Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Heliyon ; 10(16): e36490, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39247356

ABSTRACT

Carbon nanotube (CNT)-polymer composites exhibit significant advancements in mechanical, electrical, and thermal properties, enabling numerous promising applications. This review delves into recent research on manufacturing methods, filament extrusion, additive manufacturing (AM), properties, and applications of CNT polymer composites. Factors like processing conditions, polymer types, and CNT concentrations determine the ultimate properties of the composite material. The dispersion of CNT within various manufacturing techniques, such as melt mixing, solution mixing, and in-situ polymerization, significantly impacts the properties of the composite material. These composite materials are extensively used in AM, particularly in 3D printing, where filament blends are extruded and printed to custom-shaped objects. The finding underscores the effect of CNT content on the properties of CNT-polymer composite material in different applications. However, gaps remain in optimizing manufacturing processes and AM techniques, essential for tailoring these composites to specific application needs. Future research should focus on developing cost-effective and scalable manufacturing methods to unlock the full potential of CNT-polymer composites in various industries.

2.
Article in English | MEDLINE | ID: mdl-39099309

ABSTRACT

Triple-negative breast cancer (TNBC) has short survival rates. This study aimed to prepare a novel formula of sorafenib, carbon nanotubes (CNTs), and folic acid to be tested as a drug delivery system targeting versus TNBC compared with free sorafenib and to evaluate the formula stability, in vitro pharmacodynamic, and in vivo pharmacokinetic properties. The formula preparation was done by the synthesis of polyethylene glycol bis amine linker, CNT PEGylation, folic acid attachment, and sorafenib loading. The prepared formula has been characterized using X-ray diffraction, Flourier-transform infrared, 1HNMR, UV, high resolution-transmission electron microscope, field emission scanning electron microscopy, and Zeta potential. In vitro studies included drug release determination, MTT assay, flow cytometry to determine the apoptotic stage with percent, cell cycle analysis, and apoptotic marker assays for caspase-3, 8, 9, cytochrome c, and BCL-2. The in vivo study was performed to determine bioavailability and half-life in rats. The in vitro MTT antiproliferative assay revealed that the formula was threefold more cytotoxic toward TNBC cells than free sorafenib, and the flow cytometry showed a significant increase in apoptosis and necrosis. The formula has a greater inhibitory effect on BCL-2 and a lessening effect on cytochrome c and caspases 3, 8, and 9 than free sorafenib. In vivo experiments proved that our novel formula was superior to free sorafenib by increasing bioavailability by eight times and prolonging the half-life by three times. These results confirmed the successful preparation of the desired formula with better pharmacodynamic and pharmacokinetic properties. These promising results may show a novel therapeutic strategy for TNBC patients.

3.
Adv Mater ; 36(36): e2407274, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39030858

ABSTRACT

Carbon materials have great potential for applications in energy, biology, and environment due to their excellent chemical and physical properties. Their preparation by carbonization methods encounters limitations and the carbon loss during pyrolysis in the form of gaseous molecules results in low yield of carbon materials. Herein a low-energy (600 °C) and high-yield (82 wt.%) carbonization strategy is developed using liquid gallium-assisted pyrolysis of metal-organic frameworks (MOFs) affording the N-doped carbon nanotube (CNT) non-hollow frameworks encapsulating Co nanoparticles. The liquid gallium layer offers protection against air, promotes heat transfer, and limits the escape of small carbonaceous gaseous molecules, which greatly improve the yields of the pyrolysis reaction. Experimental and theoretical results reveal that the synergistic interaction between CNTs and N/O-containing groups gives a non-hollow framework composed of N/O-enriched and open CNTs (NOCNTF-15, 15 denotes the 15 mm thickness of the liquid gallium layer during the pyrolysis) with high specific capacity (185 mAh g-1 at 10 A g-1) and ultra-stable cyclability (stable operation at 10 A g-1 and 50 °C for 20 000 cycles). This study provides a unique approach to carbonization that facilitates the practical application of low-cost CNTs and other MOFs-derived carbon materials in high-performance sodium-ion batteries (SIBs).

4.
Adv Mater ; 36(35): e2407329, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966893

ABSTRACT

Touch control intention recognition is an important direction for the future development of human-machine interactions (HMIs). However, the implementation of parallel-sensing functional modules generally requires a combination of different logical blocks and control circuits, which results in regional redundancy, redundant data, and low efficiency. Here, a location-and-pressure intelligent tactile sensor (LPI tactile sensor) unprecedentedly combined with sensing, computing, and logic is proposed, enabling efficient and ultrahigh-resolution action-intention interaction. The LPI tactile sensor eliminates the need for data transfer among the functional units through the core integration design of the layered structure. It actuates in-sensor perception through feature transmission, fusion, and differentiation, thereby revolutionizing the traditional von Neumann architecture. While greatly simplifying the data dimensionality, the LPI tactile sensor achieves outstanding resolution sensing in both location (<400 µm) and pressure (75 Pa). Synchronous feature fusion and decoding support the high-fidelity recognition of action and combinatorial logic intentions. Benefiting from location and pressure synergy, the LPI tactile sensor demonstrates robust privacy as an encrypted password device and interaction intelligence through pressure enhancement. It can recognize continuous touch actions in real time, map real intentions to target events, and promote accurate and efficient intention-driven HMIs.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124800, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39024784

ABSTRACT

Scaffolds acting as an artificial matrix for cell proliferation are one of the bone tissue engineering approaches to the treatment of bone tissue defects. In the presented study, novel multicomponent scaffolds composed of a poly(ε-caprolactone) (PCL), phenolic compounds such as tannic (TA) and gallic acids (GA), and nanocomponents such as silica-coated magnetic iron oxide nanoparticles (MNPs-c) and functionalized multi-walled carbon nanotubes (CNTs) have been produced as candidates for such artificial substitutes. Well-developed interconnected porous structures were observed using scanning electron microscopy (SEM). Raman spectra showed that the highly crystalline nature of PCL was reduced by the addition of nanoadditives. In the case of scaffolds containing MNPs-c and TA, the formation of a Fe-TA complex was concluded because characteristic bands of chelation of the Fe3+ ion by phenolic catechol oxygen appeared. It was found that the necessary conditions for the crystallization of the PCL/MNPs-c/TA are for the catechol groups to be able to penetrate the porous silica shell of MNPs-c, as during experiment with MNPs-c and TA without polymer, no such complexation was observed. Moreover, the number of catechol groups, the spatial structure and molecular size of this phenolic compound are also crucial for complexation process because GA does not form complexes. Therefore, the PCL/CNTs/MNPs-c/TA scaffolds are interesting candidates to consider for their possible medical applications.

6.
Int J Biol Macromol ; 276(Pt 1): 133927, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025191

ABSTRACT

As is well known, cellulose, as a natural polymer material with abundant reserves, plays an irreplaceable role as the major raw material in energy and chemical-related fields. With the continuous advancement of technology, native single-component cellulose is often unsatisfactory for practical applications, constructing composites is an effective means of expanding the applications. When compounded with other ingredients to prepare composites, cellulose usually needs to be dissolved and regenerated to obtain good dispersion. Current studies have revealed that cellulose is insoluble in conventional solvents, and the limited types of solvent systems that can dissolve cellulose tend to degrade the cellulose during the dissolution process, altering the cellulose properties. Ionic liquids (ILs) are a class of solvents that are capable of dissolving cellulose without adversely affecting the cellulose during the dissolution process, such as degradation. Graphene and carbon nanotubes (CNTs) are poorly dispersed and easily agglomerated by π-π stacking in general solvents, whereas ILs can effectively shield them from π-π stacking, resulting in a favorable and steady dispersion. Thus, the cellulose composites of graphene/CNTs can be prepared with the assistance of ILs. In this paper, the solubilization of cellulose by ILs and the solubilization mechanism to the preparation of cellulose composites with graphene/CNTs are reviewed, the interactions between graphene, CNTs and cellulose in the composites are elucidated, and the preparation of cellulose composites with graphene/CNTs is introduced in terms of their structure, properties and application potential.


Subject(s)
Cellulose , Graphite , Ionic Liquids , Nanotubes, Carbon , Ionic Liquids/chemistry , Cellulose/chemistry , Nanotubes, Carbon/chemistry , Graphite/chemistry , Solvents/chemistry , Nanocomposites/chemistry , Solubility
7.
Materials (Basel) ; 17(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930222

ABSTRACT

This study delved into the integration of carbon nanotubes (CNTs) in Ultra-High Performance Concrete (UHPC), exploring aspects such as mechanical properties, microstructure analysis, accelerated chloride penetration, and life service prediction. A dispersed CNT solution (0.025 to 0.075 wt%) was employed, along with a superplasticizer, to ensure high flowability in the UHPC slurry. In addition, the combination of high-strength functional artificial lightweight aggregate (ALA) and micro hollow spheres (MHS) was utilized as a replacement for fine aggregate to not only reduce the weight of the concrete but also to increase its mechanical performance. Experimental findings unveiled that an increased concentration of CNT in CNT1 (0.025%) and CNT2 (0.05%) blends led to a marginal improvement in compressive strength compared to the control mix. Conversely, the CNT3 (0.075%) mixture exhibited a reduction in compressive strength with a rising CNT content as an admixture. SEM analysis depicted that the heightened concentration of CNTs as an admixture induced the formation of nanoscale bridges within the concrete matrix. Ponding test results indicated that, for all samples, the effective chloride transport coefficient remained below the standard limitation of 1.00 × 10-12 m2/s, signifying acceptable performance in the ponding test for all samples. The life service prediction outcomes affirmed that, across various environmental scenarios, CNT1 and CNT2 mixtures consistently demonstrated superior performance compared to all other mixtures.

8.
Chem Biodivers ; 21(7): e202301288, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697942

ABSTRACT

Recent breakthroughs in the field of carbon nanotubes (CNTs) have opened up unprecedented opportunities for the development of specialized bioactive CNT-polymers for a variety of biosensor applications. The incorporation of bioactive materials, including DNA, aptamers and antibodies, into CNTs to produce composites of bioactive CNTs has attracted considerable attention. In addition, polymers are essential for the development of biosensors as they provide biocompatible conditions and are the ideal matrix for the immobilization of proteins. The numerous applications of bioactive compounds combined with the excellent chemical and physical properties of CNTs have led to the development of bioactive CNT-polymer composites. This article provides a comprehensive overview of CNT-polymer composites and new approaches to encapsulate bioactive compounds and polymers in CNTs. Finally, biosensor applications of bioactive CNT-polymer for the detection of glucose, H2O2 and cholesterol were investigated. The surface of CNT-polymer facilitates the immobilization of bioactive molecules such as DNA, enzymes or antibodies, which in turn enables the construction of state-of-the-art, future-oriented biosensors.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Polymers , Nanotubes, Carbon/chemistry , Polymers/chemistry , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Glucose/analysis , Cholesterol/analysis , Cholesterol/chemistry , Humans
9.
Small ; 20(9): e2305034, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37867212

ABSTRACT

Light-responsive microactuators composed of vertically aligned carbon nanotube (CNT) forests mixed with poly(N-isopropylacrylamide) (PNIPAM) hydrogel composites are studied. The benefit of this composite is that CNTs act as a black absorber to efficiently capture radiative heating and trigger PNIPAM contraction. In addition, CNT forests can be patterned accurately using lithography to span structures ranging from a few micrometers to several millimeters in size, and these CNT-PNIPAM composites can achieve response times as fast as 15 ms. The kinetics of these microactuators are investigated through detailed analysis of high-speed videos. These are compared to a theoretical model for the deswelling dynamics, which combines thermal convection and polymer diffusion, and shows that polymer diffusion is the rate-limiting factor in this system. Applications of such CNT/hydrogel actuators as microswimmers are discussed, with light-actuating micro-jellyfish designs exemplified, and >1500 cycles demonstrated.

10.
Chem Rec ; 24(1): e202300155, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37435960

ABSTRACT

In recent years, flexible and wearable electronics such as smart cards, smart fabrics, bio-sensors, soft robotics, and internet-linked electronics have impacted our lives. In order to meet the requirements of more flexible and adaptable paradigm shifts, wearable products may need to be seamlessly integrated. A great deal of effort has been made in the last two decades to develop flexible lithium-ion batteries (FLIBs). The selection of suitable flexible materials is important for the development of flexible electrolytes self-supported and supported electrodes. This review is focused on the critical discussion of the factors that evaluate the flexibility of the materials and their potential path toward achieving the FLIBs. Following this analysis, we present how to evaluate the flexibility of the battery materials and FLIBs. We describe the chemistry of carbon-based materials, covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and MXene-based materials and their flexible cell design that represented excellent electrochemical performances during bending. Furthermore, the application of state-of-the-art solid polymer and solid electrolytes to accelerate the development of FLIBs is introduced. Analyzing the contributions and developments of different countries has also been highlighted in the past decade. In addition, the prospects and potential of flexible materials and their engineering are also discussed, providing the roadmap for further developments in this fast-evolving field of FLIB research.

11.
ACS Appl Mater Interfaces ; 15(40): 47327-47337, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37769210

ABSTRACT

Flexible capacitive pressure sensors with high sensitivity over a wide pressure range are highly anticipated in the fields of tactile perception and physiological signal monitoring. However, despite the introduction of microstructures on the electrolyte layer, the deformability is still limited due to the size limitation of the microstructures, making it difficult to significantly improve the sensitivity of iontronic capacitive pressure sensors (ICPSs). Here, we propose an innovative strategy of combining carbon nanotubes (CNTs) topological networks and ionic hydrogel micropyramid array microstructures that can significantly enhance the sensitivity of flexible ICPSs for ultrasensitive pressure detection. Compared with other previously reported ICPSs, the sensor developed in this work exhibits an unprecedented sensitivity (Smin > 1050 kPa-1) and a high linear response (R2 > 0.99) in a wide pressure range (0.03-28 kPa) enabled by CNT percolation networks inside the microstructred electrolyte layer. This ultrasensitive and flexible ICPS also can effectively detect pressure from a variety of sources, including sound waves, lightweight objects, and tiny physiological signals, such as pulse rate and heartbeat. This work provides a general strategy to achieve an ICPS with both broader pressure-response range and higher sensitivity, which provides a stable and efficient way for a low-cost, scalable sensor for sensitive tactile sensing in human-computer interaction applications.

12.
Small ; 19(50): e2304399, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37626463

ABSTRACT

Water splitting via an uninterrupted electrochemical process through hybrid energy storage devices generating continuous hydrogen is cost-effective and green approach to address the looming energy and environmental crisis toward constant supply of hydrogen fuel in fuel cell driven automobile sector. The high surface area metal-organic framework (MOF) driven bimetallic phosphides (ZnP2 @CoP) on top of CNT-carbon cloth matrix is utilized as positive and negative electrodes in energy storage devices and overall water splitting. The as-prepared positive electrode exhibits excellent specific capacitances/capacity of 1600 F g-1 /800 C g-1 @ 1A g-1 and the corresponding hybrid device reveals an energy density of 83.03 Wh kg-1 at power density of 749.9 W kg-1 . Simultaneously, the electrocatalytic performance of heterostructure shows overpotentials of 90 mV@HER and 204 mV@OER at current density of 10 and 20 mA cm-2 , respectively in alkaline electrocatalyzer. Undoubtedly, it shows overall water splitting with low cell voltage of 1.53 V@10 mA cm-2 having faradic and solar-to-hydrogen conversion efficiency of 98.81% and 9.94%, respectively. In addition, the real phase demonstration of the overall water-splitting is performed where the electrocatalyzer is connected with a series of hybrid supercapacitor devices powered up by the 6 V standard silicon solar panel to produce uninterrupted green H2 .

13.
Heliyon ; 9(8): e18941, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37649845

ABSTRACT

The function of present work is to inspect heat transmission of radiative nanofluid in regard to boundary layer description. Carbon nanotubes (CNTs) dependent fluid is being evaluated and it flows overtop a curved stretching surface. Special features, like thermal radiation and internal heat generation, which corresponds to heat transmission along the flow have been incorporated. Dual nature of carbon nanotubes, that is, single walled carbon nanotubes (SWCNTs) as well as multiple walled carbon nanotubes (MWCNTs) together with blood (base fluid) have been utilized for the composition of nanofluid. The rheological properties of blood have been captured using Casson fluid model. Appropriate transformations have been applied to reduce the modeled system of nonlinear partial differential equations into a system of ordinary differential equations (ODEs). To achieve the desired numerical solution of obtained system of ODEs, NDSolve technique is employed using Mathematica. Numerous parameters appearing in governing equations, exert influence on focused physical quantities. Graphs have been engaged to capture these variations for both SWCNTs and MWCNTs. Likewise, numeric charts have been displayed to investigate impressions on skin friction coefficient and Nusselt number for distinct parameters.

14.
Nanomaterials (Basel) ; 13(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570470

ABSTRACT

Addressing the critical issue of water pollution, this review article emphasizes the need to remove hazardous dyes and phenolic compounds from wastewater. These pollutants pose severe risks due to their toxic, mutagenic, and carcinogenic properties. The study explores various techniques for the remediation of organic contaminants from wastewater, including an enzymatic approach. A significant challenge in enzymatic wastewater treatment is the loss of enzyme activity and difficulty in recovery post-treatment. To mitigate these issues, this review examines the strategy of immobilizing enzymes on newly developed nanostructured materials like graphene, carbon nanotubes (CNTs), and metal-organic frameworks (MOFs). These materials offer high surface areas, excellent porosity, and ample anchoring sites for effective enzyme immobilization. The review evaluates recent research on enzyme immobilization on these supports and their applications in biocatalytic nanoparticles. It also analyzes the impact of operational factors (e.g., time, pH, and temperature) on dye and phenolic compound removal from wastewater using these enzymes. Despite promising outcomes, this review acknowledges the challenges for large-scale implementation and offers recommendations for future research to tackle these obstacles. This review concludes by suggesting that enzyme immobilization on these emerging materials could present a sustainable, environmentally friendly solution to the escalating water pollution crisis.

15.
ACS Appl Mater Interfaces ; 15(36): 42854-42867, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37652465

ABSTRACT

The rational design of interface materials containing carbon nanotubes (CNTs) and zeolites (zeolite-CNTs) is a promising perspective in chemical and biochemical communities because they exhibit several outstanding properties such as tunable hydrophobicity-hydrophilicity at interfaces. In this contribution, we report the fabrication of Ag-incorporated nanocrystalline BEA-carbon nanotube (CNT) composites via the one-pot inter-zeolite transformation of the micron-sized FAU-CNT composite in the presence of a Ag precursor. By varying the crystallization time, the inter-zeolite transformation mechanism was explored. Indeed, this process involves an amorphous intermediate of aluminosilicate species with a significant change of the crystal morphology in the presence of CNTs in the synthesis gel. Interestingly, the redispersion of metal particles was observed after the inter-zeolite transformation process, resulting in the high dispersion of metal nanoparticles over BEA nanocrystals. Notably, it was revealed that the Ag sites were also stabilized in the presence of CNT interfaces, leading to the availability of highly active Ag+ ions. To illustrate the beneficial aspect of designer materials, the synthesized Ag-incorporated BEA-CNT composites exhibited high antibacterial activity againstEscherichia coli due to the synergistic effect of the active Ag+ species and appropriate hydrophobic and hydrophilic properties of the hybrid material interfaces. This first example opens up perspectives of the rational design of zeolite-CNT interfaces with high metal dispersion via the inter-zeolite transformation approach for biomedical applications.

16.
Small ; 19(37): e2301468, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37140080

ABSTRACT

2D 2H-phase MoS2 is promising for electrocatalytic applications because of its stable phase, rich edge sites, and large surface area. However, the pristine low-conductive 2H-MoS2 suffers from limited electron transfer and surface activity, which become worse after their highly likely aggregation/stacking and self-curling during applications. In this work, these issues are overcome by conformally attaching the intercalation-detonation-exfoliated, surface S-vacancy-rich 2H-MoS2 onto robust conductive carbon nanotubes (CNTs), which electrically bridge bulk electrode and local MoS2 catalysts. The optimized MoS2 /CNTs nanojunctions exhibit outstanding stable electroactivity (close to commercial Pt/C): a polarization overpotential of 79 mV at the current density of 10 mA cm-2 and the Tafel slope of 33.5 mV dec-1 . Theoretical calculations unveil the metalized interfacial electronic structure of MoS2 /CNTs nanojunctions, enhancing defective-MoS2 surface activity and local conductivity. This work provides guidance on rational design for advanced multifaceted 2D catalysts combined with robust bridging conductors to accelerate energy technology development.

17.
Materials (Basel) ; 16(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049066

ABSTRACT

Hybrid fillers can be produced via various methods, such as physical mixing and chemical modification. However, there is a limited number of studies on the effect of hybridisation on the mechanical performance of hybrid filler-reinforced polymer composites, especially in the context of wear performance. This study investigated the wear resistance of carbon nanotubes (CNTs)/alumina hybrid-filled phenolic composite, where two hybrid methods were used to produce the CNTs/alumina hybrid filler. The CNTs/alumina (CVD hybrid) was synthesised using the chemical vapour deposition (CVD) method, whereas the CNTs-/alumina (physically hybrid) was prepared using the ball milling method. The CNTs/alumina hybrid filler was then used as a filler in the phenolic composites. The composites were prepared using a hot mounting press and then subjected to a dry sliding wear test using a pin-on-disc (POD) tester. The results show that the composite filled with the CVD hybrid filler (HYB composite) had better wear resistance than the composite filled with physically hybrid filler (PHY composite) and pure phenolic. At 5 wt%, the HYB composite showed a 74.68% reduction in wear, while the PHY composite showed a 56.44% reduction in wear compared to pure phenolic. The HYB composite exhibited the lowest average coefficient of friction (COF) compared to the PHY composite and pure phenolic. The average COF decreased with increasing sliding speeds and applied loads. The phenolic composites' wear and average COF are in the order HYB composite < PHY composite < pure phenolic under all sliding speeds and applied loads.

18.
Polymers (Basel) ; 15(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850166

ABSTRACT

In this study, pull-out tests were conducted to investigate the bond behavior of a rebar embedded in cementitious composites with polyvinyl alcohol (PVA) fibers and carbon nanotubes (CNTs). In the cementitious composites, the binder consisted of ordinary Portland cement, blast furnace slag, and fly ash, with a weight ratio of 39.5, 21.0 and 39.5%, respectively, while the nonbinder consisted of quartzite sand, lightweight aggregate, superplasticizer, and shrinkage-reducing admixture. The water/binder ratio and volume fractions of the PVA fibers were 32.9% and 2.07%, respectively. In the test program, the rebar diameter (D13, D16, and D19) and CNTs mix ratio (0.0, 0.1, 0.2, and 0.3 wt.%) were considered as the test variables. The test results showed that the bond strength of a rebar increased as the rebar diameter decreased or as the CNTs mix ratio increased. Based on the test results, a new, simple model has been proposed with consideration of the rebar diameter, as well as the CNTs mix ratio. Comparing the test results, it was investigated that the proposed model generally represented the bond behavior well, including the bond strength and the corresponding slip of a rebar embedded in PVA cementitious composites, with or without CNTs.

19.
J Colloid Interface Sci ; 638: 709-718, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36780851

ABSTRACT

Among many supercapacitor electrode materials, carbon materials are widely used due to their large specific surface area, good electrical conductivity and high economic efficiency. However, carbon-based supercapacitors face the challenges of low energy density and limited operating environment. This work reports a facile self-assembled method to prepare three-dimensional carbon nanotubes/reduced graphene oxide (CNTs/rGO) aerogel material, which was applied as both positive and negative electrodes in a symmetric superacapacitor. The fabricated supercapacitor exhibited prominent capacitive performance not only at room temperature, but also at extreme temperatures (-20 âˆ¼ 80 °C). The specific capacitances of the symmetric supercapacitors based on CNTs/rGO at a weight ratio of 2:5 respectively reached 107.8 and 128.2 F g-1 at 25 °C and 80 °C with KOH as the electrolyte, and 80.0 and 144.6 F g-1 at -20 °C and 60 °C with deep eutectic solvent as the electrolyte. Notably, the capacitance retention and coulombic efficiency of the assembled supercapacitors remained almost unchanged after 20,000 cycles of charge/discharge test over a wide temperature range. The work uncovered a possibility for the development of high-performance supercapacitors flexibly operated at extreme temperatures.

20.
Nanomaterials (Basel) ; 12(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36558280

ABSTRACT

So far, there is no validated technology for characterizing the dispersion and morphology state of carbon nanotubes (CNTs) aqueous dispersions during sonication. Taking advantage of the conductive nature of CNTs, the main hypothesis of the current study is that Electrochemical Impedance Spectroscopy (EIS) is an appropriate technique for the in-situ monitoring and qualification of the dispersion state of CNTs in aqueous media. To confirm our hypothesis, we monitored the Impedance |Z| during the sonication process as a function of type CNTs/admixtures used for the preparation of the aqueous solutions and of crucial process parameters, such as the applied sonication power and duration (i.e., sonication energy). For dispersions above the percolation threshold, a drop of |Z| by approximately seven orders of magnitude was observed, followed by a linear reduction. The dramatic change in |Z| is regarded as an indication of the formation of a conductive path or destruction of an existing one during sonication and can be used to characterize the dispersion and morphology state of CNTs. The results of the EIS provide, straightforwardly and reliably, the required information to create an optimum dispersion protocol for conductive CNT suspensions. The produced dispersions are part of research focusing on the manufacturing of cement-based composite materials with advanced thermoelectric functionalities for energy harvesting. Such dispersions are not only limited to energy harvesting applications but also to applications where functionalities are introduced through the use of conductive-based suspensions.

SELECTION OF CITATIONS
SEARCH DETAIL