Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.288
Filter
1.
Heliyon ; 10(12): e33097, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022103

ABSTRACT

The study explored batch adsorption of Cd(II) and Pb(II) ions using moss biomass from Barbula consanguinea and Hyophila involuta, assessing removal efficiency concerning various parameters. Both moss species showed high removal rates for Cd(II) (87 % for B. consanguinea and 89 % for H. involuta) and Pb(II) (93 % for B. consanguinea and 94 % for H. involuta) from contaminated water, reaching equilibrium within 30 min. While Cd(II) removal was pH-independent, Pb(II) removal showed pH-dependence, peaking at pH 5.0-5.5. Adsorption isotherm analysis indicated that the Langmuir, Freundlich, Elovich, Sips, and Redlich-Peterson models best described Cd(II) and Pb(II) adsorption onto both moss species (except for Cd(II) adsorption onto H. involuta), with R 2  > 0.98. This confirms a heterogeneous surface with both monolayer and multilayer adsorption sites. The pseudo-second-order kinetic model confirmed chemisorption on moss biomass from both species. FTIR spectra identified major binding sites such as phenols, alkaloids, amines, alkenes, nitro compounds, and low-molecular-weight carbohydrates. EDS analysis validated the bonding of Cd(II) and Pb(II) ions to the biomass surface by displacing Ca(II) ions. According to the Langmuir model, moss biomass exhibited selective adsorption, favoring Pb(II) over Cd(II). B. consanguinea showed a higher adsorption capacity than H. involuta, which is attributed to its higher negative zeta potential. This study underscores the novelty of moss biomass for heavy metal removal in wastewater treatment, highlighting its sustainability, effectiveness, cost-efficiency, versatility, and eco-friendliness.

2.
Environ Pollut ; : 124599, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053797

ABSTRACT

The disorderly discharge of industrial wastewater containing heavy metals has caused serious water pollution and ecological environmental risks, ultimately threatening human life and health. Biological treatment methods have obvious advantages, but the existing microorganisms exhibit issues such as poor resistance, adaptability, colonization ability, and low activity. However, a wide variety of microorganisms in deep-sea hydrothermal vent areas are tolerant to heavy metals, possessing the potential for efficient treatment of heavy metal wastewater. Based on this, the study obtained a group of deep-sea microbial communities dominated by Burkholderia-Caballeronia-Paraburkholderia through shake flask experiments from the sediments of deep-sea hydrothermal vents, which can simultaneously achieve the synchronous removal of vanadium and cadmium heavy metals through bioreduction, biosorption, and biomineralization. Through SEM-EDS, XRD, XPS, and FT-IR analyses, it was found that V(V) was reduced to V(IV) through a reduction process and subsequently precipitated. Glucose oxidation accelerated this process. Cd(II) underwent biomineralization to form precipitates such as cadmium hydroxide and cadmium carbonate. Functional groups on the microbial cell surface, such as -CH2, C=O, N-H, -COOH, phosphate groups, amino groups, and M-O moieties, participated in the bioadsorption processes of V(V) and Cd(II) heavy metals. Under optimal conditions, namely a temperature of 40°C, pH value of 7.5, inoculation amount of 10%, salinity of 4%, COD concentration of 600 mg/L, V5+ concentration of 300 mg/L, and Cd2+ concentration of 40 mg/L, the OD600 can reach its highest at 72 hours, with the removal efficiency of V5+, Cd2+, and COD in simulated vanadium smelting wastewater reaching 86.32%, 59.13%, and 61.63%, respectively. This study provides theoretical insights and practical evidence for understanding the dynamic changes in microbial community structure under heavy metal stress, as well as the resistance mechanisms of microbial treatment of industrial heavy metal wastewater.

3.
Int J Biol Macromol ; 277(Pt 1): 134063, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038565

ABSTRACT

More sustainable materials have been becoming an important concern of worldwide scientists, and cellulosic materials are one alternative in water decontamination. An efficient strategy to improve removal capacity is functionalizing or incorporating nanomaterials in cellulose-based materials. The new hybrid cDAC/ZnONPs was produced by green synthesis of zinc oxide nanoparticles (ZnONPs), promoting the in situ reduction and immobilization on the cationic dialdehyde cellulose microfibers (cDAC) surface to remove Congo red dye from water. cDAC/ZnONPs was characterized by scanning electron microscopy (SEM-EDS) and infrared spectroscopy (FTIR), which showed efficient nanoparticles reduction. Adsorption efficiency on cationic cellulose surface was investigated by pH, contact time, initial concentration, and dye selectivity tests. The material followed the H isotherm model, which resulted in a maximum adsorption capacity of 1091.16 mg/g. Herein, was developed an efficient and ecologically correct new adsorbent, highly effective in Congo red dye adsorption even at high concentrations, suitable for the remediation of contaminated industrial effluents.

4.
ACS Appl Bio Mater ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991130

ABSTRACT

The efficient removal of lead ions at low concentrations is paramount in combating the significant threat posed by water pollution resulting from industrial activities and population growth. In this study, electrospun C. barbata/PAN fibers were developed to efficiently remove lead(II) ions from water. The morphology, structure, and mechanical properties of the fibers were examined, highlighting that the augmentation of the surface area through the conversion of C. barbata into the polymer fibers facilitates increased metal bonding sites during sorption. C. barbata/PAN fibers exhibited superior characteristics, including higher surface area, smaller pore size, and increased pore volume, compared to powdered C. barbata. The effects of factors such as shaking time, algae percentage, sorbent amount, pH, metal concentration, and temperature on Pb(II) sorption were investigated by the batch method. At an initial ion concentration of 100 µg L-1 and pH 4.0, C. barbata (5 wt %)/PAN fiber demonstrated a notable sorption efficiency of 89-90% (270 µg/g) after 60 min. The equilibrium data align with the Freundlich and Dubinin-Radushkevich isotherm models, whereas the pseudo-second-order kinetic model provides the most suitable description. The characterization of fibers after sorption revealed that carboxyl, hydroxyl, and sulfonyl groups play an active role in Pb(II) sorption.

5.
Polymers (Basel) ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000659

ABSTRACT

Ecosystems are negatively impacted by pharmaceutical-contaminated water in different ways. In this work, a new biosorbent obtained by immobilizing Lactococcus lactis in a calcium alginate matrix was developed for the removal of pharmaceuticals from aqueous solutions. Ethacridine lactate (EL) was selected as the target drug. Lactococcus Lactis biomass was chosen for the biosorbent synthesis for two reasons: (i) the microbial biomass used in the food industry allows the development of a low-cost biosorbent from available and renewable materials, and (ii) there is no literature mentioning the use of Lactococcus Lactis biomass immobilized in natural polymers as a biosorbent for the removal of pharmaceuticals. The characterization of the synthesized biosorbent named 5% LLA was performed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. Additionally, particle size and the point of zero charge were established. Batch biosorption investigations showed that using 5% LLA at an initial pH of 3.0 and a biosorbent dose of 2 g/L resulted in up to 80% EL removal efficiency for all EL initial concentrations (20-60 mg/L). Four equilibrium isotherms, given in the order of Redlich-Peterson > Freundlich > Hill > Temkin, are particularly relevant for describing the experimental data for EL biosorption on the 5% LLA biosorbent using correlation coefficient values. Kinetic parameters were determined using kinetic models such as pseudo-first-order, pseudo-second-order, Elovich, Avrami and Weber-Morris. The pseudo-second-order kinetics model provides the greatest fit among the evaluated equations, with correlation coefficients greater than 0.99. According to the study's findings, the developed biocomposite is a potentially useful material for the removal of pharmaceuticals from aqueous matrices.

6.
Environ Technol ; : 1-10, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016212

ABSTRACT

Cadmium (Cd) is one of the common heavy metal pollutants in soil, which can induce various diseases and pose a serious threat to human health. Metallothioneins (MTs) are well-known for their excellent metal binding ability due to a high content of cysteine, which has great potential for heavy metal chelation. In this study, we used the Escherichia coli (E. coli) surface display system LPP-OmpA to construct a recombinant plasmid pBSD-LCF encoding LPP-OmpA-CUP1-Flag fusion protein. Then we displayed the metallothionein CUP1 from Saccharomyces cerevisiae on E. coli DH5α surface for Cd removing. The feasibility of surface display of metallothionein CUP1 in recombinant E. coli DH5α (pBSD-LCF) by Lpp-OmpA system was proved by flow cytometry and western blot analysis, and the specificity of the fusion protein in the recombinant strain was also verified. The results showed that the Cd2+ resistance capacity of DH5α (pBSD-LCF) was highly enhanced by about 200%. Fourier-transform infrared spectroscopy showed that sulfhydryl and sulfonyl groups were involved in Cd2+ binding to cell surface of DH5α (pBSD-LCF). Meanwhile, Cd removal rate by DH5α (pBSD-LCF) was promoted to 95.2%. Thus, the recombinant strain E. coli DH5α (pBSD-LCF) can effectively chelate environmental metals, and the cell surface expression of metallothionein on E. coli can provide new ideas and directions for heavy metals remediation.

7.
Sci Rep ; 14(1): 15690, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977801

ABSTRACT

Cd(II) is a potentially toxic heavy metal having carcinogenic activity. It is becoming widespread in the soil and groundwater by various natural and anthropological activities. This is inviting its immediate removal. The present study is aimed at developing a Cd(II) resistant strain isolated from contaminated water body and testing its potency in biological remediation of Cd(II) from aqueous environment. The developed resistant strain was characterized by SEM, FESEM, TEM, EDAX, FT-IR, Raman Spectral, XRD and XPS analysis. The results depict considerable morphological changes had taken place on the cell surface and interaction of Cd(II) with the surface exposed functional groups along with intracellular accumulation. Molecular contribution of critical cell wall component has been evaluated. The developed resistant strain had undergone Cd(II) biosorption study by employing adsorption isotherms and kinetic modeling. Langmuir model best fitted the Cd(II) biosorption data compared to the Freundlich one. Cd(II) biosorption by the strain followed a pseudo second order kinetics. The physical parameters affecting biosorption were also optimized by employing response surface methodology using central composite design. The results depict remarkable removal capacity 75.682 ± 0.002% of Cd(II) by the developed resistant strain from contaminated aqueous medium using 500 ppm of Cd(II). Quantitatively, biosorption for Cd(II) by the newly developed resistant strain has been increased significantly (p < 0.0001) from 4.36 ppm (non-resistant strain) to 378.41 ppm (resistant strain). It has also shown quite effective desorption capacity 87.527 ± 0.023% at the first desorption cycle and can be reused effectively as a successful Cd(II) desorbent up to five cycles. The results suggest that the strain has considerable withstanding capacity of Cd(II) stress and can be employed effectively in the Cd(II) bioremediation from wastewater.


Subject(s)
Biodegradation, Environmental , Cadmium , Candida tropicalis , Wastewater , Water Pollutants, Chemical , Water Purification , Cadmium/metabolism , Wastewater/microbiology , Wastewater/chemistry , Water Purification/methods , Water Pollutants, Chemical/metabolism , Candida tropicalis/metabolism , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared
8.
Microb Cell Fact ; 23(1): 209, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054459

ABSTRACT

BACKGROUND: The presence of inorganic pollutants and heavy metals in industrial effluents has become a serious threat and environmental issues. Fungi have a remarkable ability to exclude heavy metals from wastewater through biosorption in eco-friendly way. Tannase plays an important role in bioconversion of tannin, a major constituent of tannery effluent, to gallic acid which has great pharmaceutical applications. Therefore, the aim of the current study was to exploit the potential of tannase from Aspergillus glaucus and fungal biomass waste for the bioremediation of heavy metals and tannin. RESULTS: Tannase from A. glaucus was partially purified 4.8-fold by ammonium sulfate precipitation (80%). The enzyme was optimally active at pH 5.0 and 40 °C and stable at this temperature for 1 h. Tannase showed high stability at different physiological conditions, displayed about 50% of its activity at 60 °C and pH range 5.0-6.0. Immobilization of tannase was carried out using methods such. as entrapment in Na-alginate and covalent binding to chitosan. The effects of Na-alginate concentrations on the beads formation and enzyme immobilization revealed that maximum immobilization efficiency (75%) was obtained with 3% Na-alginate. A potential reusability of the immobilized enzyme was showed through keeping 70% of its relative activity up to the fourth cycle. The best bioconversion efficiency of tannic acid to gallic acid by immobilized tannase was at 40 °C with tannic acid concentration up to 50 g/l. Moreover, bioremediation of heavy metal (Cr3+, Pb2+, Cu2+, Fe3+, and Mn2+) from aqueous solution using A. glaucus biomass waste was achieved with uptake percentage of (37.20, 60.30, 55.27, 79.03 and 21.13 respectively). The biomass was successfully used repeatedly for removing Cr3+ after using desorbing agent (0.1 N HCl) for three cycles. CONCLUSION: These results shed the light on the potential use of tannase from locally isolated A. glaucus in the bioremediation of industrial tanneries contained heavy metals and tannin.


Subject(s)
Aspergillus , Biodegradation, Environmental , Biomass , Carboxylic Ester Hydrolases , Enzymes, Immobilized , Metals, Heavy , Tannins , Tannins/metabolism , Tannins/chemistry , Aspergillus/enzymology , Aspergillus/metabolism , Metals, Heavy/metabolism , Carboxylic Ester Hydrolases/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Temperature , Enzyme Stability
9.
Environ Res ; 260: 119670, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39048063

ABSTRACT

Despite advancements in wastewater treatment technologies, heavy metal contamination, especially cadmium (Cd), severely threatens human health and ecosystems. The purpose of this work is to compare the removal of Cd (II) ions from aqueous solutions by chemically modified mixed seaweed biosorbent (CMSB) and physically modified mixed seaweed biosorbent (PMSB). BET, SEM, EDAX, FTIR, and XRD techniques characterized the mixed seaweed biosorbents before and after adsorption. They are well-known for their sustainability, affordability, and biodegradability. The BET study revealed that CMSB had a surface area of 19.682 m2/g, while PMSB had a lower surface area of 14.803 m2/g. The optimum adsorption conditions were a temperature of 303 K, pH of 6.0, and biosorbent dosages of 1 g/L for CMSB and 2.5 g/L for PMSB. For CMSB and PMSB, the most efficient contact times were 40 and 80 min, respectively. The Langmuir model was demonstrated to be the best fit for the experimental data when compared to other isotherm models, with a coefficient of determination, or R2, of 0.9713 and a maximum monolayer capacity of 151.2 mg/g and 181.6 mg/g for physical and chemical activated mixed seaweed biomass. There was a significant relationship between the R2 values of chemically modified and physically modified biomass. The findings demonstrate that pseudo-second-order kinetics more accurately represent the adsorption process than pseudo-first-order and Elovich models. Thermodynamic experiments validated the endothermic, spontaneous and favourable characteristics of the removal process. According to the results of the current study, PMSB and CMSB may be used as effective adsorbents to remove Cd (II) from aqueous solutions.

10.
Int J Phytoremediation ; : 1-14, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967318

ABSTRACT

Removing toxic Pb(II) ions from aqueous solution by the peels of citrus reticulate (mandarin orange), a fruit industry waste, presents suitable scale-up possibilities. The Scanning Electron Microscope (SEM) and Brunauer-Emmett-Teller (BET) studies reflected that the mandarin orange peel powder had a porous surface area (32.46 m2g-1), average pore size and pore volume was 38.6 Å and 0.402 cm3g-1, respectively, favorable for binding Pb(II) ions. Fourier-transform infrared spectroscopy (FTIR) showed C-Br stretching, primary alcohol (C-O), phenolic O-H, and carbodimide N = C = N bands primarily helped to bind Pb(II) ions. The study evaluated and optimized the parametric influences of pH, adsorbate and biosorbent concentration, contact time and temperature on the removal efficiency of Pb(II) ions. A maximum of 97.08% Pb(II) was removed from 20 mg L-1 solution when 2.5 g L-1 adsorbent was present. The reaction obeyed the pseudo-second-order kinetic model. The intra-particle diffusion was involved in lead sorption. The Langmuir isotherm model resulted in an adsorption capacity of 23.04 mg g-1. 35.28% Pb(II) was removed in the 3rd adsorption-desorption cycle with 0.4 M HCl. The adsorption process was natural, impulsive and endothermic. The statistical investigation used Multiple Polynomial Regression (MPR) and Genetic Algorithm (GA). The analysis effectively forecasted the percentage removal at the optimized condition.


The results of toxic Pb(II) ion removal from aqueous solution by the peels of citrus reticulate (mandarin orange), a food industry waste, are reported. The maximum Pb(II) adsorption capacity of 23.04 mg/g. This work provides a new way to realize good adsorption capacity of Pb(II) by orange peel and accelerates to utilize for small and medium-sized industries in rural areas of 3rd World Countries.

11.
Front Fungal Biol ; 5: 1387541, 2024.
Article in English | MEDLINE | ID: mdl-38827887

ABSTRACT

The persistent presence of organophosphate flame retardants (OPFRs) in wastewater (WW) effluents raises significant environmental and health concerns, highlighting the limitations of conventional treatments for their remotion. Fungi, especially white rot fungi (WRF), offer a promising alternative for OPFR removal. This study sought to identify fungal candidates (from a selection of four WRF and two Ascomycota fungi) capable of effectively removing five frequently detected OPFRs in WW: tributyl phosphate (TnBP), tributoxy ethyl phosphate (TBEP), trichloroethyl phosphate (TCEP), trichloro propyl phosphate (TCPP) and triethyl phosphate (TEP). The objective was to develop a co-culture approach for WW treatment, while also addressing the utilization of less assimilable carbon sources present in WW. Research was conducted on carbon source uptake and OPFR removal by all fungal candidates, while the top degraders were analyzed for biomass sorption contribution. Additionally, the enzymatic systems involved in OPFR degradation were identified, along with toxicity of samples after fungal contact. Acetate (1.4 g·L-1), simulating less assimilable organic matter in the carbon source uptake study, was eliminated by all tested fungi in 4 days. However, during the initial screening where the removal of four OPFRs (excluding TCPP) was tested, WRF outperformed Ascomycota fungi. Ganoderma lucidum and Trametes versicolor removed over 90% of TnBP and TBEP within 4 days, with Pleorotus ostreatus and Pycnoporus sanguineus also displaying effective removal. TCEP removal was challenging, with only G. lucidum achieving partial removal (47%). A subsequent screening with selected WRF and the addition of TCPP revealed TCPP's greater susceptibility to degradation compared to TCEP, with T. versicolor exhibiting the highest removal efficiency (77%). This observation, plus the poor degradation of TEP by all fungal candidates suggests that polarity of an OPFR inversely correlates with its susceptibility to fungal degradation. Sorption studies confirmed the ability of top-performing fungi of each selected OPFR to predominantly degrade them. Enzymatic system tests identified the CYP450 intracellular system responsible for OPFR degradation, so reactions of hydroxylation, dealkylation and dehalogenation are possibly involved in the degradation pathway. Finally, toxicity tests revealed transformation products obtained by fungal degradation to be more toxic than the parent compounds, emphasizing the need to identify them and their toxicity contributions. Overall, this study provides valuable insights into OPFR degradation by WRF, with implications for future WW treatment using mixed consortia, emphasizing the importance of reducing generated toxicity.

12.
Braz J Microbiol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842788

ABSTRACT

Improper electronic waste management in the world especially in developing countries such as Iran has resulted in environmental pollution. Copper, nickel, and manganese are from the most concerned soil contaminating heavy metals which found in many electronic devices that are not properly processed. The aim of this study was to investigate the biological removal of copper, nickel, and manganese by Bacillus species isolated from a landfill of electronic waste (Zainal Pass hills located in Isfahan, Iran) which is the and to produce nanoparticles from the studied metals by the isolated bacteria. The amounts of copper, nickel, and manganese in the soil was measured as 1.9 × 104 mg/kg, 0.011 × 104 mg/kg and 0.013 × 104 mg/kg, respectively based on ICP-OES analysis, which was significantly higher than normal (0.02 mg/kg, 0.05 mg/kg, and 2 mg/kg, respectively. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of metals on the bacterial isolates was determined. The biosorption of metals by the bacteria was evaluated by inductively coupled plasma optical emission spectroscopy (ICP-OES). The metal nanoparticles were synthetized utilizing the isolates in culture media containing the heavy metals with the concentrations to which the isolates had shown resistance. X ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used for the evaluation of the fabrication of the produced metal nanoparticles. Based on the findings of this study, a total of 15 bacterial isolates were obtained from the soil samples. The obtained MICs of copper, nickel, and manganese on the isolates were 40-300 mM, 4-10 mM, and 60-120 mM, respectively. The most resistant isolates to copper were FM1 and FM2 which were able to bio-remove 79.81% and 68.69% of the metal, respectively. FM4 and FM5 were respectively the most resistant isolate to nickel and manganese and were able to bio-remove 86.74% and 91.96% of the metals, respectively. FM1, FM2, FM4, and FM5 was molecularly identified as Bacillus cereus, Bacillus thuringiensis, Bacillus paramycoides, and Bacillus wiedmannii, respectively. The results of XRD, SEM and EDS showed conversion of the copper and manganese into spherical and oval nanoparticles with the approximate sizes of 20-40 nm. Due to the fact that the novel strains in this study showed high resistance to copper, nickel, and manganese and high adsorption of the metals, they can be used in the future, as suitable strains for the bio-removal of these metals from electronic and other industrial wastes.

13.
Environ Monit Assess ; 196(7): 606, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856948

ABSTRACT

Toxic pollutants in the form of heavy metals are added through various anthropogenic activities daily into the aquatic ecosystem beyond their permissible limits, and their bioaccumulation capacity makes them hazardous substances for the survival of all organisms. Thus, their removal from aquatic ecosystems is the need of the hour. Treatment of wastewater containing heavy metals through biosorption is gaining popularity and is being explored all around the world due to its various advantages over conventional methods of treatment. Utilization of animal waste as a biomaterial could be the best solution to remove it from the ecosystem. Such treatment methods are a blessing for developing and underdeveloped countries due to their low cost. This paper provides in-depth details about heavy metals, their health implications, mechanisms of toxicity, modes of transportation, and conventional treatment approaches. A comprehensive understanding of the biosorption process, encompassing its world scenario, evolution, mechanisms, factors affecting the process, and advantages, will also be covered. Finally, animal wastes and their applicability in the removal of heavy metal pollutants from wastewater shall also be thoroughly reviewed, followed by their future utility and recommendations.


Subject(s)
Ecosystem , Metals, Heavy , Wastewater , Water Pollutants, Chemical , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Animals , Wastewater/chemistry , Waste Disposal, Fluid/methods , Adsorption
14.
J Environ Manage ; 363: 121384, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850922

ABSTRACT

In the course of this investigation, we undertook the contemplation of a green chemistry paradigm with the express intent of procuring valuable metal, namely gold, from electronic waste (e-waste). In pursuit of this overarching objective, we conceived a procedural framework consisting of two pivotal stages. As an initial stage, we introduced a physical separation procedure relying on the utilization of the Eddy current separator, prior to embarking on the process of leaching from e-waste. Subsequent to the partitioning of metals from the non-metal constituents of waste printed circuit boards (PCB), we initiated an investigation into the hydrogel derived from basil seeds (Ocimum basilicum L.), utilizing it as a biogenic sorbent medium. The thorough characterization of hydrogel extracted from basil seeds involved the application of an array of analytical techniques, encompassing FTIR, XRD, SEM, and BET. The batch sorption experiments show more than 90% uptake in the pH range of 2-5. The sorption capacity of the hydrogel material was evaluated as 188.44 mg g-1 from the Langmuir Isotherm model. The potential interference stemming from a spectrum of other ions, encompassing Al, Cu, Ni, Zn, Co, Cr, Fe, Mn, and Pb was systematically examined. Notably, the sole instance of interference in the context of adsorption of gold ions was observed to be associated with the presence of lead. The application of the hydrogel demonstrated a commendable efficiency in the recovery of Au(III) from the leached solution derived from the waste PCB.


Subject(s)
Electronic Waste , Gold , Hydrogels , Gold/chemistry , Hydrogels/chemistry , Adsorption , Ocimum basilicum/chemistry
15.
Plant Physiol Biochem ; 213: 108808, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865805

ABSTRACT

The development of the mining industry and the overuse of inorganic fertilizers have led to an excess of manganese (Mn) in the soil, thereby, contaminating the soil environment and people's health. On heavy metal-contaminated soils, the combined arbuscular mycorrhizal fungi (AMF)-phytoremediation technique becomes a hotspot because of its environmentally friendly, in situ remediation. AMF inoculation often leads to a decrease in host Mn acquisition, which provides a basis for its application in phytoremediation of contaminated soils. Moreover, the utilization value of native AMF is greater than that of exotic AMF, because native AMF can adapt better to Mn-contaminated soils. In addition to the fact that AMF enhance plant Mn tolerance responses such as regionalization, organic matter chelation, limiting uptake and efflux, and so on, AMF also develop plant-independent fungal pathways such as direct biosorption of Mn by mycorrhizal hyphae, fungal Mn transporter genes, and sequestration of Mn by mycorrhizal hyphae, glomalin, and arbuscule-containing root cortical cells, which together mitigate excessive Mn toxicity to plants. Clarifying AMF-plant interactions under Mn stress will provide support for utilizing AMF as a phytoremediation in Mn-contaminated soils. The review reveals in detail how AMF develop its own mechanisms for responding to excess Mn and how AMF enhance plant Mn tolerance, accompanied by perspectives for future research.


Subject(s)
Biodegradation, Environmental , Manganese , Mycorrhizae , Plants , Mycorrhizae/metabolism , Mycorrhizae/physiology , Manganese/metabolism , Manganese/toxicity , Plants/metabolism , Plants/drug effects , Plants/microbiology , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/drug effects
16.
Environ Geochem Health ; 46(7): 231, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849682

ABSTRACT

Nowadays, there is limited research focusing on the biosorption of Pb2+ through microbial process, particularly at the level of gene expression. To overcome this knowledge gap, we studied the adsorption capacity of Stenotrophomonas rhizophila JC1 to Pb2+, and investigated the physiological mechanism by means of SEM, EDS, FTIR, membrane permeability detection, and investigated the molecular mechanism through comparative transcriptomics. The results showed that after 16 h of cultivation, the biosorption capacity of JC1 for 100 mg/L of Pb2+ reached at 79.8%. The main mechanism of JC1 adsorb Pb2+ is via intracellular accumulation, accounting for more than 90% of the total adsorption. At the physiological level, Pb2+ can precipitate with anion functional groups (e.g., -OH, -NH) on the bacterial cell wall or undergo replacement reaction with cell component elements (e.g., Si, Ca) to adsorb Pb2+ outside of the cell wall, thus accomplishing extracellular adsorption of Pb2+ by strains. Furthermore, the cell membrane acts as a "switch" that inhibits the entry of metal ions into the cell from the plasma membrane. At the molecular level, the gene pbt specificity is responsible for the adsorption of Pb2+ by JC1. In addition, phosphate permease is a major member of the ABC transporter family involved in Pb2+, and czcA/cusA or Co2+/Mg2+ efflux protein plays an important role in the efflux of Pb2+ in JC1. Further, cellular macromolecule biosynthesis, inorganic cation transmembrane transport, citrate cycle (TCA) and carbon metabolism pathways all play crucial roles in the response of strain JC1 to Pb2+ stress.


Subject(s)
Lead , Lead/metabolism , Adsorption , Stenotrophomonas/metabolism , Transcriptome , Biodegradation, Environmental , Gene Expression Regulation, Bacterial , Gene Expression Profiling , Water Pollutants, Chemical/metabolism
17.
Int J Biol Macromol ; 274(Pt 2): 133001, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897497

ABSTRACT

The issue of environmental contamination, particularly caused by the existence of heavy metal particles, is a major and widely recognized subject that receives substantial global attention. The remediation of Cu(II), Cd(II), Ni(II), and Pb(II) ionic metal particles from synthetic wastewater using chemically treated plant leaves of Ageratum conyzoides (TAC) as a biosorbent was investigated. The biosorption process was implemented utilizing a batch system, wherein several operational parameters were considered, including temperature, pH, agitation time, biosorbent dosage, and initial concentration of the metal ion. Langmuir, Freundlich, Temkin, and D-R isotherm models were used to evaluate equilibrium data. The analyzed parameter exhibits characteristics that were best fitted with the Langmuir isotherm. The observed biosorption capacities (qm) of Cu(II), Pb(II), Ni(II), and Cd(II) ions on the TAC were measured as 51.573, 30.49, 33.53, and 35.91 mg/g, respectively, at a temperature of 22 °C. The affinity sequence of these metal ions follows the order Cu(II) > Pb(II) > Ni(II) > Cd(II). The measured values for the biosorption free energy change (ΔG) of Cu(II), Pb(II), Cd(II), and Ni(II) metal ions ranged from -1.017 to -4.723, -1.368 to -3.612, -2.785 to -5.21, and -1.047 to -5.135 kJ/mol, respectively. The enthalpy (ΔH) for Cu(II), Pb(II), Cd(II), and Ni(II) were determined to be +19.33, +6.82, +14.83, and +38.07 kJ/mol, respectively. Similarly, the corresponding entropy changes (ΔS) for the same series of metal ions were recorded as +0.075, +0.064, +0.063, and +0.135 kJ/mol.K. The pseudo-second-order kinetic models yielded superior outcomes in comparison to the pseudo-first-order kinetic models. The findings of the experiment indicated that the TAC demonstrates favorable efficacy in extracting all four metal ions. Hence, the utilization of biomass derived from Ageratum conyzoides leaves has proven to be a viable and economically feasible approach for biosorption of all four metals.

18.
Microbiol Spectr ; : e0076024, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916328

ABSTRACT

Biosorption and biomineralization are commonly used for the immobilization of metal ions. Biosorption is commonly used as a green method to enrich rare earth ions from wastewater. However, little attention has been paid to the facilitating role of biomineralization in the enrichment of rare earth ions. In this study, a strain of Bacillus sp. DW015, isolated from ion adsorption type rare earth ores and a urease-producing strain Sporosarcina pasteurii were used to enrich rare earth elements (REEs) from an aqueous solution. The results indicate that biomineralization accelerates the enrichment of Terbium(III) compared to biosorption alone. Kinetic analysis suggests that the main mode of action of DW015 was biosorption, following pseudo-second-order kinetics (R2 = 0.998). The biomineralization of DW015 did not significantly contribute to the enrichment of Tb(III), whereas excessive biomineralization of S. pasteurii led to a decrease in the enrichment of Tb(III). A synergistic system of biosorption and biomineralization was established by combining the two bacteria, with the optimal mixed bacteria (S. pasteurii:DW015) ratio being 1:19. This study provides fundamental support for the synergistic effect of biosorption and biomineralization and offers a new reference for future microbial-based enrichment methods. IMPORTANCE: A weak microbially induced calcium carbonate precipitation (MICP) promotes the enrichment of Tb(III) by bacteria, while a strong MICP leads to the release of Tb(III). However, existing explanations cannot elucidate these mechanisms. In this study, the morphology of the bioprecipitation and the degree of Tb(III) enrichment were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The data revealed that MICP could drive stable attachment of Tb(III) onto the cell surface, forming a Tb-CaCO3 mixed solid phase. Excessive rapid rate of calcite generation could disrupt the Tb(III) adsorption equilibrium, leading to the release of Tb(III). Therefore, in order for Tb(III) to be stably embedded in calcite, it is necessary to have a sufficient number of adsorption sites on the bacteria and to regulate the rate of MICP. This study provides theoretical support for the process design of MICP for the enrichment of rare earth ions.

19.
Environ Pollut ; 357: 124379, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885830

ABSTRACT

The use of rare earth elements (REE) in many various fields, including high-tech products, increases the demand for these materials day by day. The production of REE from primary sources has expanded in response to increasing demand; however, due to its limited, a more sustainable supply is also started to offer for the REE demand by using secondary sources. The most commonly used metallurgical method for REE recovery is hydrometallurgical processes. However, it has some disadvantages, like pyrometallurgical methods. In the review, studies of the environmental impacts of REE production from primary sources and life cycle assessments of products containing REE were investigated. According to the results, it has been seen that those studies in the literature in which hydrometallurgical methods have changed to more environmentally friendly approaches have begun to increase. In this review, mine wastes, which are secondary sources, were defined, conventional methods of recovery of rare earth elements were discussed, greener approaches to the recovery of REE from these sources were comprehensively examined and studies in the literature were evaluated. Furthermore, it was stated that there are limited studies on green approaches and REE recovery from mineral wastes and that this field is developing with an emphasis on the current outlook and future perspectives.

20.
J Hazard Mater ; 476: 134973, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38905975

ABSTRACT

While microbial technologies, which are considered to be environmentally friendly, have great potential for the recovery of rare earth elements (REEs) from mining wastewater, their applications have been restricted due to a lack of efficient biosorbents. In this study, a strain of Pseudomonas psychrotolerans isolated from yttrium-enriched mine soil was used to recover yttrium (Y(III)) from rare-earth mining wastewater. At an initial Y(III) dose of 50 mg L-1, the amount of Y(III) adsorbed by P. psychrotolerans reached 99.9 % after 24 h. Various characterization techniques revealed that P. psychrotolerans adsorbed Y(III) mainly through complexation of oxygen-containing functional groups and electrostatic interactions. A high level of adsorption efficiency (>99.9 %) was maintained after five consecutive adsorption/desorption cycles, indicating that P. psychrotolerans was highly reusable. While the efficiency of adsorbing Y(III) by P. psychrotolerans decreased (34.4 %) in actual rare earth mining wastewater, selectivity toward other REEs (≤ 18.4 %) was still observed. Consequently, this study provides a promising green, environmentally friendly and sustainable microbial approach for the selective recovery of REEs from rare earth wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL