Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add more filters











Publication year range
1.
Eur J Med Chem ; 279: 116911, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39348763

ABSTRACT

Macrocyclization presents a valuable strategy for enhancing the pharmacokinetic and pharmacodynamic profiles of short bioactive peptides. The exploration of various macrocyclic characteristics, such as crosslinking tethers, ring size, and orientation, is generally conducted during the early stages of development. Herein, starting from a potent and selective C-X-C chemokine receptor 4 (CXCR4) cyclic heptapeptide antagonist mimicking the N-terminal region of CXCL12, we demonstrated that the disulfide bridge could be successfully replaced with a side-chain to side-chain lactam bond, which is commonly not enlisted among the conventional disulfide mimetics. An extensive investigation was carried out to explore the chemical space of the resulting peptides, including macrocyclization width, stereochemical configuration, and lactam orientation, all of which were correlated with biochemical activity. We identified a novel heptapeptide that fully replicates the pharmacological profile of the parent peptide on CXCR4, including its potency, selectivity, and antagonistic activity, while demonstrating enhanced stability in a reductive environment. At this stage, computational studies were instructed to shed light on how the lactam cyclization features influenced the overall structure of 21 and, in turn, its ability to interact with the receptor. We envisage that these findings can give new momentum to the use of lactam cyclization as a disulfide bond mimetic and contribute to the enhancement of the repertoire for peptide-based drug development, thereby paving the way for novel avenues in therapeutic innovation.

2.
Chemistry ; 30(50): e202401954, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38958040

ABSTRACT

Considering the broad use of the trifluoromethyl functional group (-CF3) in medicinal chemistry and taking into account the recent concerns on the negative environmental effects of CF3 containing compounds, we are searching for "greener" alternatives. Thus, different chemical groups (i. e. iodide, fluoride, cyclopropyl, isopropyl, cyclobutyl, 3-oxetyl, 2-oxetyl, methylsulfide, pentafluorosulfide, methylsulfonyl and sulfonamide) have been considered as potential bioequivalents of -CF3 aiming to use them in compounds with therapeutic interest instead of the polyfluoride functionality. Different structural (molecular surface and volume) and physicochemical (electronic and lipophilic) aspects of the bioequivalent functionalities proposed have been theoretically calculated and compared to those of -CF3. Additionally, the corresponding phenyl derivatives carrying these functionalities have been purchased or prepared and their experimental lipophilicity (i. e. LogP) measured using shake-flask experiments and UV-vis spectroscopy.

3.
Talanta ; 278: 126500, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38991407

ABSTRACT

Impaired expression of GABA transporters (GATs) is closely related to the pathogenesis of among others Parkinson's disease and epilepsy. As such, lipophilic nipecotic acid analogs have been extensively studied as GAT1-addressing drugs and radioligands but suffer from limited brain uptake due to the zwitterionic properties of the nipecotic acid moiety. Bioisosteric replacement of the carboxylic acid group is a promising strategy to improve the brain uptake, though it requires knowledge on the binding of these isosteres to GAT1. To screen nipecotic acid isosteres for their affinity to GAT1 in a time- and cost-effective manner, this research aims to develop a molecular imprinted polymer (MIP) that mimics the natural binding site of GAT1 and can act as an alternative screening tool to the current radiometric and mass spectrometry cellular-based assays. To this end, a nipecotic acid MIP was created using the electropolymerization of ortho-phenylenediamine (oPD) by cyclic voltammetry (CV). The optimization of the generated receptor layer was achieved by varying the scan rate (50-250 mV/s) and number of CV cycles (5-12), yielding an optimized MIP with an average imprinting factor of 2.6, a linear range of 1-1000 nm, and a theoretical LOD of 0.05 nm, as analyzed by electrical impedance spectroscopy (EIS). Selectivity studies facilitated the investigation of major binding interactions between the MIP and the substrate, building an experimental model that compares characteristics of various analogs. Results from this model indicate that the substrate carboxylic acid group plays a more important role in binding than an amine group, after comparing the binding of cyclohexanecarboxylic acid (average IF of 1.7) and piperidine (average IF of 0.46). The research culminates in a discussion regarding the feasibility of the in vitro model, comparing the synthetic system against the biological performance of GAT1. Thus, evaluating if it is possible to generate a synthetic GAT1 mimic, and if so, provide directions for follow-up research.


Subject(s)
Molecularly Imprinted Polymers , Nipecotic Acids , Molecularly Imprinted Polymers/chemistry , Nipecotic Acids/chemistry , Nipecotic Acids/metabolism , Humans , GABA Plasma Membrane Transport Proteins/metabolism , GABA Plasma Membrane Transport Proteins/chemistry , Molecular Imprinting
4.
Eur J Med Chem ; 276: 116627, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38971050

ABSTRACT

Kappa opioid receptor (KOR) agonists represent promising therapeutics for pain relief due to their analgesic properties along with lower abuse potential than opioids that act at the mu opioid receptor. However, typical KOR agonists produce sedation and dysphoria. Previous studies have shown that G protein signaling-biased KOR agonists may present a means to untangle the desired analgesic properties from undesired side effects. In this paper, we report a new series of G protein signaling-biased KOR agonists entailing -S- → -CH2- replacement in a previously reported KOR agonist, triazole 1.1. With an optimized carbon linker in hand, further development of the scaffold was undertaken to investigate the appendages of the triazole core. The structure-activity relationship study of this series is described, including several analogues that display enhanced potency while maintaining G protein-signaling bias compared to triazole 1.1.


Subject(s)
Receptors, Opioid, kappa , Triazoles , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Structure-Activity Relationship , Humans , Molecular Structure , GTP-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Animals
5.
Pest Manag Sci ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853401

ABSTRACT

Pyridachlometyl is a novel tubulin dynamics modulator fungicide developed by Sumitomo as a new agent designed to tackle fungicide resistance. Pyridachlometyl is being developed as a first-in-class molecule with an anti-tubulin mode of action, the chemical structure of which is characterized by a unique tetrasubstituted pyridazine ring. The first commercial product 'Fuseki flowable' received initial registration in 2023 in Japan. The concepts of the discovery project, optimization of chemical structures, and biological profiles are reviewed herein. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

6.
ACS Infect Dis ; 10(6): 2250-2261, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38771724

ABSTRACT

Toward human immunodeficiency virus type-1 (HIV-1) cure, cells latently infected with HIV-1 must be eliminated from people living with HIV-1. We previously developed a protein kinase C (PKC) activator, diacylglycerol (DAG)-lactone derivative 3, with high HIV-1 latency-reversing activity, based on YSE028 (2) as a lead compound and found that the activity was correlated with binding affinity for PKC and stability against esterase-mediated hydrolysis. Here, we synthesized new DAG-lactone derivatives not only containing a tertiary ester group or an isoxazole surrogate but also several symmetric alkylidene moieties to improve HIV-1 latency reversing activity. Compound 9a, with a dimethyl group at the α-position of the ester group, exerted twice higher HIV-1 latency reversing activity than compound 3, and compound 26, with the isoxazole moiety, was significantly active. In addition, DAG-lactone derivatives with moderate hydrophobicity and potent biostability showed high biological activity.


Subject(s)
Anti-HIV Agents , HIV-1 , Lactones , Virus Latency , Humans , HIV-1/drug effects , HIV-1/physiology , Virus Latency/drug effects , Lactones/pharmacology , Lactones/chemistry , Lactones/chemical synthesis , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Diglycerides/chemistry , Diglycerides/pharmacology , Diglycerides/chemical synthesis , HIV Infections/drug therapy , HIV Infections/virology , Protein Kinase C/metabolism , Protein Kinase C/antagonists & inhibitors
7.
Eur J Med Chem ; 274: 116511, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38820854

ABSTRACT

A structure-based drug design approach was focused on incorporating phenyl ring heterocyclic bioisosteres into coumarin derivative 1, previously reported as potent dual AChE-MAO B inhibitor, with the aim of improving drug-like features. Structure-activity relationships highlighted that bioisosteric rings were tolerated by hMAO B enzymatic cleft more than hAChE. Interestingly, linker homologation at the basic nitrogen enabled selectivity to switch from hAChE to hBChE. In the present work, we identified thiophene-based isosteres 7 and 15 as dual AChE-MAO B (IC50 = 261 and 15 nM, respectively) and BChE-MAO B (IC50 = 375 and 20 nM, respectively) inhibitors, respectively. Both 7 and 15 were moderately water-soluble and membrane-permeant agents by passive diffusion (PAMPA-HDM). Moreover, they were able to counteract oxidative damage induced by both H2O2 and 6-OHDA in SH-SY5Y cells and predicted to penetrate into CNS in a cell-based model mimicking blood-brain barrier. Molecular dynamics (MD) simulations shed light on key differences in AChE and BChE recognition processes promoted by the basic chain homologation from 7 to 15.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors , Drug Design , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Humans , Acetylcholinesterase/metabolism , Structure-Activity Relationship , Butyrylcholinesterase/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Molecular Dynamics Simulation , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Cell Line, Tumor
8.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731421

ABSTRACT

The phenyl(piperidin-4-yl)methanone fragment (here referred to as the benzoylpiperidine fragment) is a privileged structure in the development of new drugs considering its presence in many bioactive small molecules with both therapeutic (such as anti-cancer, anti-psychotic, anti-thrombotic, anti-arrhythmic, anti-tubercular, anti-parasitic, anti-diabetic, and neuroprotective agents) and diagnostic properties. The benzoylpiperidine fragment is metabolically stable, and it is also considered a potential bioisostere of the piperazine ring, thus making it a feasible and reliable chemical frame to be exploited in drug design. Herein, we discuss the main therapeutic and diagnostic agents presenting the benzoylpiperidine motif in their structure, covering articles reported in the literature since 2000. A specific section is focused on the synthetic strategies adopted to obtain this versatile chemical portion.


Subject(s)
Chemistry, Pharmaceutical , Piperidines , Piperidines/chemistry , Chemistry, Pharmaceutical/methods , Humans , Drug Design , Molecular Structure , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Structure-Activity Relationship , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology
9.
Bioorg Med Chem ; 104: 117653, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38579492

ABSTRACT

Carboxylic acids are key pharmacophoric elements in many molecules. They can be seen as a problem by some, due to perceived permeability challenges, potential for high plasma protein binding and the risk of forming reactive metabolites due to acyl-glucuronidation. By others they are viewed more favorably as they can decrease lipophilicity by adding an ionizable center which can be beneficial for solubility, and can add enthalpic interactions with the target protein. However, there are many instances where the replacement of a carboxylic acid with a bioisosteric group is required. This has led to the development of a number of ionizable groups which sufficiently mimic the carboxylic acid functionality whilst improving, for example, the metabolic profile of the molecule in question. An alternative strategy involves replacement of the carboxylate by neutral functional groups. This review initially details carefully selected examples whereby tetrazoles, acyl sulfonamides or isoxazolols have been beneficially utilized as carboxylic acid bioisosteres altering physicohemical properties, interactions with the target and metabolism and/or pharmacokinetics, before delving further into the binding mode of carboxylic acid derivatives with their target proteins. This analysis highlights new ways to consider the replacement of carboxylic acids by neutral bioisosteric groups which either rely on hydrogen bonds or cation-π interactions. It should serve as a useful guide for scientists working in drug discovery.


Subject(s)
Carboxylic Acids , Carboxylic Acids/chemistry , Drug Discovery , Protein Binding , Sulfonamides/chemistry , Tetrazoles/chemistry
10.
Beilstein J Org Chem ; 20: 540-551, 2024.
Article in English | MEDLINE | ID: mdl-38440172

ABSTRACT

The present work covers novel herbicidal lead structures that contain a 2,3-dihydro[1,3]thiazolo[4,5-b]pyridine scaffold as structural key feature carrying a substituted phenyl side chain. These new compounds show good acyl-ACP thioesterase inhibition in line with strong herbicidal activity against commercially important weeds in broadacre crops, e.g., wheat and corn. The desired substituted 2,3-dihydro[1,3]thiazolo[4,5-b]pyridines were prepared via an optimized BH3-mediated reduction involving tris(pentafluorophenyl)borane as a strong Lewis acid. Remarkably, greenhouse trials showed that some of the target compounds outlined herein display promising control of grass weed species in preemergence application, combined with a dose response window that enables partial selectivity in certain crops.

11.
Angew Chem Int Ed Engl ; 63(19): e202319831, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38465464

ABSTRACT

We have developed a general and practical approach towards 2-oxabicyclo[2.1.1]hexanes with two and three exit vectors via an iodocyclization reaction. The obtained compounds have been easily converted into the corresponding building blocks for use in medicinal chemistry. 2-Oxabicyclo[2.1.1]hexanes have been incorporated into the structure of five drugs and three agrochemicals, and validated biologically as bioisosteres of ortho- and meta-benzenes.

12.
Chembiochem ; 25(10): e202400150, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38554039

ABSTRACT

1,2,3-triazole is an important building block in organic chemistry. It is now well known as a bioisostere for various functions, such as the amide or the ester bond, positioning it as a key pharmacophore in medicinal chemistry and it has found applications in various fields including life sciences. Attention was first focused on the synthesis of 1,4-disubstituted 1,2,3-triazole molecules however 1,4,5-trisubstituted 1,2,3-triazoles have now emerged as valuable molecules due to the possibility to expand the structural modularity. In the last decade, methods mainly derived from the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction have been developed to access halo-triazole compounds and have been applied to nucleosides, carbohydrates, peptides and proteins. In addition, late-stage modification of halo-triazole derivatives by metal-mediated cross-coupling or halo-exchange reactions offer the possibility to access highly functionalized molecules that can be used as tools for chemical biology. This review summarizes the synthesis, the functionalization, and the applications of 1,4,5-trisubstituted halo-1,2,3-triazoles in biologically relevant molecules.


Subject(s)
Cycloaddition Reaction , Triazoles , Triazoles/chemistry , Triazoles/chemical synthesis , Copper/chemistry , Catalysis , Azides/chemistry , Alkynes/chemistry , Alkynes/chemical synthesis , Proteins/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Click Chemistry , Nucleosides/chemistry , Nucleosides/chemical synthesis , Carbohydrates/chemistry , Carbohydrates/chemical synthesis
13.
Angew Chem Int Ed Engl ; 63(9): e202316557, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38251921

ABSTRACT

The spiro[3.3]heptane core, with the non-coplanar exit vectors, was shown to be a saturated benzene bioisostere. This scaffold was incorporated into the anticancer drug sonidegib (instead of the meta-benzene), the anticancer drug vorinostat (instead of the phenyl ring), and the anesthetic drug benzocaine (instead of the para-benzene). The patent-free saturated analogs obtained showed a high potency in the corresponding biological assays.


Subject(s)
Antineoplastic Agents , Benzene , Heptanes , Chemical Phenomena , Antineoplastic Agents/pharmacology
14.
Bioorg Med Chem ; 98: 117565, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38142561

ABSTRACT

Herein, we present a synthetic compound library comprising of 13 structurally diverse heterocyclic monosquarate-amide derivatives. The compounds featured in this library were designed as potential bioisosteric replacements carboxylic acid moiety's. A good selection of the compounds presented exhibit unique molecular architecture and have shown promising results following in silico evaluation of 'druglike properties' using Swiss ADME. The research presented in this work focuses on the preparation of derivatives of 3,4-dihydroxycyclobut-3-ene-1,2-dione, a known carboxylic acid bioisostere.


Subject(s)
Amides , Carboxylic Acids
15.
Molecules ; 28(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37959848

ABSTRACT

Estradiol methyl ether (EDME) has recently been described by us as a very potent and subtype-specific inhibitor of the lysosomal cation channel TRPML1. Following the principle of bioisosteres, we worked out efficient synthetic approaches to ring-A aza-analogs of EDME, namely a methoxypyridine and a methoxypyrimidine analog. Both target compounds were obtained in good overall yields in six and eight steps starting from 19-nortestosterone via the oxidative cleavage of ring A followed over several intermediates and with the use of well-selected protective groups by re-cyclization to provide the desired hetero-analogs. The methoxypyridine analog largely retained its TRPML1-inhibitory activity, whereas the methoxypyrimidine analog significantly lost activity.


Subject(s)
Nandrolone , Transient Receptor Potential Channels , Estradiol/pharmacology , Lysosomes
16.
Angew Chem Int Ed Engl ; 62(31): e202303585, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37260054

ABSTRACT

Here, we report a general approach to the synthesis of the difluoroalkyl bicycloalkanes (CF2 -BCAs), as structural surrogates of aryl ketones and ethers. The chemistry is driven by a dihydrobenzoacridine photocatalyst, that engages in a catalytic electron-donor acceptor (EDA) complex, or directly reduces the fluorinated substrate. These two convergent manifolds lead to the generation of the R-CF2 radical, that reacts with the [1.1.1]- or [3.1.1.]-propellane. The method is extremely general, and extendable to complex bioactive molecules (30 examples, up to 87 % yield). The structural features of the CF2 -BCP hybrid bioisostere were investigated by single crystal X-ray. Finally, we synthesised a CF2 -BCP analogue of a Leukotriene A4 hydrolase inhibitor, replacing the original aryl ether motif. In silico docking studies indicated that this new analogue maintains the same arrangement within the enzyme pocket, profiling the use of the CF2 -BCA hybrid bioisostere in medicinal chemistry settings.

17.
Med Chem Res ; : 1-69, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-37362319

ABSTRACT

The pyridazine ring is endowed with unique physicochemical properties, characterized by weak basicity, a high dipole moment that subtends π-π stacking interactions and robust, dual hydrogen-bonding capacity that can be of importance in drug-target interactions. These properties contribute to unique applications in molecular recognition while the inherent polarity, low cytochrome P450 inhibitory effects and potential to reduce interaction of a molecule with the cardiac hERG potassium channel add additional value in drug discovery and development. The recent approvals of the gonadotropin-releasing hormone receptor antagonist relugolix (24) and the allosteric tyrosine kinase 2 inhibitor deucravacitinib (25) represent the first examples of FDA-approved drugs that incorporate a pyridazine ring. In this review, the properties of the pyridazine ring are summarized in comparison to the other azines and its potential in drug discovery is illustrated through vignettes that explore applications that take advantage of the inherent physicochemical properties as an approach to solving challenges associated with candidate optimization.

18.
J Agric Food Chem ; 71(47): 18171-18187, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37350671

ABSTRACT

We report on the development of a novel class of diaryl ether herbicides. After the discovery of a phenoxybenzoic acid with modest herbicidal activity, optimization led to several molecules with improved control of broadleaf and grass weeds. To facilitate this process, we first employed a three-step combinatorial approach, then pivoted to a one-step Ullmann-type coupling that provided faster access to new analogs. After determining that the primary target site of our benchmark diaryl ethers was acetolactate synthase (ALS), we further leveraged this copper-catalyzed methodology to conduct a scaffold hopping campaign in the hope of uncovering an additional mode of action with fewer documented cases of resistance. Our comprehensive and systematic investigation revealed that while the herbicidal activity of this area seems to be exclusively linked to ALS inhibition, our molecules represent a structurally distinct class of Group 2 herbicides. The structure-activity relationships that led us to this conclusion are described herein.


Subject(s)
Acetolactate Synthase , Herbicides , Herbicides/pharmacology , Ether , Structure-Activity Relationship , Ethers/pharmacology , Plant Weeds/metabolism , Ethyl Ethers , Acetolactate Synthase/metabolism , Herbicide Resistance
19.
Bioorg Med Chem ; 88-89: 117332, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37210791

ABSTRACT

Pyridachlometyl is a unique pyridazine fungicide with a novel mode of action. Herein, we describe the pathway for the invention of pyridachlometyl. First, we identified a diphenyl-imidazo[1,2-a]pyrimidine as our proprietary lead with potent fungicidal activity. Then, aiming to simplify the chemical structure, we applied judicious estimations to explore monocyclic heterocycles as pharmacophores. This enabled the identification of a novel class of tetrasubstituted pyridazine compounds with potent fungicidal activity, likely retaining the same mode of action as the aforementioned compounds. The findings indicated bioisosteric similarity between diphenyl-imidazo[1,2-a]pyrimidine and pyridazine. Further structure-activity and mammalian safety investigations of pyridazine compounds resulted in the discovery of pyridachlometyl as a candidate for commercial development.


Subject(s)
Fungicides, Industrial , Pyridazines , Animals , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Biphenyl Compounds , Pyrimidines/pharmacology , Pyridazines/pharmacology , Pyridazines/chemistry , Structure-Activity Relationship , Mammals
20.
Eur J Med Chem ; 255: 115352, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37178666

ABSTRACT

Following a hybridization strategy, a series of 5-substituted-1H-indazoles were designed and evaluated in vitro as inhibitors of human monoamine oxidase (hMAO) A and B. Among structural modifications, the bioisostere-based introduction of 1,2,4-oxadiazole ring returned the most potent and selective human MAO B inhibitor (compound 20, IC50 = 52 nM, SI > 192). The most promising inhibitors were studied in cell-based neuroprotection models of SH-SY5Y and astrocytes line against H2O2. Moreover, preliminary drug-like features (aqueous solubility at pH 7.4; hydrolytic stability at acidic and neutral pH) were assessed for selected 1,2,4-oxadiazoles and compared to amide analogues through RP-HPLC methods. Molecular docking simulations highlighted the crucial role of molecular flexibility in providing a better shape complementarity for compound 20 within MAO B enzymatic cleft than rigid analogue 18. Enzymatic kinetics analysis along with thermal stability curves (Tm shift = +2.9 °C) provided clues of a tight-binding mechanism for hMAO B inhibition by 20.


Subject(s)
Neuroblastoma , Neuroprotection , Humans , Molecular Docking Simulation , Indazoles/pharmacology , Indazoles/chemistry , Oxadiazoles/pharmacology , Hydrogen Peroxide , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL