavior, and stability. Furthermore, various applications such as payload entrapment and polymerization templating are presented to demonstrate their versatility and chemical nature.

6.
Biochim Biophys Acta Biomembr ; 1865(8): 184209, 2023 12.
Article in English | MEDLINE | ID: mdl-37558175

ABSTRACT

WaaG is a glycosyltransferase (GT) involved in the synthesis of the bacterial cell wall, and in Escherichia coli it catalyzes the transfer of a glucose moiety from the donor substrate UDP-glucose onto the nascent lipopolysaccharide (LPS) molecule which when completed constitutes the major component of the bacterium's outermost defenses. Similar to other GTs of the GT-B fold, having two Rossman-like domains connected by a short linker, WaaG is believed to undergo complex inter-domain motions as part of its function to accommodate the nascent LPS and UDP-glucose in the catalytic site located in the cleft between the two domains. As the nascent LPS is bulky and membrane-bound, WaaG is a peripheral membrane protein, adding to the complexity of studying the enzyme in a biologically relevant environment. Using specific 5-fluoro-Trp labelling of native and inserted tryptophans and 19F NMR we herein studied the dynamic interactions of WaaG with lipids using bicelles, and with the donor substrate. Line-shape changes when bicelles are added to WaaG show that the dynamic behavior is altered when binding to the model membrane, while a chemical shift change indicates an altered environment around a tryptophan located in the C-terminal domain of WaaG upon interaction with UDP-glucose or UDP. A lipid-bound paramagnetic probe was used to confirm that the membrane interaction is mediated by a loop region located in the N-terminal domain. Furthermore, the hydrolysis of the donor substrate by WaaG was quantified by 31P NMR.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Lipopolysaccharides , Glycosyltransferases/chemistry , Protein Conformation , Glucose , Uridine Diphosphate
7.
ACS Appl Mater Interfaces ; 14(51): 56613-56622, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36521233

ABSTRACT

Novel approaches are required to address the urgent need to develop lipid-based carriers of paclitaxel (PTX) and other hydrophobic drugs for cancer chemotherapy. Carriers based on cationic liposomes (CLs) with fluid (i.e., chain-melted) membranes (e.g., EndoTAG-1) have shown promise in preclinical and late-stage clinical studies. Recent work found that the addition of a cone-shaped poly(ethylene glycol)-lipid (PEG-lipid) to PTX-loaded CLs (CLsPTX) promotes a transition to sterically stabilized, higher-curvature (smaller) nanoparticles consisting of a mixture of PEGylated CLsPTX and PTX-containing fluid lipid nanodiscs (nanodiscsPTX). These CLsPTX and nanodiscsPTX show significantly improved uptake and cytotoxicity in cultured human cancer cells at PEG coverage in the brush regime (10 mol % PEG-lipid). Here, we studied the PTX loading, in vivo circulation half-life, and biodistribution of systemically administered CLsPTX and nanodiscsPTX and assessed their ability to induce apoptosis in triple-negative breast-cancer-bearing immunocompetent mice. We focused on fluid rather than solid lipid nanodiscs because of the significantly higher solubility of PTX in fluid membranes. At 5 and 10 mol % of a PEG-lipid (PEG5K-lipid, molecular weight of PEG 5000 g/mol), the mixture of PEGylated CLsPTX and nanodiscsPTX was able to incorporate up to 2.5 mol % PTX without crystallization for at least 20 h. Remarkably, compared to preparations containing 2 and 5 mol % PEG5K-lipid (with the PEG chains in the mushroom regime), the particles at 10 mol % (with PEG chains in the brush regime) showed significantly higher blood half-life, tumor penetration, and proapoptotic activity. Our study suggests that increasing the PEG coverage of CL-based drug nanoformulations can improve their pharmacokinetics and therapeutic efficacy.


Subject(s)
Antineoplastic Agents, Phytogenic , Breast Neoplasms , Mice , Humans , Animals , Female , Paclitaxel/chemistry , Liposomes/chemistry , Tissue Distribution , Caspase 3 , Polyethylene Glycols/chemistry , Lipids , Breast Neoplasms/drug therapy , Drug Carriers/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/chemistry
8.
Biochim Biophys Acta Biomembr ; 1864(11): 184030, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35988722

ABSTRACT

Homeoprotein transcription factors have the property of interacting with membranes through their DNA-binding homeodomain, which is involved in unconventional internalization and secretion. Both processes depend on membrane-translocating events but their detailed molecular mechanisms are still poorly understood. We have previously characterized the conformational properties of Engrailed 2 homeodomain (EnHD) in aqueous solution and in micelles as membrane-mimetic environments. In the present study, we used small isotropic lipid bicelles as a more relevant membrane-mimetic model to characterize the membrane-bound state of EnHD. We show that lipid bicelles, in contrast to micelles, adequately reproduce the requirement of anionic lipids in the membrane binding and conformational transition of EnHD. The fold-unfold transition of EnHD induced by anionic lipids was characterized by NMR using 1H, 13C, 15N chemical shifts, nuclear Overhauser effects, residual dipolar couplings, intramolecular and intermolecular paramagnetic relaxation enhancements induced by site-directed spin-label or paramagnetic lipid probe, respectively. A global unpacking of EnHD helices is observed leading to a loss of the native fold. However, near-native propensities of EnHD backbone conformation are maintained in membrane environment, including not only the three helices but also the turn connecting helices H2 and H3. NMR and coarse-grained molecular dynamics simulations reveal that the EnHD adopts a shallow insertion in the membrane, with the three helices oriented parallel to the membrane. EnHD explores extended conformations and closed U-shaped conformations, which are stabilized by anionic lipid recruitment.


Subject(s)
Micelles , Molecular Dynamics Simulation , Homeodomain Proteins/chemistry , Lipids , Protein Structure, Secondary
9.
J Oleo Sci ; 71(3): 353-362, 2022.
Article in English | MEDLINE | ID: mdl-35236795

ABSTRACT

Bicelles are extensively used as the parent assemblies of functional membrane materials. This study characterizes membrane fluidity in fatty acid/detergent bicelles containing carboxyl boron-dipyrromethene (BODIPY C12) and pyrromethene as fluorescent probe molecules. The anisotropy value of BODIPY C12 and pyrromethene in the phospholipid vesicles depended on the phase state of the vesicles. The anisotropy of the fluorescent probe molecules in bicelles of oleic acid/3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxypropane sulfonate (OA/CHAPSO) was then evaluated. The OA/CHAPSO bicelles were prepared by mixing CHAPSO detergent solution with OA vesicles at different molar ratios, X OA (= [OA]/([OA]+[CHAPSO])). The anisotropies of the probes in the OA/CHAPSO bicelles increased with decreasing X OA. BODIPY C12 in the range 0.30 ≤ X OA ≤ 0.70 exhibited a distinctly larger anisotropy than pyrromethene. This result agreed with the increase in packing density associated with the adsorption of CHAPSO molecules on the OA bilayer membrane in the OA/CHAPSO bicelle, revealing that the anisotropy of BODIPY C12 molecule enables membrane-fluidity evaluation in OA/CHAPSO bicelles.


Subject(s)
Oleic Acid , Phospholipids , Anisotropy , Boron Compounds , Lipid Bilayers
10.
Nano Converg ; 9(1): 3, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35015161

ABSTRACT

Cell-membrane-mimicking supported lipid bilayers (SLBs) provide an ultrathin, self-assembled layer that forms on solid supports and can exhibit antifouling, signaling, and transport properties among various possible functions. While recent material innovations have increased the number of practically useful SLB fabrication methods, typical SLB platforms only work in aqueous environments and are prone to fluidity loss and lipid-bilayer collapse upon air exposure, which limits industrial applicability. To address this issue, herein, we developed sucrose-bicelle complex system to fabricate air-stable SLBs that were laterally mobile upon rehydration. SLBs were fabricated from bicelles in the presence of up to 40 wt% sucrose, which was verified by quartz crystal microbalance-dissipation (QCM-D) and fluorescence recovery after photobleaching (FRAP) experiments. The sucrose fraction in the system was an important factor; while 40 wt% sucrose induced lipid aggregation and defects on SLBs after the dehydration-rehydration process, 20 wt% sucrose yielded SLBs that exhibited fully recovered lateral mobility after these processes. Taken together, these findings demonstrate that sucrose-bicelle complex system can facilitate one-step fabrication of air-stable SLBs that can be useful for a wide range of biointerfacial science applications.

11.
Int J Mol Sci ; 22(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34575831

ABSTRACT

There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.


Subject(s)
Drug Carriers , Drug Delivery Systems , Fatty Acids/administration & dosage , Lipids/chemistry , Monoglycerides/administration & dosage , Nanoparticles/chemistry , Nanotechnology , Chemical Phenomena , Humans , Liposomes , Micelles , Nanocapsules/chemistry , Nanotechnology/methods
12.
Methods Mol Biol ; 2302: 69-79, 2021.
Article in English | MEDLINE | ID: mdl-33877623

ABSTRACT

The ability to quantify protein-protein interactions without adding labels to protein has made isothermal titration calorimetry (ITC) a preferred technique to study proteins in aqueous solution. Here, we describe the application of ITC to the study of protein-protein interactions in membrane mimics using the association of integrin αIIb and ß3 transmembrane domains in phospholipid bicelles as an example. A higher conceptual and experimental effort compared to water-soluble proteins is required for membrane proteins and rewarded with rare thermodynamic insight into this central class of proteins.


Subject(s)
Integrin alpha2/chemistry , Integrin alpha2/metabolism , Integrin beta3/chemistry , Integrin beta3/metabolism , Phospholipids/metabolism , Animals , Binding Sites , Calorimetry , Humans , Membranes, Artificial , Models, Molecular , Molecular Conformation , Protein Binding , Protein Domains , Protein Interaction Maps
13.
J Mol Biol ; 433(11): 166888, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33631193

ABSTRACT

Membrane proteins (MPs) are the target of numerous structural and functional studies in biological and medical/pharmaceutical sciences. Strategies for the high-throughput structural analysis of MPs and of their perturbations driven by ligands having potential therapeutic applications are uncommon, often requiring scaled up crystallization, electron microscopy, and nuclear magnetic resonance (NMR) efforts. Small-angle X-ray scattering (SAXS) provides a rapid means to study low resolution structures and conformational changes of native MPs in solution without cumbersome sample preparations/treatment. The method requires the MPs solubilized in an appropriate medium (eg. detergents, mixed micelles and nanodiscs) and reliable and robust models are needed to describe the relevant complexes. Here we present MPBuilder, a simple and versatile tool for the generation and refinement of all-atom MP systems in the popular software PyMOL, an environment familiar to most biologists. MPBuilder provides building capability for protein-detergent, bicelle, and lipid-scaffold (saposin nanoparticles, nanodiscs) complexes and links this to the ATSAS software package modules for model refinement and validation against the SAXS data.


Subject(s)
Membrane Proteins/chemistry , Scattering, Small Angle , Software , X-Ray Diffraction , Aquaporins/chemistry , Computer Simulation , Detergents/chemistry , Lipids/chemistry , Solubility
14.
Bio Protoc ; 11(24): e4271, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35087930

ABSTRACT

Various methods have been developed to generate phosphoglyceride liposomes. Approaches resulting in homogeneous populations of unilamellar bilayer vesicles are generally preferred to mimic various cell membrane situations, as well as to optimize aqueous solute trapping efficiency using the least amount of lipid for biotechnological purposes. Most are time-consuming, often tedious, or require specialized equipment, and produce vesicles with limited shelf-life at room temperature or in cold storage. Herein, we describe a straightforward approach that avoids the preceding complications and streamlines the construction of unilamellar bilayer vesicles from 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC)/dihexanoyl phosphatidylcholine (DHPC) bicelle mixtures at room temperature. The resulting vesicles are small (32-36 nm diameter), unilamellar, bilayer vesicles that are homogeneous, stable, and resistant to freeze-thaw alterations. Graphic abstract: Cryo-EM of POPC vesicles formed by dilution of 0.5 q-value POPC/DHPC bicelle mix.

15.
Protein Pept Lett ; 28(1): 63-73, 2021.
Article in English | MEDLINE | ID: mdl-32484077

ABSTRACT

BACKGROUND: Obesity has emerged as a global public health challenge associated with increased risk of hyperlipidemia and hypertension. It contributes to high sympathetic activity and increased catecholamine levels. The hypothalamic melanocortin system is known to regulate the energy homeostasis. The role of melanocortin 4 receptor (MC4R) has been demonstrated pharmacologically and in animal studies, which showed that severe obesity in MC4R knockout mice was caused by increased food intake and decreased energy consumption. Over 70 multiple different mis- -sense and nonsense mutations in hMC4R have been found at a high frequency of 2-8% in severe early onset or hereditary obesity. The single amino acid variation (D90N) located in the second transmembrane domain (TM2) of MC4R results in accelerated growth and childhood onset obesity. Interestingly, the functional characterization of D90N hMC4R mutant TM2 (m-hMC4R-TM2) revealed normal cell surface expression and binding with agonist similar to the hMC4R wild-type TM2 (wt-hMC4R-TM2) but loss of signal transduction mediated via Gs/adenylyl cyclase activation. It is essential to delineate the three-dimensional structure of MC4Rs in order to elucidate their functional aspects. OBJECTIVE: In this study, we demonstrate the optimized expression and isolation of wt/m-hMC4R-TM2 proteins under different chemical cleavage reaction times and purification procedures via SDS precipitation. The solid-state NMR spectroscopy was carried out to study the structure of wt/m-hMC4R- TM2 protein in the anisotropic phospholipid bicelles. METHODS: The KSI-wt/m-hMC4R-TM2 fusion proteins developed in cell culture with LB medium. In order to isolate the expressed fusion protein from the cell, ultrasonication, Ni-NTA affinity chromatography, dialysis, and lyophilization techniques were used. Then, to obtain a protein with higher purity and higher yield, the CNBr chemical cleavage time was subdivided into 30 minutes, 1 h, 2 h, 3 h, and 4 h. Purification process was performed using FPLC, and 100 mM KCl and dialysis were used to remove the SDS. CD spectrometer, MALDI-TOF, solution-state NMR, and solid-state NMR were used to confirmed purity and structure of the wt/m-hMC4R-TM2. RESULTS: The precipitation method was used to remove the SDS bound to proteins as KCl-SDS. We optimized the 2 h cleavage reaction times for both wt-hMC4R-TM2 and m-hMC4R-TM2 depending on the purity based on mass spectra and 1H-15N HSQC spectra and the yield after final purification. The 1D 1H-15N CP (Cross polarization) solid-state NMR spectra suggest that the wt/m-hMC4R- TM2 undergo rotational diffusion around a perpendicular axis along the bilayer normal. CONCLUSION: We expressed wt/m-hMC4R-TM2 in E.coli and optimized the isolation and purification process, especially CNBr chemical cleavage time. The efficiency of KCl-SDS precipitation was confirmed via MALDI-TOF MS and the pure proteins obtained using this method were characterized by CD spectroscopy and solution-state NMR. The results of 1H-15N HSQC spectra in solution- state NMR also show the probability for structural studies. The 1D 1H-15N CP solid-state NMR spectra indicate that most of the residues in both the wt/m-hMC4R-TM2 peptides are integrated into the membrane.


Subject(s)
Escherichia coli/metabolism , Gene Expression , Obesity , Receptor, Melanocortin, Type 4 , Recombinant Fusion Proteins , Animals , Escherichia coli/genetics , Humans , Mice , Receptor, Melanocortin, Type 4/biosynthesis , Receptor, Melanocortin, Type 4/chemistry , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
16.
Proc Natl Acad Sci U S A ; 117(51): 32380-32385, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33293416

ABSTRACT

A structure of the murine voltage-dependent anion channel (VDAC) was determined by microcrystal electron diffraction (MicroED). Microcrystals of an essential mutant of VDAC grew in a viscous bicelle suspension, making it unsuitable for conventional X-ray crystallography. Thin, plate-like crystals were identified using scanning-electron microscopy (SEM). Crystals were milled into thin lamellae using a focused-ion beam (FIB). MicroED data were collected from three crystal lamellae and merged for completeness. The refined structure revealed unmodeled densities between protein monomers, indicative of lipids that likely mediate contacts between the proteins in the crystal. This body of work demonstrates the effectiveness of milling membrane protein microcrystals grown in viscous media using a focused ion beam for subsequent structure determination by MicroED. This approach is well suited for samples that are intractable by X-ray crystallography. To our knowledge, the presented structure is a previously undescribed mutant of the membrane protein VDAC, crystallized in a lipid bicelle matrix and solved by MicroED.


Subject(s)
Voltage-Dependent Anion Channels/chemistry , Animals , Cryoelectron Microscopy/methods , Crystallization , Lipids/chemistry , Mice , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission , Mitochondrial Proteins/chemistry , Protein Conformation
17.
ACS Appl Mater Interfaces ; 12(41): 45744-45752, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32940030

ABSTRACT

Innovative technologies for intracellular delivery are ushering in a new era for gene editing, enabling the utilization of a patient's own cells for stem cell and immunotherapies. In particular, cell-squeezing platforms provide unconventional forms of intracellular delivery, deforming cells through microfluidic constrictions to generate transient pores and to enable effective diffusion of biomolecular cargo. While these devices are promising gene-editing platforms, they require frequent maintenance due to the accumulation of cellular debris, limiting their potential for reaching the throughputs necessary for scalable cellular therapies. As these cell-squeezing technologies are improved, there is a need to develop next-generation platforms with higher throughput and longer lifespan, importantly, avoiding the buildup of cell debris and thus channel clogging. Here, we report a versatile strategy to coat the channels of microfluidic devices with lipid bilayers based on noncovalent lipid bicelle technology, which led to substantial improvements in reducing cell adhesion and protein adsorption. The antifouling properties of the lipid bilayer coating were evaluated, including membrane uniformity, passivation against nonspecific protein adsorption, and inhibition of cell attachment against multiple cell types. This surface functionalization approach was applied to coat constricted microfluidic channels for the intracellular delivery of fluorescently labeled dextran and plasmid DNA, demonstrating significant reductions in the accumulation of cell debris. Taken together, our work demonstrates that lipid bicelles are a useful tool to fabricate antifouling lipid bilayer coatings in cell-squeezing devices, resulting in reduced nonspecific fouling and cell clogging to improve performance.


Subject(s)
Biofouling/prevention & control , Lab-On-A-Chip Devices , Lipid Bilayers/chemistry , Cell Adhesion , Cells, Cultured , Humans , Jurkat Cells , Molecular Structure , Particle Size , Surface Properties
18.
Materials (Basel) ; 13(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32659968

ABSTRACT

Bicelles have been intensively studied for use as drug delivery carriers and in biological studies, but their preparation with low-cost materials and via a simple process would allow their use for other purposes as well. Herein, bicelles were prepared through a semi-spontaneous method using a mixture of hydrogenated soybean lecithin (SL) and a nonionic surfactant, polyoxyethylene cholesteryl ether (ChEO10), and then we investigated the effect of composition and temperature on the structure of bicelles, which is important to design tailored systems. As the fraction of ChEO10 (XC) was increased, a bimodal particle size distribution with a small particle size of several tens of nanometers and a large particle size of several hundred nanometers was obtained, and only small particles were observed when XC ≥ 0.6, suggesting the formation of significant structure transition (liposomes to bicelles). The small-angle neutron scattering (SANS) spectrum for these particles fitted a core-shell bicelle model, providing further evidence of bicelle formation. A transition from a monomodal to a bimodal size distribution occurred as the temperature was increased, with this transition taking place at lower temperatures when higher SL-ChEO10 concentrations were used. SANS showed that this temperature-dependent size change was reversible, suggesting the SL-ChEO10 bicelles were stable against temperature, hence making them suitable for several applications.

19.
J Biol Chem ; 295(44): 14793-14804, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32703899

ABSTRACT

Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.


Subject(s)
Cyanobacteria/chemistry , Mutation , Proton Pumps/chemistry , Rhodopsins, Microbial/chemistry , Binding Sites , Biopolymers/chemistry , Crystallography, X-Ray , Ion Transport , Protein Conformation , Proton Pumps/genetics , Protons , Retinaldehyde/metabolism , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/metabolism
20.
Cell Rep ; 31(4): 107583, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32348769

ABSTRACT

Structural and functional studies of HIV envelope glycoprotein (Env) as a transmembrane protein have long been complicated by challenges associated with inherent flexibility of the molecule and the membrane-embedded hydrophobic regions. Here, we present approaches for incorporating full-length, wild-type HIV-1 Env, as well as C-terminally truncated and stabilized versions, into lipid assemblies, providing a modular platform for Env structural studies by single particle electron microscopy. We reconstitute a full-length Env clone into a nanodisc, complex it with a membrane-proximal external region (MPER) targeting antibody 10E8, and structurally define the full quaternary epitope of 10E8 consisting of lipid, MPER, and ectodomain contacts. By aligning this and other Env-MPER antibody complex reconstructions with the lipid bilayer, we observe evidence of Env tilting as part of the neutralization mechanism for MPER-targeting antibodies. We also adapt the platform toward vaccine design purposes by introducing stabilizing mutations that allow purification of unliganded Env with a peptidisc scaffold.


Subject(s)
HIV Envelope Protein gp41/genetics , HIV-1/genetics , Lipid Bilayers/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL