Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Environ Sci Pollut Res Int ; 30(18): 52433-52445, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36840872

ABSTRACT

Ammonia nitrogen (NH4+-N) is widely found in aquifers with strong reducibility or poor adsorptivity as a dissolved inorganic nitrogen pollutant. The application of adsorbents with effective long-term in situ bioregeneration as permeable reactive barrier (PRB) media for nitrogen removal has raised concern. In this study, the advantage of natural diatomite as a PRB material was investigated by exploring its NH4+-N adsorption and desorption characteristics, and the ability of diatomite and zeolite to be loaded nitrifying bacteria was also compared. The results showed that the exchangeable ammonium from chemical-monolayer adsorption was the main form of NH4+-N and was adsorbed by diatomite. Moreover, the adsorption process was limited with a maximum adsorption capacity of 0.677 mg g-1. However, diatomite demonstrated an excellent loading of aerobic-heterotrophic microorganisms, even stronger than zeolite. Compared with zeolite reactors, a higher OD600 value of nitrifiers, a faster NH4+-N degradation rate and more abundant functional genes were observed during the bioregeneration process of diatomite. Both the solution and exchangeable ammonium forms were bioavailable, and the regeneration of diatomite was more than 80.0% after two days. Moreover, desorption-biodegradation was systematically analysed to determine the bioregeneration mechanism of diatomite. Diatomite with good regeneration ability can be used as a competitive alternative to address sudden nitrogen pollution.


Subject(s)
Ammonium Compounds , Zeolites , Ammonium Compounds/metabolism , Adsorption , Nitrogen , Denitrification
2.
Water Res ; 224: 119110, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36126630

ABSTRACT

Ion exchange technology removes ionic compounds from waters effectively but treatment of the spent regenerant is expensive. The bioregeneration of sulfate-laden strong base anion exchange resin was successfully tested using both pure and mixed sulfate-reducing bacterial cultures. The resin was first used for removal of sulfate from neutral (pH 6.7 ± 0.5) synthetic sodium sulfate solutions, after which the spent resin was regenerated by incubating with a viable sulfate-reducing bacterial culture in batch and column modes. In the batch bioregeneration tests, the achieved bioregeneration was 36-95% of the original capacity of the fresh resin (112 mg SO42-/g) and it increased with regeneration time (1-14 days). The capacity achieved in the column tests during 24 hours of bioregeneration was 107 mg SO42-/g after the first regeneration cycle. During the bioregeneration, sulfate was mainly reduced by the sulfate-reducing bacteria (approx. 60%), but part of it was only detached from the resins (approx. 30%). The resin-attached sulfate was most likely replaced with ions present in the liquid sulfate-reducing bacterial culture (e.g., HCO3-, HS-, and Cl-). During the subsequent exhaustion cycles with the bioregenerated resin, the pH of the treated sodium sulfate solution increased from the original 6.7 ± 0.5 to around 9. The study showed that biological sulfate reduction could be used for sulfate removal in combination with ion exchange, and that the exhausted ion exchange resins could be regenerated using a liquid sulfate-reducing bacterial culture without producing any brine.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Anion Exchange Resins/chemistry , Ion Exchange , Ion Exchange Resins , Sulfates/chemistry , Sulfur Oxides , Water Pollutants, Chemical/chemistry
3.
J Hazard Mater ; 422: 126840, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34419848

ABSTRACT

Micropollutants can be removed in Biological Activated Carbon (BAC) filters through biodegradation, besides adsorption, when the conditions are favorable. In the present study, we build upon previous work on melamine biodegradation and activated carbon regeneration in batch experiments and assess the efficiency of this process in continuous flow lab-scale BAC filters. Melamine is frequently detected at low concentrations in surface water and is used here as a model micropollutant. BAC filters were inoculated with melamine degrading biomass and the contribution of biodegradation to melamine removal was assessed. Furthermore, we tested the effect of an additional carbon source (methanol) and the effect of contact time on melamine removal efficiency. We demonstrate that inoculation of activated carbon filters with melamine degrading biomass increases melamine removal efficiency by at least 25%. When an additional carbon source (methanol) is supplied, melamine removal is almost complete (up to 99%). Finally, through a nitrogen mass balance, we demonstrate that around 60% of the previously adsorbed melamine desorbs from the BAC surface when biodegradation rates in the liquid phase increase. Melamine desorption resulted in a partial recovery of the adsorption capacity.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Biodegradation, Environmental , Charcoal , Triazines , Water Pollutants, Chemical/analysis
4.
Water Res ; 198: 117152, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33940501

ABSTRACT

Biologically activated carbon (BAC) filters are widely used in China and worldwide as an essential part of advanced water treatment. However, it is unclear how to properly select the granular activated carbon (GAC) used in BAC filters and to determine when GAC should be replaced. In this study, five BAC filters, each filled with a different coconut- or coal-based GAC with different physicochemical properties, were run continuously for 400 days. The structure and function of the microbial community and the quantity of specific enzymes in the BAC filters were investigated through an integrated metagenomic/metaproteomic analysis. The results indicated that GAC adsorption still played a major role in removing organic matter once the filters reached a steady-state, which was attributed to bioregeneration, and the contribution of adsorption might be relatively greater than that of biodegradation. GAC with strong adsorption capacity and high bioregeneration potential selected bacterial communities more phylogenetically closely-related than others. The iodine value could be used as an indicator of BAC performance in terms of organic matter removal in the initial stage of the filters, which is dominated by adsorption. However, it could not be used to assess performance at a later stage when adsorption and biodegradation occurred simultaneously. Pore-size distribution characteristics could be chosen as a potential better indicator compared with the current adsorption indicators, dually representing the adsorption performance and the microbial activity, and the proportion of important pore-size of GAC that is more suitable for BAC filter is suggested. GAC with strongly polar terminal groups is more conducive to the removal of ammonium-nitrogen.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , China , Water Pollutants, Chemical/analysis
5.
Bioresour Technol ; 331: 125025, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33812745

ABSTRACT

Adding ferric ions (Fe3+) in catholyte can enhance performance of microbial fuel cells (MFCs). This work adopted biocathode with enriched Fe2+ oxidizing microflora to perform in situ Fe2+ oxidization so the MFC could operate with prolonged period with increased cell open circuit voltage (1037 mV) and maximum power density (71.8 Wm-3 at 154 Am-3) but with minimal needs for iron replenishment. The Fe2+-oxidizing microflora was very effective so the Fe3+/Fe2+ could reach high ratio, which was composed of Acidithiobacillus (73.8%), Acidiphilium (12.1%), Mycobacterium (6.92%), Sulfobacillus (2.66%), Ochrobactrum (1.30%), Alicyclobacillus (0.82%), and other minor species. The membrane transport and cell replication were shown to be their most important metabolic activities. The formation of jarosite and hydronium jarosite by Fe3+ and sulfate led to loss of iron ions, which should be minimized in operation.


Subject(s)
Acidithiobacillus , Bioelectric Energy Sources , Iron , Oxidation-Reduction , Temperature
6.
Water Res X ; 9: 100078, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33299980

ABSTRACT

Highly variable flow has to be expected in decentralized greywater treatment and can lead to intermittent operation of the treatment system. However, few studies have addressed the influence of variable flow on the treatment performance of a biological activated carbon filter (BAC). In this study, we investigated the influence of intermittent flow using small-scale BAC columns, which treat greywater as a second treatment step following a membrane bioreactor (MBR). Three operating strategies to respond to variable flow were evaluated. The activated carbon was characterized before and after the experiments in terms of biological activity and sorption capacity. The performance of the BAC filters was assessed based on total organic carbon (TOC) removal, TOC fractions and growth potential. No significant differences were observed between constant flow compared to on-off operation with intermittent flow over the range of tested influent concentrations. Peaks with high TOC during 24 h periods were attenuated by sorption and biological degradation. Adsorbed TOC was released after switching back to normal concentrations for influent concentrations more than 5 times higher than usually observed, the BAC functioned as a temporary sink. In line with these results, the high influent TOC values led to increased biological activity in the filter but did not influence the sorption capacity. The experiments showed that intermittent flow does not negatively impact the performance of a BAC and that there is no need for additional equalization tanks to buffer the variable flow, for example in household-scale greywater treatment.

7.
Sci Total Environ ; 723: 138019, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32213416

ABSTRACT

A tubing TPPB (Two-Phase Partitioning Bioreactor) was operated with the objective of verifying the effective treatment of a phenolic synthetic wastewater with simultaneous polymeric tubing bioregeneration by introducing tubing effluent recycle and modifications to the Hydraulic Retention Time (HRT). 2,4-dichlorophenol (DCP) was employed as the target substrate and the bioreactor was operated for a 3 month period under severe loading conditions (from 77 to 384 mg/L d) with HRT in the tubing in the range of 2-4 h. Tubing effluent recycle (recycle flow rate/influent flow rate ratio = 0.3) was applied when a loss of performance was detected arising from the increased load. For HRT values of 3 and 4 h, almost complete DCP removal was achieved after a few days (1-5) of operation while for the 2 h HRT (i.e. in the most severe loading condition) the DCP removal was ≥97%. A beneficial effect on the process performance arising from recycle application was evident for all the operating conditions investigated, and was confirmed by statistical analysis. Essentially complete polymer bioregeneration was achieved when the bioreactor was operated at the lowest HRT (i.e. 2 h), combined with the application of tubing effluent recycle. The results of this study highlighted several advantages of the tubing TPPB configuration in a comparative analysis of different regeneration options, including the possibility of operating continuously with simultaneous bioregeneration and without the need for additional units or operational steps and extra-energy consumption.


Subject(s)
Bioreactors , Wastewater , Recycling , Waste Disposal, Fluid
8.
Chemosphere ; 248: 126022, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32006837

ABSTRACT

This work developed an effective model of the cooperative removal process of organic compounds on biologically active carbon. This model involves the determination of the dynamics of adsorption efficiency and degradation of specific classes of target organic substances but also the dynamics of non-target filling of pores with products of vital microbial activity. It is possible to quantitatively assess the contributions of adsorption, biodegradation and self-bioregeneration in the process of biologically active carbon functioning and the changes in the activated carbon porous properties during the process. The model developed was applied to assess the efficiency of filtration of 2-nitrophenol through a biologically active carbon bed for 38 months. The activated carbon adsorption capacity for removing 2-nitrophenol was preserved after three years of the bed service due to the effective biodegradation that resulted in self-bioregeneration of the sorbent. Nontarget losses of porosity (filling with bioproducts) increased with increasing duration of system operation, and by the end of the experiment, these losses amounted to 61% of the pore volume of the fresh sorbent.


Subject(s)
Biodegradation, Environmental , Charcoal/chemistry , Models, Chemical , Adsorption , Filtration , Nitrophenols , Organic Chemicals , Porosity
9.
J Hazard Mater ; 388: 122028, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31955023

ABSTRACT

The presence of micropollutants in surface water is a potential threat for the production of high quality and safe drinking water. Adsorption of micropollutants onto granular activated carbon (GAC) in fixed-bed filters is often applied as a polishing step in the production of drinking water. Activated carbon can act as a carrier material for biofilm, hence biodegradation can be an additional removal mechanism for micropollutants in GAC filters. To assess the potential of biofilm to biodegrade micropollutants, it is necessary to distinguish adsorption from biodegradation as a removal mechanism. We performed experiments at 5 °C and 20 °C with biologically active and autoclaved GAC to assess the biodegradation of micropollutants by the biofilm grown on the GAC surface. Ten micropollutants were selected as model compounds. Three of them, iopromide, iopamidol and metformin, were biodegraded by the GAC biofilm. Additionally, we observed that temperature can increase or decrease adsorption, depending on the micropollutant studied. Finally, we compared the adsorption capacity of GAC used for more than 100,000 bed volumes and fresh GAC. We demonstrated that used GAC shows a higher adsorption capacity for guanylurea, metformin and hexamethylenetetramine and only a limited reduction in adsorption capacity for diclofenac and benzotriazole compared to fresh GAC.


Subject(s)
Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Water Purification/methods , Adsorption , Biodegradation, Environmental , Biofilms , Charcoal/chemistry , Charcoal/metabolism , Drinking Water
10.
Bioresour Technol ; 283: 148-158, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30903821

ABSTRACT

Conventional aerobic treatment of high-strength wastewater is not economical due to excessively high energy requirement for compressed air supply. The use of passive aeration avoids the use of compressed air and enables energy efficient oxygen supply directly from the air. This study evaluates a passively aerated simultaneous nitrification and denitrification performing biofilm to treat concentrated wastewater. The biofilm reactor was operated > 5-months under alternating anaerobic/aerobic conditions. For 4-times concentrated wastewater, > 80% COD (2307 mg L-1 h-1) and > 60% N (60 mg L-1 h-1) was removed at a hydraulic retention time (HRT) of 7 h. A double application in the same reactor enabled > 95% COD and 85% N-removal, at an overall HRT of 14 h which is substantially shorter than what traditional activated sludge-based systems would require for the treatment of such concentrated feeds. Microbial community analysis showed Candidatus competibacter (27%) and nitrifying bacteria (Nitrosomonas, and Nitrospira) as key microbes involved in COD and N-removal, respectively.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , Nitrogen/metabolism , Oxygen/metabolism , Wastewater/chemistry , Bacteria , Bioreactors/microbiology , Denitrification , Nitrification , Nitrosomonas/physiology , Sewage/microbiology , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods
11.
J Environ Manage ; 226: 270-277, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30121463

ABSTRACT

Polymetallic concentrates obtained during ore beneficiation pose a significant problem for the mining and metallurgy industry due to an increase in load on subsequent comminution steps and a high loss of metals in slag during smelting. Storage of such slag can lead to pollution of groundwater due to weathering. Biohydrometallurgy is an option for the processing of sulfidic raw materials that has a low impact on the environment. Processing of sulfidic concentrates of copper-zinc ore via bioleaching techniques was studied in this paper. Three mixed microbial cultures of acidophilic microorganisms were enriched from industrial mining sites: two autotrophic mesophilic cultures containing Acidithiobacillus ferroxidans and Leptospirillum spp. (grown at 30 and 35 °C), and a mixotrophic moderate thermophilic culture containing Sulfobacillus thermotolerans, Leptospirillum ferriphilum, as well as the archaea Ferroplasma acidiphilum and Acidiplasma spp. (grown at 40 °C). The autotrophic microbial culture growing at 30 °C was used to generate an iron-containing biosolution for ferric leaching of a copper-zinc concentrate. Zinc and iron extracted into solution faster than copper during high-temperature (80 °C) ferric leaching of the concentrate due to galvanic interactions between minerals, redox conditions of the medium, and differences between mineral oxidation mechanisms. Weight loss of the leach residue was 34.0%, with relative copper content increased by 1.0%, zinc content decreased by 6.18%, and iron content decreased by 15.1%. Biooxidation of ferrous iron in the pregnant leach solution by three microbial cultures was also studied. The most effective culture was moderate thermophilic. The results of studies on the bioregeneration of leaching solutions are relevant to the development of a two-step biohydrometallurgical technology for processing of copper-zinc concentrate with a closed cycle of technological flows. The ferrous iron biooxidation rate by the moderate thermophilic culture reached 20 g L-1 day-1. The leach residue obtained can be considered a high-grade copper concentrate able to be processed via smelting. This bioleaching process would make it possible to reduce pollution of groundwater by some toxic metals stored in slags. An environmentally friendly technology flow sheet for copper-zinc sulfidic ore processing using two-step bioleaching treatment was proposed.


Subject(s)
Acidithiobacillus , Copper , Zinc , Archaea , Iron , Metallurgy , Oxidation-Reduction
12.
Huan Jing Ke Xue ; 39(8): 3753-3758, 2018 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-29998683

ABSTRACT

Anion exchange resin is a feasible adsorbent for nitrate removal because of its high efficiency and cost-effectiveness, but brine regeneration complicates subsequent wastewater procedures. Bioregeneration degrades the nitrate from the nitrate-laden resin, which can decrease brine solution usage and waste discharge. In this study, based on investigation of the effect of carbon source, for example, glucose, sodium acetate, sodium lactate, and methanol, on bioregeneration, nitrate-laden resin was employed to investigate the effects of inoculum amount and salt concentration on bioregeneration with sodium acetate as the carbon source. The results showed that the bioregeneration process comprised chemical desorption and biological denitrification and was limited by the biological process. With increasing inoculum amount, the bioregeneration time was remarkably reduced. Nitrate on the resin could be completely biodegraded within 10 h when the inoculum amount (measured as VSS) was higher than 0.6 g·L-1. Furthermore, higher NaCl concentrations improved the chemical desorption of nitrate, resulting in a sharp increase in soluble nitrate. However, the denitrification process of bioregeneration was also eventually limited by the biological process. When the concentration of NaCl was higher than 20 g·L-1, bioactivity of the denitrifying bacteria was limited and the bioregeneration time increased to more than 10 h. The result of multi-cycle adsorption-bioregeneration experiment showed that the NO3--N adsorption capacity of bioregenerated resin was stable at 30-35 mg·g-1.


Subject(s)
Anion Exchange Resins/chemistry , Bacteria/metabolism , Denitrification , Nitrates/isolation & purification , Water Purification , Adsorption
13.
Chemosphere ; 205: 475-483, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29705638

ABSTRACT

Pure bacteria cell (Azospira sp. KJ) and mixed perchlorate reducing bacteria (MPRB) were employed for decomposing the free perchlorate in water as well as the laden perchlorate on surface of quaternary ammonium wheat residuals (QAWR). Results indicated that perchlorate was decomposed by the Azospira sp. KJ prior to nitrate while MPRB was just the reverse. Bio-reduction of laden perchlorate by Azospira sp. KJ was optimal at pH 8.0. In contrast, bio-reduction of laden perchlorate by MPRB was optimal at pH 7.0. Generally, the rate of perchlorate reduction was controlled by the enzyme activity of PRB. In addition, perchlorate recovery (26.0 mg/g) onto bio-regenerated QAWR by MPRB was observed with a small decrease as compared with that (31.1 mg/g) by Azospira sp. KJ at first 48 h. Basically, this study is expected to offer some different ideas on bio-regeneration of perchlorate-saturated adsorbents using biological process, which may provide the economically alternative to conventional methods.


Subject(s)
Bacteria/metabolism , Perchlorates/metabolism , Hydrogen-Ion Concentration , Nitrates/metabolism , Nitrogen Oxides/metabolism , Oxidation-Reduction , Recycling/methods
14.
Environ Sci Pollut Res Int ; 25(6): 5095-5104, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28573563

ABSTRACT

Among various adsorbents studied, sulfur-impregnated activated carbon is one of the most promising adsorbents for mercury removal from flue gas. However, a large amount of spent activated carbons containing high content of mercury are generated after adsorption. To make the adsorption a more viable option, the regeneration and reuse of the spent activated carbon should be considered. The purpose of this study is to develop a novel technique for bioregeneration of sulfur-impregnated activated carbons after adsorption of mercury from flue gases by sulfur-oxidizing bacteria. The optimal operating parameters for this bioregeneration process were studied using central composite design (CCD) and response surface methodology (RSM). Results showed that the sulfur oxidation rate was increased with increasing activated carbon dosage. Furthermore, the increase of inoculum size only caused a slight increase of sulfur oxidation rate in the bioregeneration. The maximum mercury removal efficiency of more than 50% was obtained at 10% (w/v) activated carbon dosage and 20% (v/v) inoculum size. After the bioregeneration process, Brunauer-Emmett-Teller (BET) surface area and micropore volume of spent activated carbon increased due to the bio-oxidation of mercury bearing sulfur on the surface of activated carbons.


Subject(s)
Air Pollutants/analysis , Charcoal/chemistry , Environmental Restoration and Remediation/methods , Mercury/analysis , Sulfur/chemistry , Adsorption , Environmental Restoration and Remediation/instrumentation
15.
Waste Manag Res ; 35(11): 1168-1174, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28956498

ABSTRACT

This is the first attempt to explore the sustainability of aged refuse as ammonium-removal media. Batch experiments combined with the aged-refuse-based reactor were performed to examine how the adsorption and desorption processes are involved in the ammonia removal via aged refuse media in this research. The results showed that the adsorption of ammonium by aged refuse occurred instantly and the adsorbed ammonium was stable and less exchangeable. The adsorption data fit the Freundlich isotherms well and the n value of 0.1-0.5 indicated that the adsorption of ammonium occurred easily. The maximum adsorbed ammonium occupied less than 10% of the cation exchange capacity in aged-refuse-based reactors owing to the high solid/liquid ratios (50:1-120:1). The synergistic transformations of ammonium within the aged-refuse-based reactor indicated that the cation exchange sites only provide temporary storage of ammonium, and the subsequent nitrification process can be considered the predominant restoration pathway of ammonium adsorption capacity of the reactor. It seems reasonable to assume that there is no expiry for the aged-refuse-based reactor in terms of ammonium removal owing to its bioregeneration via nitrification.


Subject(s)
Ammonium Compounds/analysis , Refuse Disposal/methods , Waste Products , Water Pollutants, Chemical/analysis , Adsorption , Ammonium Compounds/chemistry , Nitrification , Water Pollutants, Chemical/chemistry , Zeolites
16.
Environ Sci Pollut Res Int ; 24(26): 20959-20971, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28726220

ABSTRACT

The effects of dry biomass density in cryogel beads, shaking speed and initial concentration ratio of phenol to 4-chlorophenol (4-CP) on the bioregeneration efficiencies of binary phenol and 4-CP-loaded granular activated carbon (GAC) for phenol and 4-CP, respectively, were investigated under the simultaneous adsorption and biodegradation approach. The results revealed higher bioregeneration efficiencies of binary-loaded GAC for phenol and 4-CP at higher dry biomass density but moderate shaking speed. The optimum dry biomass density in cryogel beads and shaking speed for use in bioregeneration were found to be 0.01 g/mL and 250 rpm, respectively. With respect to the initial phenol to 4-CP concentration ratio, the bioregeneration efficiencies were lower under increasing phenol and 4-CP initial concentrations, respectively, with the effect being more conspicuous under increasing 4-CP concentration. Higher bioregeneration efficiencies were achieved with the use of immobilized rather than suspended biomasses.


Subject(s)
Biodegradation, Environmental , Charcoal , Chlorophenols/chemistry , Cryogels , Phenol/chemistry , Adsorption , Biomass
17.
J Environ Manage ; 203(Pt 2): 817-824, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-27449961

ABSTRACT

In the present study, chemical oxygen demand (COD) removal by coagulation and packed-columns of both fresh and bioregenerated granular activated carbon (GAC) is reported as a feasible treatment for saline and oily wastewaters (slops) generated from marine oil tankers cleaning. The use of Ferric chloride (FeCl3), Aluminium sulphate (Al2(SO4)3) and Polyaluminum chloride (Al2(OH3)Cl3) was evaluated in the pre-treatment by coagulation of a real slop, after a de-oiling phase in a tank skimmer Comparison of coagulation process indicated that Polyaluminum chloride and Aluminium sulphate operate equally well (20-30% of COD removal) when applied at their optimal dose (40 and 90 mg/l respectively) but the latter should be preferred in order to significantly control the sludge production. The results from the column filtration tests indicated the feasibility of using the selected GAC (Filtrasorb 400 -Calgon Carbon Corporation) to achieve the respect of the discharge limits in the slops treatment with a carbon usage rate in the range 0.1-0.3 kg/m3 of treated effluent. Moreover, biological regeneration through Alcalinovorax borkumensis SK2 was proved to be a cost-effective procedure since the reuse of spent GAC through such regeneration process for further treatment could still achieve approximately 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal.


Subject(s)
Waste Disposal, Fluid , Wastewater , Biological Oxygen Demand Analysis , Charcoal , Filtration , Sewage
18.
Reprod Domest Anim ; 52(1): 3-15, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27925305

ABSTRACT

A placenta is defined as structural approximation of maternal and foetal tissues to perform physiological exchange. Associated processes of differentiation and the establishment of its cells take place within the extracellular matrix (ECM) that provides a rich environment of collagens, fibronectins, cytokines and other components. Placental ECM is promising for tissue regeneration purposes, because it has immune tolerance capacities that may cause only minimal rejections of transplants with immunological differences between donor and recipient. However, specific characteristics of ECM during evolution of the structurally very diverse mammalian placenta are not yet revealed. We here address the major aspects of placental types, that is non-invasive (epitheliochorial), medium (endotheliochorial)-to-high (haemochorial) invasive nature of the interhemal barrier between the foetal and maternal blood system as well as their main components of ECM with special reference to species that are commonly used as animal models for human placentation and in the potential applications for regenerative medicine.


Subject(s)
Extracellular Matrix/physiology , Mammals/physiology , Placenta/anatomy & histology , Placentation/physiology , Regenerative Medicine , Animals , Female , Humans , Pregnancy
19.
Chemosphere ; 149: 183-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26855223

ABSTRACT

In Biological Activated Carbon (BAC) systems, persistent organic pollutants can be removed through a combination of adsorption, desorption and biodegradation. These processes might be affected by the presence of other organics, especially by the more abundant easily-biodegradable organics, like acetate. In this research these relations are quantified for the removal of the persistent pharmaceutical metoprolol. Acetate did not affect the adsorption and desorption of metoprolol, but it did greatly enhance the metoprolol biodegradation. At least part of the BAC biomass growing on acetate was also able to metabolise metoprolol, although metoprolol was only converted after the acetate was depleted. The presence of easily-degradable organics like acetate in the feeding water is therefore beneficial for the removal of metoprolol in BAC systems. The isotherms obtained from metoprolol adsorption and desorption experiments showed that BAC systems are subject to hysteresis; for AC bioregeneration to take place the microbial biomass has to reduce the concentration at the AC-biomass interface 2.7 times compared to the concentration at which the carbon was being loaded. However, given the threshold concentration of the MET degrading microorganisms (<0.08 µg/L) versus the average influent concentration (1.3 µg/L), bioregeneration is feasible.


Subject(s)
Biodegradation, Environmental , Water Pollutants, Chemical/metabolism , Adsorption , Biomass , Bioreactors , Carbon , Charcoal/metabolism , Water Pollutants, Chemical/analysis
20.
Water Res ; 88: 766-776, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26595098

ABSTRACT

Nitrate contamination is one of the largest issues facing communities worldwide. One of the most common methods for nitrate removal from water is ion exchange using nitrate selective resin. Although these resins have a great capacity for nitrate removal, they are considered non regenerable. The sustainability of nitrate-contaminated water treatment processes can be achieved by regenerating the exhausted resin several times rather than replacing and incineration of exhausted resin. The use of multi-cycle exhaustion/bioregeneration of resin enclosed in a membrane has been shown to be an effective and innovative regeneration method. In this research, the mechanisms for bioregeneration of resin were studied and a mathematical model which incorporated physical desorption process with biological removal kinetics was developed. Regardless of the salt concentration of the solution, this specific resin is a pore-diffusion controlled process (XδD ¯CDr0(5+2α)<<1). Also, Thiele modulus was calculated to be between 4 and 12 depending on the temperature and salt concentration. High Thiele modulus (>3) shows that the bioregeneration process is controlled by reaction kinetics and is governed by biological removal of nitrate. The model was validated by comparison to experimental data; the average of R-squared values for cycle 1 to 5 of regeneration was 0.94 ± 0.06 which shows that the developed model predicted the experimental results very well. The model sensitivity for different parameters was evaluated and a model bioreactor design for bioregeneration of highly selective resins was also presented.


Subject(s)
Bioreactors , Ion Exchange Resins/metabolism , Models, Theoretical , Nitrates/analysis , Sodium Chloride/analysis , Water Purification/methods , Kinetics , Membranes, Artificial , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL