Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Addict Biol ; 29(8): e13429, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109814

ABSTRACT

The endocannabinoid system interacts with the reward system to modulate responsiveness to natural reinforcers, as well as drugs of abuse. Previous preclinical studies suggested that direct blockade of CB1 cannabinoid receptors (CB1R) could be leveraged as a potential pharmacological approach to treat substance use disorder, but this strategy failed during clinical trials due to severe psychiatric side effects. Alternative strategies have emerged to circumvent the side effects of direct CB1 binding through the development of allosteric modulators. We hypothesized that negative allosteric modulation of CB1R signalling would reduce the reinforcing properties of morphine and decrease behaviours associated with opioid misuse. By employing intravenous self-administration in mice, we studied the effects of GAT358, a functionally-biased CB1R negative allosteric modulator (NAM), on morphine intake, relapse-like behaviour and motivation to work for morphine infusions. GAT358 reduced morphine infusion intake during the maintenance phase of morphine self-administration under a fixed ratio 1 schedule of reinforcement. GAT358 also decreased morphine-seeking behaviour after forced abstinence. Moreover, GAT358 dose dependently decreased the motivation to obtain morphine infusions under a progressive ratio schedule of reinforcement. Strikingly, GAT358 did not affect the motivation to work for food rewards in an identical progressive ratio task, suggesting that the effect of GAT358 in decreasing opioid self-administration was reward specific. Furthermore, GAT58 did not produce motor ataxia in the rotarod test. Our results suggest that CB1R NAMs reduced the reinforcing properties of morphine and could represent a viable therapeutic route to safely decrease misuse of opioids.


Subject(s)
Morphine , Receptor, Cannabinoid, CB1 , Self Administration , Animals , Morphine/pharmacology , Morphine/administration & dosage , Receptor, Cannabinoid, CB1/drug effects , Mice , Allosteric Regulation/drug effects , Male , Drug-Seeking Behavior/drug effects , Recurrence , Reinforcement, Psychology , Motivation/drug effects , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage , Administration, Intravenous , Conditioning, Operant/drug effects , Signal Transduction/drug effects
2.
J Cell Sci ; 137(11)2024 06 01.
Article in English | MEDLINE | ID: mdl-38864427

ABSTRACT

Endocannabinoid signalling mediated by cannabinoid receptor 1 (CB1R, also known as CNR1) is critical for homeostatic neuromodulation of both excitatory and inhibitory synapses. This requires highly polarised axonal surface expression of CB1R, but how this is achieved remains unclear. We previously reported that the α-helical H9 domain in the intracellular C terminus of CB1R contributes to axonal surface expression by an unknown mechanism. Here, we show in rat primary neuronal cultures that the H9 domain binds to the endocytic adaptor protein SGIP1 to promote CB1R expression in the axonal membrane. Overexpression of SGIP1 increases CB1R axonal surface localisation but has no effect on CB1R lacking the H9 domain (CB1RΔH9). Conversely, SGIP1 knockdown reduces axonal surface expression of CB1R but does not affect CB1RΔH9. Furthermore, SGIP1 knockdown diminishes CB1R-mediated inhibition of presynaptic Ca2+ influx in response to neuronal activity. Taken together, these data advance mechanistic understanding of endocannabinoid signalling by demonstrating that SGIP1 interaction with the H9 domain underpins axonal CB1R surface expression to regulate presynaptic responsiveness.


Subject(s)
Axons , Protein Binding , Receptor, Cannabinoid, CB1 , Animals , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Axons/metabolism , Rats , Protein Domains , Humans , Cells, Cultured , Neurons/metabolism , Rats, Sprague-Dawley , Cell Membrane/metabolism
3.
Br J Pharmacol ; 181(16): 2701-2724, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38631821

ABSTRACT

BACKGROUND AND PURPOSE: Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH: We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS: We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS: Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.


Subject(s)
Dentate Gyrus , Dizocilpine Maleate , Neuronal Plasticity , Perforant Pathway , Receptors, N-Methyl-D-Aspartate , Animals , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dizocilpine Maleate/pharmacology , Perforant Pathway/drug effects , Perforant Pathway/physiology , Neuronal Plasticity/drug effects , Male , Rats , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Rats, Wistar , Synapses/drug effects , Synapses/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Long-Term Potentiation/drug effects
4.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675558

ABSTRACT

The cannabinoid-type I (CB1) receptor functions as a double-edged sword to decide cell fate: apoptosis/survival. Elevated CB1 receptor expression is shown to cause acute ceramide accumulation to meet the energy requirements of fast-growing cancers. However, the flip side of continual CB1 activation is the initiation of a second ceramide peak that leads to cell death. In this study, we used ovarian cancer cells, PA1, which expressed CB1, which increased threefold when treated with a natural compound, bis(palmitoleic acid) ester of a glycerol (C2). This novel compound is isolated from a marine snail, Conus inscriptus, using hexane and the structural details are available in the public domain PubChem database (ID: 14275348). The compound induced two acute ceramide pools to cause G0/G1 arrest and killed cells by apoptosis. The compound increased intracellular ceramides (C:16 to 7 times and C:18 to 10 times), both of which are apoptotic inducers in response to CB1 signaling and thus the compound is a potent CB1 agonist. The compound is not genotoxic because it did not induce micronuclei formation in non-cancerous Chinese hamster ovarian (CHO) cells. Since the compound induced the cannabinoid pathway, we tested if there was a psychotropic effect in zebrafish models, however, it was evident that there were no observable neurobehavioral changes in the treatment groups. With the available data, we propose that this marine compound is safe to be used in non-cancerous cells as well as zebrafish. Thus, this anticancer compound is non-toxic and triggers the CB1 pathway without causing psychotropic effects.


Subject(s)
Apoptosis , Ceramides , Conus Snail , Fatty Acids , Receptor, Cannabinoid, CB1 , Animals , Female , Humans , Apoptosis/drug effects , Cell Line, Tumor , Ceramides/metabolism , Ceramides/chemistry , Fatty Acids/pharmacology , Fatty Acids/chemistry , Fatty Acids/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Signal Transduction/drug effects , Conus Snail/chemistry
5.
ACS Chem Neurosci ; 15(8): 1669-1683, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38575140

ABSTRACT

The cannabinoid receptor 1 (CB1) is famous as the target of Δ9-tetrahydrocannabinol (THC), which is the active ingredient of marijuana. Suppression of CB1 is frequently suggested as a drug target or gene therapy for many conditions (e.g., obesity, Parkinson's disease). However, brain networks affected by CB1 remain elusive, and unanticipated psychological effects in a clinical trial had dire consequences. To better understand the whole brain effects of CB1 suppression we performed in vivo imaging on mice under complete knockout of the gene for CB1 (cnr1-/-) and also under the CB1 inverse agonist rimonabant. We examined white matter structural changes and brain function (network activity and directional uniformity) in cnr1-/- mice. In cnr1-/- mice, white matter (in both sexes) and functional directional uniformity (in male mice) were altered across the brain but network activity was largely unaltered. Conversely, under rimonabant, functional directional uniformity was not altered but network activity was altered in cortical regions, primarily in networks known to be altered by THC (e.g., neocortex, hippocampal formation). However, rimonabant did not alter many brain regions found in both our cnr1-/- results and previous behavioral studies of cnr1-/- mice (e.g., thalamus, infralimbic area). This suggests that chronic loss of cnr1 is substantially different from short-term suppression, subtly rewiring the brain but largely maintaining the network activity. Our results help explain why pathological mutations in CB1 (e.g., chronic pain) do not always provide insight into the side effects of CB1 suppression (e.g., clinical depression), and thus urge more preclinical studies for any drugs that suppress CB1.


Subject(s)
Drug Inverse Agonism , Piperidines , Female , Mice , Male , Animals , Rimonabant/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Mice, Knockout , Brain , Receptors, Cannabinoid , Receptor, Cannabinoid, CB1/genetics , Dronabinol/pharmacology
6.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474266

ABSTRACT

One of the hallmarks of Parkinson's disease (PD) is the alteration in the expression and function of NMDA receptor (NMDAR) and cannabinoid receptor 1 (CB1R). The presence of CB1R-NMDAR complexes has been described in neuronal primary cultures. The activation of CB1R in CB1R-NMDAR complexes was suggested to counteract the detrimental NMDAR overactivation in an AD mice model. Thus, we aimed to explore the role of this receptor complex in PD. By using Bioluminescence Resonance Energy Transfer (BRET) assay, it was demonstrated that α-synuclein induces a reorganization of the CB1R-NMDAR complex in transfected HEK-293T cells. Moreover, α-synuclein treatment induced a decrease in the cAMP and MAP kinase (MAPK) signaling of both CB1R and NMDAR not only in transfected cells but also in neuronal primary cultures. Finally, the interaction between CB1R and NMDAR was studied by Proximity Ligation Assay (PLA) in neuronal primary cultures, where it was observed that the expression of CB1R-NMDAR complexes was decreased upon α-synuclein treatment. These results point to a role of CB1R-NMDAR complexes as a new therapeutic target in Parkinson's disease.


Subject(s)
Parkinson Disease , Animals , Mice , alpha-Synuclein/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction
7.
Int J Mol Sci ; 25(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38339011

ABSTRACT

In childhood, retinoblastoma (RB) is the most common primary tumor in the eye. Long term therapeutic management with etoposide of this life-threatening condition may have diminishing effectiveness since RB cells can develop cytostatic resistance to this drug. To determine whether changes in receptor-mediated control of Ca2+ signaling are associated with resistance development, fluorescence calcium imaging, semi-quantitative RT-qPCR analyses, and trypan blue dye exclusion staining patterns are compared in WERI-ETOR (etoposide-insensitive) and WERI-Rb1 (etoposide-sensitive) cells. The cannabinoid receptor agonist 1 (CNR1) WIN55,212-2 (40 µM), or the transient receptor potential melastatin 8 (TRPM8) agonist icilin (40 µM) elicit similar large Ca2+ transients in both cell line types. On the other hand, NGF (100 ng/mL) induces larger rises in WERI-ETOR cells than in WERI-Rb1 cells, and its lethality is larger in WERI-Rb1 cells than in WERI-ETOR cells. NGF and WIN55,212-2 induced additive Ca2+ transients in both cell types. However, following pretreatment with both NGF and WIN55,212-2, TRPM8 gene expression declines and icilin-induced Ca2+ transients are completely blocked only in WERI-ETOR cells. Furthermore, CNR1 gene expression levels are larger in WERI-ETOR cells than those in WERI-Rb1 cells. Therefore, the development of etoposide insensitivity may be associated with rises in CNR1 gene expression, which in turn suppress TRPM8 gene expression through crosstalk.


Subject(s)
Receptor, Nerve Growth Factor , Retinal Neoplasms , Retinoblastoma , TRPM Cation Channels , Humans , Cell Line , Etoposide/pharmacology , Etoposide/therapeutic use , Membrane Proteins/metabolism , Receptor, Nerve Growth Factor/metabolism , Retinal Neoplasms/drug therapy , Retinoblastoma/drug therapy , Retinoblastoma/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Receptor, Cannabinoid, CB1/metabolism
8.
Mol Neurobiol ; 61(9): 6435-6452, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38307967

ABSTRACT

Mitochondrial dysfunction plays a key role in the development of neurodegenerative disorders. In contrast, the regulation of the endocannabinoid system has been shown to promote neuroprotection in different neurotoxic paradigms. The existence of an active form of the cannabinoid receptor 1 (CB1R) in mitochondrial membranes (mitCB1R), which might exert its effects through the same signaling mechanisms as the cell membrane CB1R, has been shown to regulate mitochondrial activity. Although there is evidence suggesting that some cannabinoids may induce protective effects on isolated mitochondria, substantial evidence on the role of cannabinoids in mitochondria remains to be explored. In this work, we developed a toxic model of mitochondrial dysfunction induced by exposure of brain mitochondria to the succinate dehydrogenase inhibitor 3-nitropropionic acid (3-NP). Mitochondria were also pre-incubated with the endogenous agonist anandamide (AEA) and the synthetic CB1R agonist WIN 55212-2 to evaluate their protective effects. Mitochondrial reduction capacity, reactive oxygen species (ROS) formation, and mitochondrial swelling were assessed as toxic markers. While 3-NP decreased the mitochondrial reduction capacity and augmented mitochondrial ROS formation and swelling, both AEA and WIN 55212-2 ameliorated these toxic effects. To explore the possible involvement of mitCB1R activation on the protective effects of AEA and WIN 55212-2, mitochondria were also pre-incubated in the presence of the selective CB1R antagonist AM281, which completely reverted the protective effects of the cannabinoids to levels similar to those evoked by 3-NP. These results show partial protective effects of cannabinoids, suggesting that mitCB1R activation may be involved in the recovery of compromised mitochondrial activity, related to reduction of ROS formation and further prevention of mitochondrial swelling.


Subject(s)
Arachidonic Acids , Benzoxazines , Brain , Endocannabinoids , Mitochondria , Morpholines , Naphthalenes , Neuroprotective Agents , Nitro Compounds , Polyunsaturated Alkamides , Propionates , Rats, Wistar , Reactive Oxygen Species , Animals , Nitro Compounds/toxicity , Propionates/pharmacology , Propionates/toxicity , Mitochondria/metabolism , Mitochondria/drug effects , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Benzoxazines/pharmacology , Arachidonic Acids/pharmacology , Morpholines/pharmacology , Reactive Oxygen Species/metabolism , Polyunsaturated Alkamides/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Male , Neuroprotective Agents/pharmacology , Naphthalenes/pharmacology , Mitochondrial Swelling/drug effects , Rats , Receptor, Cannabinoid, CB1/metabolism
9.
Adv Sci (Weinh) ; 11(14): e2306311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38298116

ABSTRACT

The G-protein-coupled human cannabinoid receptor 1 (CB1) is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. The structures of CB1-Gi complexes in synthetic agonist-bound forms have been resolved to date. However, the commercial drug recognition and Gq coupling mechanisms of CB1 remain elusive. Herein, the cryo-electron microscopy (cryo-EM) structure of CB1-Gq complex, in fenofibrate-bound form, at near-atomic resolution, is reported. The structure elucidates the delicate mechanisms of the precise fenofibrate recognition and Gq protein coupling by CB1 and will facilitate future drug discovery and design.


Subject(s)
Cannabinoids , Fenofibrate , Humans , Receptor, Cannabinoid, CB1 , Cryoelectron Microscopy , GTP-Binding Proteins
10.
J Mol Graph Model ; 126: 108620, 2024 01.
Article in English | MEDLINE | ID: mdl-37722351

ABSTRACT

Synthetic cannabinoids, including some from the John W. Huffman (JWH) family, emerged on the drug scene around 2004 as "alternative marijuana," despite being considerably more potent than marijuana. Like Δ9-tetrahydrocannabinol (THC), the principal psychoactive ingredient in marijuana, synthetic cannabinoids have also been found to interact with cannabinoid receptors CB1 and CB2, found in the brain, immune system, and peripheral organs. The JWH compounds and other synthetic cannabinoids have become important subjects of research in the forensic science community due to their drug-abuse potential, undetectability under routine drug screening, and unpredictable toxicity. In this study, an active-state CB1 receptor model was used to assess the receptor-ligand interactions between the CB1 receptor and ligands from the JWH synthetic cannabinoid family, as well as some newly designed JWH-like virtual compounds, labeled as MGCS compounds, using docking, binding free-energy calculations (ΔG), and molecular dynamics simulations (MDs). The calculated ΔG revealed that the carbonyl group between the naphthalene and the indole, characteristic of the JWH family, and the length of the N-linked alkyl chain were two important structural characteristics that influenced the predicted CB1 binding affinity, especially as increasing the length of the alkyl chain led to better predicted binding affinity. MDs and per-residue-breakdown results showed that the designed MGCS compounds with a pentyl chain attached to the naphthalene moiety and selected JWH compounds formed stable and strong hydrophobic interactions with the key residues Phe170, Phe174, Phe177, Phe200, Phe268, and Trp279 of the CB1 receptor. Comprehension of these critical interactions can help forensic chemists predict the structure of undiscovered families of synthetic cannabinoids.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Humans , Receptor, Cannabinoid, CB1 , Cannabinoids/chemistry , Dronabinol , Naphthalenes/chemistry
11.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38139805

ABSTRACT

The cannabinoid receptor 1 (CB1R) plays a pivotal role in regulating various physiopathological processes, thus positioning itself as a promising and sought-after therapeutic target. However, the search for specific and effective CB1R ligands has been challenging, prompting the exploration of drug repurposing (DR) strategies. In this study, we present an innovative DR approach that combines computational screening and experimental validation to identify potential Food and Drug Administration (FDA)-approved compounds that can interact with the CB1R. Initially, a large-scale virtual screening was conducted using molecular docking simulations, where a library of FDA-approved drugs was screened against the CB1R's three-dimensional structures. This in silico analysis allowed us to prioritize compounds based on their binding affinity through two different filters. Subsequently, the shortlisted compounds were subjected to in vitro assays using cellular and biochemical models to validate their interaction with the CB1R and determine their functional impact. Our results reveal FDA-approved compounds that exhibit promising interactions with the CB1R. These findings open up exciting opportunities for DR in various disorders where CB1R signaling is implicated. In conclusion, our integrated computational and experimental approach demonstrates the feasibility of DR for discovering CB1R modulators from existing FDA-approved compounds. By leveraging the wealth of existing pharmacological data, this strategy accelerates the identification of potential therapeutics while reducing development costs and timelines. The findings from this study hold the potential to advance novel treatments for a range of CB1R -associated diseases, presenting a significant step forward in drug discovery research.

12.
Cell ; 186(26): 5784-5797.e17, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38101408

ABSTRACT

Cannabis activates the cannabinoid receptor 1 (CB1), which elicits analgesic and emotion regulation benefits, along with adverse effects, via Gi and ß-arrestin signaling pathways. However, the lack of understanding of the mechanism of ß-arrestin-1 (ßarr1) coupling and signaling bias has hindered drug development targeting CB1. Here, we present the high-resolution cryo-electron microscopy structure of CB1-ßarr1 complex bound to the synthetic cannabinoid MDMB-Fubinaca (FUB), revealing notable differences in the transducer pocket and ligand-binding site compared with the Gi protein complex. ßarr1 occupies a wider transducer pocket promoting substantial outward movement of the TM6 and distinctive twin toggle switch rearrangements, whereas FUB adopts a different pose, inserting more deeply than the Gi-coupled state, suggesting the allosteric correlation between the orthosteric binding pocket and the partner protein site. Taken together, our findings unravel the molecular mechanism of signaling bias toward CB1, facilitating the development of CB1 agonists.


Subject(s)
Arrestin , Receptor, Cannabinoid, CB1 , Signal Transduction , Arrestin/metabolism , beta-Arrestin 1/metabolism , beta-Arrestins/metabolism , Cryoelectron Microscopy , Receptor, Cannabinoid, CB1/metabolism , Humans , Animals , Cell Line
13.
Quant Imaging Med Surg ; 13(12): 7924-7935, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38106237

ABSTRACT

Background: Although cannabinoid receptor 1 (CB1R) antagonists can inhibit bone loss in osteoporosis mouse models, different strains of mice show different bone mass phenotypes after knock out the CB1R gene. The relationship between CB1R and bone metabolism is complex, and its regulatory role in bone metabolism and as a therapeutic target for osteoporosis requires further investigation. Methods: Based on lumbar spine volumetric bone mineral density (vBMD) data of healthy female cynomolgus monkeys aged 1-25 years, naturally aged postmenopausal female osteoporotic monkeys and normal young monkeys were screened by detecting lumbar vertebrae vBMD and estradiol levels in this study. Positron emission tomography-computed tomography (PET/CT) and magnetic resonance imaging (MRI) scans were performed on the lumbar spine and brain of the two groups of monkeys using the probe [11C]OMAR, which specifically targets CB1R, and the difference in the CB1R expression of osteoporotic monkeys was evaluated. Results: The vBMD values of two standard deviations (SDs) below the peak bone value (428.1±53.8 g/cm3) were set as the reference standard for osteoporosis vBMD. Of the 49 healthy female cynomolgus monkeys, 4 postmenopausal older osteoporotic monkeys (18-26 years) and 5 young control monkeys (6-7 years) were selected, and the mean vBMD of the lumbar spine of the two groups was 295.07±19.11 and 419.72±16.14 g/cm3, respectively (P<0.0001). Radioactive uptake in the lumbar spine was linearly and negatively correlated with vBMD (r=-0.7977; P=0.01). Dynamic PET/MR imaging of the brains showed that CB1R was upregulated in the osteoporosis group, and there was a negative linear correlation between the vBMD and area under the time-radioactivity curve (AUC) of the thalamus (r=-0.8506; P=0.0153) and prefrontal cortex (r=-0.8306; P=0.0207). Conclusions: In this study, PET/CT-MRI molecular imaging technology revealed that CB1R was upregulated in the lumbar spine and brain of the osteoporosis monkeys and that CB1R may be regulated by the brain-bone axis. CB1R antagonist may be a potential drug for the treatment of osteoporosis.

14.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003712

ABSTRACT

The therapeutic application of cannabinoids has gained traction in recent years. Cannabinoids interact with the human endocannabinoid system in the skin. A large body of research indicates that cannabinoids could hold promise for the treatment of eczema, psoriasis, acne, pruritus, hair disorders, and skin cancer. However, most of the available data are at the preclinical stage. Comprehensive, large-scale, randomized, controlled clinical trials have not yet been fully conducted. In this article, we describe new findings in cannabinoid research and point out promising future research areas.


Subject(s)
Cannabinoids , Skin Diseases , Humans , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Skin Diseases/drug therapy , Endocannabinoids , Skin , Pruritus/drug therapy , Receptors, Cannabinoid
15.
ACS Chem Neurosci ; 14(21): 3928-3940, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37847546

ABSTRACT

The emergence of synthetic cannabinoid receptor agonists (SCRAs) as illicit psychoactive substances has posed considerable public health risks, including fatalities. Many SCRAs exhibit much higher efficacy and potency compared with the phytocannabinoid Δ9-tetrahydrocannabinol (THC) at the cannabinoid receptor 1 (CB1R), leading to dramatic differences in signaling levels that can be toxic. In this study, we investigated the structure-activity relationships of aminoalkylindole SCRAs at CB1Rs, focusing on 5F-pentylindoles containing an amide linker attached to different head moieties. Using in vitro bioluminescence resonance energy transfer assays, we identified a few SCRAs exhibiting significantly higher efficacy in engaging the Gi protein and recruiting ß-arrestin than the reference CB1R full agonist CP55940. Importantly, the extra methyl group on the head moiety of 5F-MDMB-PICA, as compared to that of 5F-MMB-PICA, led to a large increase in efficacy and potency at the CB1R. This pharmacological observation was supported by the functional effects of these SCRAs on glutamate field potentials recorded in hippocampal slices. Molecular modeling and simulations of the CB1R models bound with both of the SCRAs revealed critical structural determinants contributing to the higher efficacy of 5F-MDMB-PICA and how these subtle differences propagated to the receptor-G protein interface. Thus, we find that apparently minor structural changes in the head moiety of SCRAs can cause major changes in efficacy. Our results highlight the need for close monitoring of the structural modifications of newly emerging SCRAs and their potential for toxic drug responses in humans.


Subject(s)
Cannabinoid Receptor Agonists , Cannabinoids , Humans , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/chemistry , Receptor, Cannabinoid, CB1 , Cannabinoids/metabolism , Dronabinol , Receptor, Cannabinoid, CB2
16.
Biomedicines ; 11(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37893016

ABSTRACT

Neuroinflammation is a complex biological process that typically originates as a protective response in the brain. This inflammatory process is triggered by the release of pro-inflammatory substances like cytokines, prostaglandins, and reactive oxygen and nitrogen species from stimulated endothelial and glial cells, including those with pro-inflammatory functions, in the outer regions. While neuronal inflammation is common in various central nervous system disorders, the specific inflammatory pathways linked with different immune-mediated cell types and the various factors influencing the blood-brain barrier significantly contribute to disease-specific characteristics. The endocannabinoid system consists of cannabinoid receptors, endogenous cannabinoids, and enzymes responsible for synthesizing and metabolizing endocannabinoids. The primary cannabinoid receptor is CB1, predominantly found in specific brain regions such as the brainstem, cerebellum, hippocampus, and cortex. The presence of CB2 receptors in certain brain components, like cultured cerebellar granular cells, Purkinje fibers, and microglia, as well as in the areas like the cerebral cortex, hippocampus, and cerebellum is also evidenced by immunoblotting assays, radioligand binding, and autoradiography studies. Both CB1 and CB2 cannabinoid receptors exhibit noteworthy physiological responses and possess diverse neuromodulatory capabilities. This review primarily aims to outline the distribution of CB1 and CB2 receptors across different brain regions and explore their potential roles in regulating neuroinflammatory processes.

17.
Neurotox Res ; 41(6): 615-626, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37782433

ABSTRACT

Cerebral metabolic abnormalities are common in neurodegenerative diseases. Previous studies have shown that mitochondrial damage alters ATP production and increases reactive oxygen species (ROS) release which may contribute to neurodegeneration. In the present study, we investigated the neuroprotective effects of cannabidiol (CBD), a non-psychoactive component derived from marijuana (Cannabis sativa L.), on astrocytic bioenergetic balance in a primary cell culture model of lipopolysaccharide (LPS)-induced neurotoxicity. Astrocytic metabolic profiling using an extracellular flux analyzer demonstrated that CBD decreases mitochondrial proton leak, increased spare respiratory capacity and coupling efficiency in LPS-stimulated astrocytes. Simultaneously, CBD increased astrocytic glycolytic capacity and glycolysis reserve in a cannabinoid receptor type 1 (CB1)-dependent manner. CBD-restored metabolic changes were correlated with a significant decrease in the pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) concentration and reduction of ROS production in LPS-stimulated astrocytes. These results suggest that CBD may inhibit LPS-induced metabolic impairments and inflammation by enhancing astrocytic metabolic glycolysis versus oxidative phosphorylation through its action on CB1 receptors. The present findings suggest CBD as a potential anti-inflammatory treatment in metabolic pathologies and highlight a possible role for the cannabinoidergic system in the modulation of mitochondrial oxidative stress. CBD enhances mitochondrial bioenergetic profile, attenuates proinflammatory cytokines release, and ROS overproduction of astrocytes stimulated by LPS. These effects are not mediated directly by CB1 receptors, while these receptors seem to have a key role in the anti-inflammatory response of the endocannabinoid system on astrocytes, as their specific inhibition by SR141716A led to increased pro-inflammatory cytokines release and ROS production. The graphical abstract is created with BioRender.com.


Subject(s)
Cannabidiol , Cannabidiol/pharmacology , Lipopolysaccharides/toxicity , Receptors, Cannabinoid/metabolism , Reactive Oxygen Species/metabolism , Astrocytes , Cytokines , Anti-Inflammatory Agents/pharmacology
18.
Brain Res ; 1821: 148579, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37739333

ABSTRACT

OBJECTIVE: Tardive dyskinesia (TD) is a medically induced movement disorder that occurs as a result of long-term use of antipsychotic medications, commonly seen in patients with schizophrenia (SCZ). The study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) of the CNR1 gene, TD and cognitive impairments in a Chinese population with SCZ. METHODS: A total of 216 SCZ patients were recruited. The participants were divided into TD and without TD (WTD) groups using the Schooler-Kane International Diagnostic Criteria. The severity of TD was assessed using the Abnormal Involuntary Movement Scale (AIMS). Cognitive function was assessed using the Repeatable Battery for Assessment of Neuropsychological Status (RBANS) scale. Hardy-Weinberg equilibrium tests, chained disequilibrium analyses and haplotype analyses were performed using SHE-sis software. To explore the main effects of TD diagnosis, genotype and cognitive function, as well as interaction effects, analysis of covariance (ANCOVA) was employed. RESULTS: The prevalence of TD was approximately 27.3%. Significant differences were observed in the rs806368 CT genotype and rs806370 TC genotype within the hypercongenic pattern between the male TD and WTD groups (OR = 2.508, 95% CI: 1.055-5.961, p = 0.037; OR = 2.552, 95% CI: 1.073-6.069, p = 0.034). Among TD patients, those carrying the rs806368 CC genotype exhibited higher limb trunk scores (p < 0.05). Moreover, there was a statistically significant difference in visuospatial/construction between the TD and WTD groups (p = 0.04), and a borderline significant difference in visuospatial/construction when considering the interaction between TD diagnosis and genotype at the rs806368 locus (p = 0.05). CONCLUSION: CNR1 rs806368 and rs806370 polymorphisms may play a role in TD susceptibility. Additionally, CNR1 gene polymorphisms were associated with the severity of involuntary movements and cognitive impairments in TD patients.


Subject(s)
Antipsychotic Agents , Cognitive Dysfunction , Receptor, Cannabinoid, CB1 , Schizophrenia , Tardive Dyskinesia , Humans , Male , Cognitive Dysfunction/drug therapy , East Asian People , Polymorphism, Single Nucleotide , Schizophrenia/drug therapy , Schizophrenia/genetics , Tardive Dyskinesia/genetics , Tardive Dyskinesia/complications , Tardive Dyskinesia/drug therapy , Receptor, Cannabinoid, CB1/genetics
20.
Front Neurosci ; 17: 1213094, 2023.
Article in English | MEDLINE | ID: mdl-37547151

ABSTRACT

In the central nervous system (CNS), cannabinoid receptor 1 (CB1R) is preferentially expressed in axons where it has a unique property, namely resistance to agonist-driven endocytosis. This review aims to summarize what we know about molecular mechanisms of CB1R cell surface stability in axonal compartments, how these impact CB1R signaling, and to consider their physiological consequences. This review then focuses on a potential candidate for maintaining axonal CB1R at the cell surface, Src homology 3-domain growth factor receptor-bound 2-like endophilin interacting protein 1 (SGIP1). SGIP1 may contribute to the polarized distribution of CB1R and modify its signaling in axons. In addition, deletion of SGIP1 results in discrete behavioral changes in modalities controlled by the endocannabinoid system in vivo. Several drugs acting directly via CB1R have important therapeutic potential, however their adverse effects limit their clinical use. Future studies might reveal chemical approaches to target the SGIP1-CB1R interaction, with the aim to exploit the endocannabinoid system pharmaceutically in a discrete way, with minimized undesired consequences.

SELECTION OF CITATIONS
SEARCH DETAIL