Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 303
Filter
1.
Front Plant Sci ; 15: 1371818, 2024.
Article in English | MEDLINE | ID: mdl-39036355

ABSTRACT

To remedy Cd pollution in the ocean, macroalgae are used as a bioremediation tool because of their ability to absorb and accumulate Cd. Gracilaria bailinae has high economic and ecological value and can survive in Cd contaminated waters; however, the underlying molecular mechanisms remain unclear. In this study, physiological and biochemical indexes were analyzed after 1, 3, 5, or 7 days of Cd2+ exposure; further, the transcriptome of G. bailinae was examined after a 7-day exposure to a Cd2+ culture environment with Cd levels of 0 mg L-1 (cd1, control), 1 mg L-1 (cd2, low concentration), and 2.5 mg L-1 (cd3, high concentration). The results showed that in the cd2 group, G. bailinae maintained a stable RGR that did not differ significantly (P > 0.05) from that of the cd1 group. However, the soluble protein and MDA contents, as well as the activities of SOD, CAT and POD, were significantly increased (P< 0.05) compared to the cd1 group. No significant differences (P > 0.05) were found among the different Cd2+ stress durations. In contrast, compared with the cd1 group, the RGR, soluble protein content, SOD, CAT, and POD activities were significantly decreased (P< 0.05), while the MDA content was significantly increased (P< 0.05) in the cd3 group. Furthermore, significant differences (P< 0.05) were observed among the various tested Cd2+ stress durations within the cd3 group. Compared to the cd1 group, a total of 30,072 DEGs and 21,680 were identified in the cd2 and cd3 treatments, respectively. More up-regulated genes were found in cd2 group than in cd3 group. GO enrichment analysis showed that these genes were related to peptidase activity, endopeptidase activity, ion transport, peptide biosynthetic and metabolism. In addition, DEGs related to histidine metabolism and the stilbene, diarylheptane, and gingerol pathways were significantly up-regulated in the cd2 group compared to the cd3 group, which resulted in enhanced activities of antioxidant enzymes and promoted cell wall regeneration. The results of this study reveal the response mechanism of G. bailinae to Cd2+ stress, providing valuable insights for assessing the bioremediation potential of G. bailinae for Cd-contaminated waters.

2.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063244

ABSTRACT

Soil is indispensable for agricultural production but has been seriously polluted by cadmium and salt in recent years. Many crops are suffering from this, including rapeseed, the third largest global oilseed crop. However, genes simultaneously related to both cadmium and salt stress have not been extensively reported yet. In this study, BnaA10.WRKY75 was screened from previous RNA-seq data related to cadmium and salt stress and further analyses including sequence comparison, GUS staining, transformation and qRT-PCR were conducted to confirm its function. GUS staining and qRT-PCR results indicated BnaA10.WRKY75 was induced by CdCl2 and NaCl treatment. Sequence analysis suggested BnaA10.WRKY75 belongs to Group IIc of the WRKY gene family and transient expression assay showed it was a nuclear localized transcription factor. BnaA10.WRKY75-overexpressing Arabidopsis and rapeseed plants accumulated more H2O2 and O2- and were more sensitive to CdCl2 and NaCl treatment compared with untransformed plants, which may be caused by the downregulation of BnaC03.CAT2. Our study reported that BnaA10.WRKY75 increases sensitivity to cadmium and salt stress by disrupting the balance of reactive oxygen species both in Arabidopsis and rapeseed. The results support the further understanding of the mechanisms underlying cadmium and salt tolerance and provide BnaA10.WRKY75 as a valuable gene for rapeseed abiotic stress breeding.


Subject(s)
Arabidopsis , Brassica napus , Cadmium , Gene Expression Regulation, Plant , Plant Proteins , Reactive Oxygen Species , Salt Tolerance , Transcription Factors , Brassica napus/genetics , Brassica napus/metabolism , Brassica napus/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Cadmium/metabolism , Cadmium/toxicity , Reactive Oxygen Species/metabolism , Salt Tolerance/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
3.
Ecotoxicol Environ Saf ; 283: 116786, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39083869

ABSTRACT

Cd ions are absorbed and transported from the soil by crop roots, which are the first organ to be exposed to Cd. This results in an increase in cadmium ions in crops, significantly affecting crop growth and yield. Exogenous melatonin (MT) can help reduce cadmium (Cd) stress in cotton, but the specific contribution of roots to this process remains unclear. In order to address this knowledge gap, an in-situ root phenotyping study was conducted to investigate the the phenotype and lifespan of roots under cadmium stress (Cd) and melatonin treatment (Cd + MT). The results showed that MT alleviated the decreases in plant height, leaf area, SPAD value, stem diameter, stomatal conductance and net photosynthetic rate under Cd stress, which further promoted the biomass accumulation in various cotton organs. What is more, the Cd + MT treatment increased root volume, surface area, and length under Cd stress by 25.63 %, 10.58 %, and 21.89 %, respectively, compared with Cd treatment. Interestingly, compared to Cd treatment, Cd + MT treatment also significantly extended the lifespan of roots and root hairs by 6.68 days and 2.18 days, respectively. In addition, Cd + MT treatment reduced the transport of Cd from roots to shoots, particularly to bolls, and decreased the Cd bioconcentration factor in bolls by 61.17 %, compared to Cd treatment. In conclusion, these findings show that applying MT externally helps reduce Cd stress by delaying root senescence, promoting root development and regulating Cd transport. This method can be an effective approach to managing Cd stress in cotton.

4.
J Hazard Mater ; 476: 134904, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38996680

ABSTRACT

The heavy metal cadmium (Cd), known for its high toxicity, poses a grave threat to human health through the food chain. N6-methyladenosine (m6A), the most abundant internal modification, regulates plant adaptation to various adversities, yet the panorama of m6A modifications in switchgrass under cadmium stress remains elusive. This study examines the physiological responses of switchgrass roots and shoots exposed to 50 µM CdCl2, alongside an overview of transcriptome-wide m6A methylation patterns. After cadmium treatment, methylation modifications are primarily enriched near stop codons and the 3'UTR region, with a negative correlation between m6A modification and gene expression levels. In shoots, approximately 58 % of DEGs with m6A modifications show upregulation in expression and decrease in m6A peaks, including zinc transporter 4-like (ZIP4). In roots, about 43 % of DEGs with m6A modifications exhibit downregulation in expression and increase in m6A peaks, such as the ABC transporter family member (ABCG25). We further validate the m6A enrichment, gene expression and mRNA stability of ZIP4 in response to Cd treatment. The results suggest that the negative correlation of m6A enrichment and gene expression is due to altered mRNA stability. Our study establishes an m6A regulatory network governing cadmium transport in switchgrass roots and shoots, offering new avenues for candidate gene manipulation in phytoremediation applications of heavy metal pollution.

5.
Environ Sci Pollut Res Int ; 31(35): 48742-48757, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39037621

ABSTRACT

Bassia indica (Wight) A. J. Scott is a fast-growing halophyte suitable for the remediation of saline lands on a large scale. However, no information is available regarding its phytoremediation potential for cadmium (Cd) alone or in combination with salinity. Besides evaluating phytoremediation, assessing micronutrient hemostasis as a crucial physiological insight into the mechanism involved in the tolerance of B. indica under saline soil contaminated with Cd was subjected. Under salinity stress, a considerable amount of sodium accumulates in the plant. Moreover, the accumulation of sodium increased by Cd stress levels. The increase in the exchangeable form of Cd in the rhizosphere in the presence of NaCl ions further elevated the Cd content in the plant tissues. For instance, compared to non-saline conditions, applying 2.5 and 5 g NaCl kg-1 to soil treated with 60 mg Cd kg-1 increased exchangeable Cd by 28.4 and 49.5% in rhizosphere soil, which led to increased cadmium content by 16.1 and 29.6% in the root (as a main part of Cd accumulation), respectively. Under most stress conditions, potassium homeostasis in the shoot remained undisturbed. It was observed that this plant could transfer an optimal level of potassium from the roots to the shoots at a moderate salinity level. Changes and the distribution of Cu and Zn levels followed a similar pattern in the plant, indicating a common regulation mechanism for these nutrients. Generally, the plant could maintain an appropriate level of Fe, Zn, and Cu ions under most stressed conditions. However, the level of Mn decreased significantly under severe stress levels. Growth parameters, tolerance index, and the values of translocation factor < 1 and shoot bioconcentration factor > 1 under 5 mg Cd kg-1 soil treatment at different salinity levels indicated that B. indica could mitigate the detrimental effect of Cd toxicity and tolerate the NaCl stress via a phytostabilizer mechanism. However, the shoot bioconcentration factor values were very close to one at other Cd levels. Therefore, considering the obtained evidence and the innate ability of B. indica to remediation salinity, this plant is still recommended, even for higher Cd levels (even until 30 mg kg-1), in the presence of salinity.


Subject(s)
Biodegradation, Environmental , Cadmium , Soil Pollutants , Soil , Cadmium/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Salinity
6.
Front Plant Sci ; 15: 1349202, 2024.
Article in English | MEDLINE | ID: mdl-38855464

ABSTRACT

Introduction: Arbuscular mycorrhizal fungi (AMF) and dark septate endophytic fungi (DSEs) generally coexist in the roots of plants. However, our understanding of the effects of their coexistence on plant growth and stress resistance is limited. Methods: In the present study, the effects of single and dual inoculation of AMF and DSE on the growth, photosynthetic physiology, glutathione (GSH) metabolism, endogenous hormones, and cadmium (Cd) content of maize under 25 mg•kg-1 Cd stress were investigated. Results: Compared with that after the non-inoculation treatment, AMF+DSE co-inoculation significantly increased the photosynthetic rate (Pn) of maize leaves; promoted root GSH metabolism; increased the root GSH concentration and activity of γ-glutamyl cysteine synthase (γ-GCS), ATP sulfatase (ATPS) and sulfite reductase (SIR) by 215%, 117%, 50%, and 36%, respectively; and increased the concentration of endogenous hormones in roots, with increases in zeatin (ZR), indole-3 acetic acid (IAA), and abscisic acid (ABA) by 81%, 209%, and 72%, respectively. AMF inoculation, DSE inoculation and AMF+DSE co-inoculation significantly increased maize biomass, and single inoculation with AMF or DSE increased the Cd concentration in roots by 104% or 120%, respectively. Moreover, significant or highly significant positive correlations were observed between the contents of ZR, IAA, and ABA and the activities of γ-GCS, ATPS, and SIR and the glutathione (GSH) content. There were significant or highly significant positive interactions between AMF and DSE on the Pn of leaves, root GSH metabolism, and endogenous hormone contents according to two-way analysis of variance. Therefore, the coexistence of AMF and DSE synergistically enhanced the Cd tolerance of maize.

7.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928288

ABSTRACT

Abscisic acid (ABA) plays a crucial role in plant defense mechanisms under adverse environmental conditions, but its metabolism and perception in response to heavy metals are largely unknown. In Pisum sativum exposed to CdCl2, an accumulation of free ABA was detected in leaves at different developmental stages (A, youngest, unexpanded; B1, youngest, fully expanded; B2, mature; C, old), with the highest content found in A and B1 leaves. In turn, the content of ABA conjugates, which was highest in B2 and C leaves under control conditions, increased only in A leaves and decreased in leaves of later developmental stages after Cd treatment. Based on the expression of PsNCED2, PsNCED3 (9-cis-epoxycarotenoid dioxygenase), PsAO3 (aldehyde oxidase) and PsABAUGT1 (ABA-UDP-glucosyltransferase), and the activity of PsAOγ, B2 and C leaves were found to be the main sites of Cd-induced de novo synthesis of ABA from carotenoids and ABA conjugation with glucose. In turn, ß-glucosidase activity and the expression of genes encoding ABA receptors (PsPYL2, PsPYL4, PsPYL8, PsPYL9) suggest that in A and B1 leaves, Cd-induced release of ABA from inactive ABA-glucosyl esters and enhanced ABA perception comes to the forefront when dealing with Cd toxicity. The distinct role of leaves at different developmental stages in defense against the harmful effects of Cd is discussed.


Subject(s)
Abscisic Acid , Cadmium , Gene Expression Regulation, Plant , Pisum sativum , Plant Leaves , Plant Proteins , Abscisic Acid/metabolism , Pisum sativum/metabolism , Pisum sativum/drug effects , Pisum sativum/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Cadmium/metabolism , Cadmium/toxicity , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Dioxygenases/metabolism , Dioxygenases/genetics , beta-Glucosidase/metabolism , beta-Glucosidase/genetics
8.
Sci Total Environ ; 946: 174296, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38944303

ABSTRACT

Nitrogen (N) is of great significance to the absorption, distribution and detoxification of cadmium (Cd). Ectomycorrhizal fungi (EMF) are able to affect the key processes of plant N uptake to resist Cd stress, while the mechanism is still unclear. Therefore, we explored potential strategies of Cenococcum geophilum (C. geophilum) symbiosis to alleviate Cd stress in Pinus massoniana (P. massoniana) from the perspective of plant N metabolism and soil N transformation. The results showed that inoculation of C. geophilum significantly increased the activities of NR, NiR and GS in the shoots and roots of P. massoniana, thereby promoting the assimilation of NO3- and NH4+ into amino acids. Moreover, C. geophilum promoted soil urease and protease activities, but decreased soil NH4+ content, indicating that C. geophilum might increase plant uptake of soil inorganic N. qRT-PCR results showed that C3 symbiosis significantly up-regulated the expression of genes encoding functions involved in NH4+ uptake (AMT3;1), NO3- uptake (NRT2.1, NRT2.4, NRT2.9), as well as Cd resistance (ABCC1 and ABCC2), meanwhile down-regulated the expression of NRT7.3, Cd transporter genes (HMA2 and NRAMP3) in the roots of P. massoniana seedlings. These results demonstrated that C. geophilum was able to alleviate Cd stress by increasing the absorption and assimilation of inorganic N in plants and inhibiting the transport of Cd from roots to shoots, which provided new insights into how EMF improved host resistance to abiotic stress.


Subject(s)
Cadmium , Nitrogen , Pinus , Soil Pollutants , Cadmium/metabolism , Cadmium/toxicity , Nitrogen/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Mycorrhizae/physiology , Symbiosis
9.
Plant Physiol Biochem ; 213: 108823, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905727

ABSTRACT

Cadmium (Cd) is a widely distributed heavy metal pollutant that is detrimental to growth and development of plants. The secretion of indole-3-acetic acid is one of the defense mechanisms when plants inflict heavy metal stress. This study aimed to explore how 4-phenoxyphenylboronic acid, an effective IAA inhibitor, induces changes in IAA level, Cadmium accumulation, and activation of defense responses in rice seedling roots under different Cadmium concentrations. Our research results show that: 1) root growth was promoted with PPBa addition under mild Cadmium treatment. 2) the root IAA level improved with increasing Cadmium concentration, and PPBa had a significant inhibitory effect on IAA level. 3) PPBa had no effect on the Cadmium accumulation in rice seedling roots. 4) PPBa had a significant inhibitory effect on the generation of H2O2 under mild and moderate Cadmium treatment. 5) PPBa exacerbated the imbalance of osmotic substances in rice seedling roots under severe Cadmium treatment. This study helps us understand the tolerance and endogenous regulation of plants to heavy metal stress.


Subject(s)
Cadmium , Hydrogen Peroxide , Indoleacetic Acids , Oryza , Plant Roots , Seedlings , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Indoleacetic Acids/metabolism , Cadmium/toxicity , Cadmium/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Hydrogen Peroxide/metabolism , Stress, Physiological/drug effects , Boronic Acids/pharmacology
10.
Plant Physiol Biochem ; 213: 108800, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905729

ABSTRACT

Cadmium (Cd), a toxic metal element, can be absorbed by plants via divalent metal ion transporters, thereby retarding plant growth and posing a threat to human health. Strawberries are popular and economically valuable berry species that are sensitive to soil pollutants, especially Cd. However, the mechanisms underlying Cd stress responses in strawberry plants remain largely unclear. Here, we investigated the physiological and molecular basis of Cd stress responses in strawberry plants using the diploid strawberry 'Yellow Wonder' as a material. The results indicated that Cd stress induced oxidative damage, repressed photosynthetic efficiency, and interfered with the accumulation and redistribution of trace elements. Furthermore, Cd stress reduced the concentrations of indoleacetic acid, trans-zeatin riboside and gibberellic acid while increasing the concentration of abscisic acid, thus altering the phytohormone signaling pathway in strawberry plants. Cd stress also inhibited the expression of genes involved in nitrogen uptake and assimilation while promoting the energy supply for plant survival under Cd toxicity. Moreover, the flavonoid biosynthesis pathway was induced, and the anthocyanin concentration increased, thereby improving the free radical scavenging capacity of strawberry plants under Cd toxicity. Additionally, we identified several transcription factors and functional genes as hub genes based on a weighted gene coexpression network analysis. These results collectively provide a theoretical foundation for strawberry breeding and ensuring agriculture and food safety.


Subject(s)
Cadmium , Fragaria , Fragaria/genetics , Fragaria/metabolism , Fragaria/drug effects , Cadmium/toxicity , Cadmium/metabolism , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oxidative Stress , Photosynthesis/drug effects
11.
Environ Pollut ; 354: 124178, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38763294

ABSTRACT

Cadmium (Cd) pollution has been a significant concern in heavy metal pollution, prompting plants to adopt various strategies to mitigate its damage. While the response of plants to Cd stress and the impact of exogenous melatonin has received considerable attention, there has been limited focus on the responses of closely related species to these factors. Consequently, our investigation aimed to explore the response of three different species of rape to Cd stress and examine the influence of exogenous melatonin in this scenario. The research findings revealed distinctive responses among the investigated rape species. B. campestris showed the resistance to Cd and exhibited lower Cd absorption and sustained its physiological activity under Cd stress. In contrast, B. juncea accumulated much Cd and increased the amount of anthocyanin to mitigate the Cd-damage. Furthermore, B. napus showed the tolerance to Cd and tended to accumulate Cd in vacuoles under Cd stress, thereby decreasing the Cd damage and leading to higher activity of antioxidant enzymes and photosynthesis. Moreover, the application of exogenous melatonin significantly elevated the melatonin level in plants and mitigated Cd toxicity by promoting the activity of antioxidant enzymes, reducing Cd absorption, enhancing the chelating capacity with Cd, decreasing Cd accumulation in organelles, and reducing its fluidity. Specifically, exogenous melatonin increased the FHAc content in B. campestris, elevated the phytochelatins (PCs) level in B. napus, and stimulated photosynthesis in B. juncea. In summary, the findings underscore the species-specific responses of the three species of rape to both Cd stress and exogenous melatonin, highlighting the potential for tailored mitigation strategies based on the unique characteristics of each species.


Subject(s)
Cadmium , Melatonin , Cadmium/toxicity , Melatonin/pharmacology , Soil Pollutants/toxicity , Species Specificity , Brassica napus/drug effects , Photosynthesis/drug effects , Antioxidants/metabolism
12.
Toxics ; 12(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38787086

ABSTRACT

Cadmium ion (Cd2+) stress is a major abiotic stressor affecting plant photosynthesis. However, the impact of sustained high-concentration Cd stress on the photosynthetic electron transport chain of aquatic plants is currently unclear. Here, prompt fluorescence (PF), delayed fluorescence (DF), and P700 signals were simultaneously measured to investigate the effect of Cd stress on photosynthesis in water dropwort [Oenanthe javanica (Blume) DC.]. We aimed to elucidate how Cd stress continuously affects the electron transport chain in this species. The PF analysis showed that with prolonged Cd stress, the FJ, FI and FP steadily decreased, accompanied by a positive shift in the K-band and L-band. Moreover, JIP-test parameters, including TRO/ABS, ABS/CSO, TRO/CSO and PIABS, were significantly reduced. The P700 signals showed that exposure to Cd stress hindered both the fast decrease and slow increase phases of the MR transient, ultimately resulting in a gradual reduction in both VPSI and VPSII-PSI. The DF analysis showed a gradual decrease in the I1 and I2 values as the duration of stress from Cd increased. The above results suggested that Cd stress affected the photosynthetic electron transport in water dropwort by influencing the amount of active PSII and PSI, primarily affecting PSII RCs in the early to mid-stages and PSI reductive activity in the later stage.

13.
Plant Physiol Biochem ; 210: 108634, 2024 May.
Article in English | MEDLINE | ID: mdl-38642440

ABSTRACT

Zhe-Maidong, a cultivar of Ophiopogon japonicus is a prominent traditional herbal medicine rich in saponins. This study explored the mechanism of saponin biosynthesis and its role in alleviating Cd-induced oxidative damage in the Zhe-Maidong cultivar using three experimental groups undergoing Cd stress. In the Cd-contaminated soil treatment, total saponins were 1.68 times higher than those in the control. The saponin content in the Cd-2 and Cd-3 treatments was approximately twice as high as that in the Cd-CK treatment. These findings revealed that Cd stress leads to total saponin accumulation. Metabolomic analysis identified the accumulated saponins, primarily several monoterpenoids, diterpenoids, and triterpenoids. The increased saponins exhibited an antioxidant ability to prevent the accumulation of Cd-induced reactive oxygen species (ROS). Subsequent saponin application experiments provided strong evidence that saponin played a crucial role in promoting superoxide dismutase (SOD) activity and reducing ROS accumulation. Transcriptome analysis revealed vital genes for saponin synthesis under Cd stress, including SE, two SSs, and six CYP450s, positively correlated with differentially expressed metabolite (DEM) levels in the saponin metabolic pathway. Additionally, the TF-gene regulatory network demonstrated that bHLH1, bHLH3, mTERF, and AUX/IAA transcript factors are crucial regulators of hub genes involved in saponin synthesis. These findings significantly contribute to our understanding of the regulatory network of saponin synthesis and its role in reducing oxidative damage in O. japonicum when exposed to Cd stress.


Subject(s)
Cadmium , Metabolome , Ophiopogon , Oxidative Stress , Saponins , Transcriptome , Saponins/metabolism , Saponins/pharmacology , Cadmium/toxicity , Oxidative Stress/drug effects , Metabolome/drug effects , Transcriptome/drug effects , Ophiopogon/metabolism , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Antioxidants/metabolism
14.
J Hazard Mater ; 470: 134245, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38603910

ABSTRACT

This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.


Subject(s)
Cadmium , Quantum Dots , Reactive Oxygen Species , Salvia miltiorrhiza , Zinc Oxide , Quantum Dots/chemistry , Zinc Oxide/chemistry , Zinc Oxide/toxicity , Salvia miltiorrhiza/drug effects , Salvia miltiorrhiza/metabolism , Cadmium/toxicity , Reactive Oxygen Species/metabolism , Stress, Physiological/drug effects , Antioxidants/metabolism , Gene Expression Regulation, Plant/drug effects
15.
Front Plant Sci ; 15: 1355849, 2024.
Article in English | MEDLINE | ID: mdl-38606075

ABSTRACT

Superoxide dismutase (SOD) protects plants from abiotic stress-induced reactive oxygen species (ROS) damage. Here, the effects of cadmium (Cd) exposure on ROS accumulation and SOD isozymes, as well as the identification of significant SOD isozyme genes, were investigated under different Cd stress treatments to Zhe-Maidong (Ophiopogon japonicus). The exposure to Cd stress resulted in a notable elevation in the SOD activity in roots. Cu/ZnSODa and Cu/ZnSODb were the most critical SOD isozymes in response to Cd stress, as indicated by the detection results for SOD isozymes. A total of 22 OjSOD genes were identified and classified into three subgroups, including 10 OjCu/ZnSODs, 6 OjMnSODs, and 6 OjFeSODs, based on the analysis of conserved motif and phylogenetic tree. Cu/ZnSOD-15, Cu/ZnSOD-18, Cu/ZnSOD-20, and Cu/ZnSOD-22 were the main genes that control the increase in SOD activity under Cd stress, as revealed via quantitative PCR and transcriptome analysis. Additionally, under various heavy metal stress (Cu2+, Fe2+, Zn2+, Mn2+), Cu/ZnSOD-15, Cu/ZnSOD-18, and Cu/ZnSOD-22 gene expression were significantly upregulated, indicating that these three genes play a critical part in resisting heavy metal stress. The molecular docking experiments performed on the interaction between oxygen ion (O2•-) and OjSOD protein have revealed that the critical amino acid residues involved in the binding of Cu/ZnSOD-22 to the substrate were Pro135, Ile136, Ile140, and Arg144. Our findings provide a solid foundation for additional functional investigations on the OjSOD genes, as well as suggestions for improving genetic breeding and agricultural management strategies to increase Cd resistance in O. japonicus.

16.
Plant Cell Rep ; 43(4): 113, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573519

ABSTRACT

KEY MESSAGE: Selenium nanoparticles reduce cadmium absorption in tomato roots, mitigating heavy metal effects. SeNPs can efficiently help to enhance growth, yield, and biomolecule markers in cadmium-stressed tomato plants. In the present study, the effects of selenium nanoparticles (SeNPs) were investigated on the tomato plants grown in cadmium-contaminated soil. Nanoparticles were synthesized using water extract of Nigella sativa and were characterized for their size and shape. Two application methods (foliar spray and soil drench) with nanoparticle concentrations of 0, 100, and 300 mg/L were used to observe their effects on cadmium-stressed plants. Growth, yield, biochemical, and stress parameters were studied. Results showed that SeNPs positively affected plant growth, mitigating the negative effects of cadmium stress. Shoot length (SL), root length (RL), number of branches (NB), number of leaves per plant (NL), and leaf area (LA) were significantly reduced by cadmium stress but enhanced by 45, 51, 506, 208, and 82%, respectively, by soil drench treatment of SeNPs. Similarly, SeNPs increased the fruit yield (> 100%) and fruit weight (> 100%), and decreased the days to fruit initiation in tomato plants. Pigments were also positively affected by the SeNPs, particularly in foliar treatment. Lycopene content was also enhanced by the addition of NPs (75%). Furthermore, the addition of SeNPs improved the ascorbic acid, protein, phenolic, flavonoid, and proline contents of the tomato plants under cadmium stress, whereas stress enzymes also showed enhanced activities under cadmium stress. It is concluded from the present study that the addition of selenium nanoparticles enhanced the growth and yield of Cd-stressed plants by reducing the absorption of cadmium and increasing the stress management of plants.


Subject(s)
Nanoparticles , Selenium , Solanum lycopersicum , Selenium/pharmacology , Cadmium/toxicity , Soil
17.
Environ Technol ; : 1-11, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623611

ABSTRACT

Tobacco (Nicotiana tabacum L.) shows promise for remediating Cd-contaminated soil due to its significant Cd accumulation capabilities. Although various tobacco varieties exhibit distinct Cd bioaccumulation capacities, a comprehensive understanding of the underlying mechanisms is lacking. This study, conducted using hydroponics, explores differences in Cd accumulation and tolerance mechanisms between two tobacco varieties, Basma and Yunyan 87. The results showed that Cd stress reduced the dry weight, tolerance index, and root morphology for both varieties. Basma exhibited a relatively smaller decline in these indices compared to Yunyan 87. Moreover, Basma demonstrated a higher Cd bioconcentration factor (BCF), concentration, and accumulated content, signifying its superior tolerance and bioaccumulation capacity to Cd compared to Yunyan 87. The Carbonyl Cyanide3-ChloroPhenylhydrazone (CCCP) addition resulted in reduced Cd accumulation and BCFs in both tobacco species. This effect was more pronounced in Basma, suggesting that Basma relies more on an active transport process than Yunyan 87. This could potentially explain its enhanced bioaccumulation ability. Subcellular Cd distribution analysis revealed Basma's preference for distributing Cd in soluble fractions, while Yunyan 87 favoured the cell wall fractions. Transmission electron microscope showed that Basma's organelles were less damaged than Yunyan 87's under Cd stress, possibly contributing to the superior tolerance of Basma. Therefore, these results provided a theoretical foundation for development of Cd-contaminated soil tobacco remediation technology.

18.
J Hazard Mater ; 469: 133934, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38447370

ABSTRACT

It remains unclear how symbiotic microbes impact the growth of peanuts when they are exposed to the pollutants cadmium (Cd) and microplastics (MPs) simultaneously. This study aimed to investigate the effects of endophytic bacteria Bacillus velezens SC60 and arbuscular mycorrhizal fungus Rhizophagus irregularis on peanut growth and rhizosphere microbial communities in the presence of Cd at 40 (Cd40) or 80 (Cd80) mg kg-1 combined without MP or the presence of low-density polyethylene (LDPE) and poly butyleneadipate-co-terephthalate (PBAT). This study assessed soil indicators, plant parameters, and Cd accumulation indicators. Results showed that the application of R. irregularis and B. velezens significantly enhanced soil organic carbon and increased Cd content under the conditions of Cd80 and MPs co-pollution. R. irregularis and B. velezens treatment increased peanut absorption and the enrichment coefficient for Cd, with predominate concentrations localized in the peanut roots, especially under combined pollution by Cd and MPs. Under treatments with Cd40 and Cd80 combined with PBAT pollution, soil microbes Proteobacteria exhibited a higher relative abundance, while Actinobacteria showed a higher relative abundance under treatments with Cd40 and Cd80 combined with LDPE pollution. In conclusion, under the combined pollution conditions of MPs and Cd, the co-treatment of R. irregularis and B. velezens effectively immobilized Cd in peanut roots, impeding its translocation to the shoot.


Subject(s)
Glomeromycota , Mycorrhizae , Soil Pollutants , Cadmium/toxicity , Microplastics , Plastics , Arachis , Carbon , Polyethylene , Soil , Plant Roots , Bacteria , Environmental Pollution , Soil Pollutants/toxicity
19.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473702

ABSTRACT

The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant's response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant's potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant's leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum's tolerance to cadmium stress.


Subject(s)
Cadmium , Salt-Tolerant Plants , Cadmium/pharmacology , Chlorides/pharmacology , Sodium Chloride/pharmacology , Sodium Chloride, Dietary/pharmacology , Sodium/pharmacology , Oxidation-Reduction , Sulfur/pharmacology , Bacteria
20.
Sensors (Basel) ; 24(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475037

ABSTRACT

To reveal the impact of cadmium stress on the physiological mechanism of lettuce, simultaneous determination and correlation analyses of chlorophyll content and photosynthetic function were conducted using lettuce seedlings as the research subject. The changes in relative chlorophyll content, rapid chlorophyll fluorescence induction kinetics curve, and related chlorophyll fluorescence parameters of lettuce seedling leaves under cadmium stress were detected and analyzed. Furthermore, a model for estimating relative chlorophyll content was established. The results showed that cadmium stress at 1 mg/kg and 5 mg/kg had a promoting effect on the relative chlorophyll content, while cadmium stress at 10 mg/kg and 20 mg/kg had an inhibitory effect on the relative chlorophyll content. Moreover, with the extension of time, the inhibitory effect became more pronounced. Cadmium stress affects both the donor and acceptor sides of photosystem II in lettuce seedling leaves, damaging the electron transfer chain and reducing energy transfer in the photosynthetic system. It also inhibits water photolysis and decreases electron transfer efficiency, leading to a decline in photosynthesis. However, lettuce seedling leaves can mitigate photosystem II damage caused by cadmium stress through increased thermal dissipation. The model established based on the energy captured by a reaction center for electron transfer can effectively estimate the relative chlorophyll content of leaves. This study demonstrates that chlorophyll fluorescence techniques have great potential in elucidating the physiological mechanism of cadmium stress in lettuce, as well as in achieving synchronized determination and correlation analyses of chlorophyll content and photosynthetic function.


Subject(s)
Cadmium , Lactuca , Photosystem II Protein Complex/metabolism , Fluorescence , Photosynthesis , Chlorophyll , Seedlings , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL