Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
J Exp Bot ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140865

ABSTRACT

Capsanthin and capsorubin are red κ-xanthophylls exclusively found in a handful of other plant species. Currently, capsanthin and capsorubin are only extracted from red pepper. Here, high purity production of capsanthin and capsorubin has been achieved in carrot taproot by synthetic metabolic engineering strategy. Expression of a capsanthin-capsorubin synthase gene (CaCCS) from pepper resulted in dominant production of capsanthin whereas expression of a LiCCS gene from tiger lily resulted in production of both capsanthin and capsorubin in carrot taproot. The highest content of capsanthin and capsorubin was obtained in LiC-1 carrot taproot hosting the LiCCS gene, 150.09 µg/g DW (dry weight). Co-expression of DcBCH1 with CCS could improve the purity of capsanthin and capsorubin by eliminating the non-target carotenoids (eg. α-carotene and ß-carotene). The highest purity of capsanthin and capsorubin was obtained in BLiC-1 carrot taproot hosting DcBCH1+LiCCS genes, 91.10% of total carotenoids. The non-native pigments were esterified partially and stored in the globular chromoplast of carrot taproot. Our results demonstrated the possibility of employing carrot taproot as green factories for high purity production of capsanthin and capsorubin. The capsanthin/capsorubin carrot germplasms were also valuable materials for breeding colorful carrots cultivars.

2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612633

ABSTRACT

Terpenes are high-value chemicals which can be produced by engineered cyanobacteria from sustainable resources, solar energy, water and CO2. We previously reported that the euryhaline unicellular cyanobacteria Synechocystis sp. PCC 6803 (S.6803) and Synechococcus sp. PCC 7002 (S.7002) produce farnesene and limonene, respectively, more efficiently than other terpenes. In the present study, we attempted to enhance farnesene production in S.6803 and limonene production in S.7002. Practically, we tested the influence of key cyanobacterial enzymes acting in carbon fixation (RubisCO, PRK, CcmK3 and CcmK4), utilization (CrtE, CrtR and CruF) and storage (PhaA and PhaB) on terpene production in S.6803, and we compared some of the findings with the data obtained in S.7002. We report that the overproduction of RubisCO from S.7002 and PRK from Cyanothece sp. PCC 7425 increased farnesene production in S.6803, but not limonene production in S.7002. The overexpression of the crtE genes (synthesis of terpene precursors) from S.6803 or S.7002 did not increase farnesene production in S.6803. In contrast, the overexpression of the crtE gene from S.6803, but not S.7002, increased farnesene production in S.7002, emphasizing the physiological difference between these two model cyanobacteria. Furthermore, the deletion of the crtR and cruF genes (carotenoid synthesis) and phaAB genes (carbon storage) did not increase the production of farnesene in S.6803. Finally, as a containment strategy of genetically modified strains of S.6803, we report that the deletion of the ccmK3K4 genes (carboxysome for CO2 fixation) did not affect the production of limonene, but decreased the production of farnesene in S.6803.


Subject(s)
Sesquiterpenes , Synechococcus , Synechocystis , Limonene , Synechococcus/genetics , Synechocystis/genetics , Carbon Dioxide , Ribulose-Bisphosphate Carboxylase , Terpenes , Carbon Cycle
3.
J Plant Physiol ; 284: 153962, 2023 May.
Article in English | MEDLINE | ID: mdl-36940578

ABSTRACT

The ß-carotene hydroxylase gene (BCH) regulates zeaxanthin production in response to high light levels ro protect Chrysanthemum morifolium plants against light-induced damage. In this study, the Chrysanthemum morifolium CmBCH1 and CmBCH2 genes were cloned and their functional importance was assessed by overexpressing them in Arabidopsis thaliana. These transgenic plants were evaluated for gene-related changes in phenotypic characteristics, photosynthetic activity, fluorescence properties, carotenoid biosynthesis, aboveground/belowground biomass, pigment content, and the expression of light-regulated genes under conditions of high light stress relative to wild-type (WT) plants. When exposed to high light stress, WT A. thaliana leaves turned yellow and the overall biomass was reduced compared to that of the transgenic plants. WT plants exposed to high light stress also exhibited significant reductions in the net photosynthetic rate, stomatal conductance, Fv/Fm, qP, and ETR, whereas these changes were not observed in the transgenic CmBCH1 and CmBCH2 plants. Lutein and zaxanthin levels were significantly increased in the transgenic CmBCH1 and CmBCH2 lines, with progressive induction with prolonged light exposure, whereas no significant changes were observed in light-exposed WT plants. The transgenic plants also expressed higher levels of most carotenoid biosynthesis pathway genes, including phytoene synthase (AtPSY), phytoene desaturase (AtPDS), lycopene-ß-cyclase (AtLYCB), and ζ-carotene desaturase (AtZDS). The elongated hypocotyl 5 (HY5) and succinate dehydrogenase (SDH) genes were significantly induced following exposure to high light conditions for 12h, whereas phytochrome-interacting factor 7 (PIF7) was significantly downregulated in these plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Carotenoids/metabolism , Mixed Function Oxygenases/genetics , Lutein/metabolism , Plants, Genetically Modified/metabolism , DNA-Binding Proteins/genetics , Arabidopsis Proteins/metabolism
4.
ACS Synth Biol ; 12(3): 820-831, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36821819

ABSTRACT

Astaxanthin is a valuable ketocarotenoid with various pharmaceutical and nutraceutical applications. Green microalgae harbor natural capacities for pigment accumulation due to their 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Recently, a redesigned ß-carotene ketolase (BKT) was found to enable ketocarotenoid accumulation in the model microalga Chlamydomonas reinhardtii, and transformants exhibited reduced photoinhibition under high-light. Here, a systematic screening by synthetic transgene design of carotenoid pathway enzymes and overexpression from the nuclear genome identified phytoene synthase (PSY/crtB) as a bottleneck for carotenoid accumulation in C. reinhardtii. Increased ß-carotene hydroxylase (CHYB) activity was found to be essential for engineered astaxanthin accumulation. A combined BKT, crtB, and CHYB expression strategy resulted in a volumetric astaxanthin production of 9.5 ± 0.3 mg L-1 (4.5 ± 0.1 mg g-1 CDW) in mixotrophic and 23.5 mg L-1 (1.09 mg L-1 h-1) in high cell density conditions, a 4-fold increase compared to previous reports in C. reinhardtii. This work presents a systematic investigation of bottlenecks in astaxanthin accumulation in C. reinhardtii and the phototrophic green cell factory design for competitive use in industrial biotechnology.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Metabolic Engineering/methods , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Microalgae/genetics , Microalgae/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Carotenoids/metabolism
5.
Appl Biochem Biotechnol ; 195(2): 1255-1267, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36346562

ABSTRACT

Aurantiochytrium limacinum is a heterotrophic eukaryotic microorganism that can accumulate high levels of commercial products such as astaxanthin and docosahexaenoic acid. Due to its rapid growth and relatively simple extraction method, A. limacinum is considered a promising astaxanthin resource to replace the conventional microalgal production. However, the astaxanthin biosynthetic process in A. limacinum remains incompletely understood, especially in those catalysed by ß-carotene hydroxylase (CrtZ) and ketolase. In this study, we overexpressed a crtZ candidate gene to increase astaxanthin production and expand our understanding of the conversion from beta-carotene to astaxanthin. The resultant transformant AlcrtZ#10 cultivated for 5 days showed a significant increase in astaxanthin production per culture (2.8-fold) and per cell (4.5-fold) compared with that of the wild-type strain. Strikingly, longer light exposure increased astaxanthin production and decreased the beta-carotene content in the wild-type strain, suggesting that light exposure duration is important for astaxanthin production in A. limacinum. Among several predicted intermediates, furthermore, the cantaxanthin produced from ß-carotene by ketolase activity were enhanced in the transformant AlcrtZ#10. Although the further investigation is needed, this result suggested that the main route of astaxanthin was via cantaxanthin. Thus, our findings will be valuable not only for its application, but also for understanding the astaxanthin biosynthetic process in A. limacinum.


Subject(s)
Oxygenases , beta Carotene , Oxygenases/genetics , Mixed Function Oxygenases/genetics
6.
Microb Cell Fact ; 21(1): 71, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35468798

ABSTRACT

BACKGROUND: The bifunctional enzyme ß-carotene hydroxylase (CrtZ) catalyzes the hydroxylation of carotenoid ß-ionone rings at the 3, 3' position regardless of the presence of keto group at 4, 4' position, which is an important step in the synthesis of astaxanthin. The level and substrate preference of CrtZ may have great effect on the amount of astaxanthin and the accumulation of intermediates. RESULTS: In this study, the substrate preference of PCcrtZ from Paracoccus sp. PC1 and PAcrtZ from Pantoea Agglomerans were certified and were combined utilization for increase astaxanthin production. Firstly, PCcrtZ from Paracoccus sp. PC1 and PAcrtZ from P. Agglomerans were expressed in platform strains CAR032 (ß-carotene producing strain) and Can004 (canthaxanthin producing strain) separately to identify their substrate preference for carotenoids with keto groups at 4,4' position or not. The results showed that PCcrtZ led to a lower zeaxanthin yield in CAR032 compared to that of PAcrtZ. On the contrary, higher astaxanthin production was obtained in Can004 by PCcrtZ than that of PAcrtZ. This demonstrated that PCCrtZ has higher canthaxanthin to astaxanthin conversion ability than PACrtZ, while PACrtZ prefer using ß-carotene as substrate. Finally, Ast010, which has two copies of PAcrtZ and one copy of PCcrtZ produced 1.82 g/L of astaxanthin after 70 h of fed-batch fermentation. CONCLUSIONS: Combined utilization of crtZ genes, which have ß-carotene and canthaxanthin substrate preference respectively, can greatly enhance the production of astaxanthin and increase the ratio of astaxanthin among total carotenoids.


Subject(s)
Escherichia coli , Paracoccus , Canthaxanthin , Carotenoids/chemistry , Escherichia coli/genetics , Oxygenases/genetics , Xanthophylls , beta Carotene
7.
FEBS Lett ; 596(15): 1921-1931, 2022 08.
Article in English | MEDLINE | ID: mdl-35344590

ABSTRACT

Carotenoids with rare 6-hydroxy-3-keto-ε-end groups, such as piprixanthin, vitixanthin, or cochloxanthin, found in manakin birds or plants, are rare carotenoids with high antioxidant activity. The same chemical structure is found in abscisic acid or blumenol, apocarotenoids found in plants or fungi. In this study, we serendipitously discovered that the promiscuous activity of the ß-carotene hydroxylase CrtZ, a diiron-containing membrane protein, can catalyze the formation of 6-hydroxy-3-keto-ε-end by using epoxycarotenoids antheraxanthin or violaxanthin as substrate. We suggest that the reaction mechanism is similar to that of a rhodoxanthin biosynthetic enzyme. Our results provide a further understanding of the reaction mechanism of diiron-containing ß-carotene hydroxylases, as well as insight into the biosynthesis of natural compounds with 6-hydroxy-3-keto-ε-end carotenoid derivatives.


Subject(s)
Carotenoids , Mixed Function Oxygenases , Carotenoids/metabolism , Mixed Function Oxygenases/metabolism
8.
J Agric Food Chem ; 70(8): 2673-2683, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35191700

ABSTRACT

Astaxanthin is a highly value-added keto-carotenoid compound. The astaxanthin 3S,3'S-isomer is more desirable for food additives, cosmetics, and pharmaceuticals due to health concerns about chemically synthesized counterparts with a mixture of three isomers. Biosynthesis of 3S,3'S-astaxanthin suffers from limited content and productivity. We engineered Yarrowia lipolytica to produce high levels of 3S,3'S-astaxanthin. We first assessed various ß-carotene ketolases (CrtW) and ß-carotene hydroxylases (CrtZ) from two algae and a plant. HpCrtW and HpCrtZ from Haematococcus pluvialis exhibited the strongest activity in converting ß-carotene into astaxanthin in Y. lipolytica. We then fine-tuned the HpCrtW and HpCrtZ transcriptional expression by increasing the rounds of gene integration into the genome and applied a modular enzyme assembly of HpCrtW and HpCrtZ simultaneously. Next, we rescued leucine biosynthesis in the engineered Y. lipolytica, leading to a five-fold increase in biomass. The astaxanthin production achieved from these strategies was 3.3 g/L or 41.3 mg/g dry cell weight under fed-batch conditions, which is the highest level reported in microbial chassis to date. This study provides the potential for industrial production of 3S,3'S-astaxanthin, and this strategy empowers us to build a sustainable biorefinery platform for generating other value-added carotenoids in the future.


Subject(s)
Metabolic Engineering , Yarrowia , Xanthophylls/chemistry , Yarrowia/genetics , Yarrowia/metabolism , beta Carotene/metabolism
9.
Biotechnol Lett ; 44(2): 321-331, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35119571

ABSTRACT

Carotenoids are important photosynthetic pigments with many physiological functions, nutritional properties and high commercial value. ß-carotene hydroxylase is one of the key enzymes in the carotenoid synthesis pathway of Chlamydomonas reinhardtii for the conversion of ß-carotene to astaxanthin. The vector p64DZ containing the ß-carotene hydroxylase gene crtZ from Haematococcus pluvialis was transformed into C. reinhardtii CC-503. The transformants were selected by alternate culture in solid-liquid medium containing spectinomycin (100 µg mL-1). PCR results indicated that the gene crtZ and aadA were integrated into the genome of C. reinhardtii. RT-PCR analysis showed that the gene crtZ was transcribed in Chlamydomonas transformants. HPLC analysis showed that the content of astaxanthin and ß-carotene in cells of C. reinhardtii were simultaneously increased. Under medium light intensity cultivation (60 µmol m-2 s-1), transgenic C. reinhardtii had an 85.8% increase in ß-carotene content compared with the wild type. The content of astaxanthin and ß-carotene reached 1.97 ± 0.13 mg g-1 fresh cell weight (FCW) and 105.94 ± 5.84 µg g-1 FCW, which were increased 18% and 42.4% than the wild type after 6 h of high light treatment (200 µmol m-2 s-1), respectively. Our results indicate the regulatory effect on pigments in C. reinhardtii by ß-carotene hydroxylase gene of H. pluvialis, and demonstrate the positive effect of high light stress on pigment accumulation in transgenic C. reinhardtii.


Subject(s)
Chlamydomonas reinhardtii , beta Carotene , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Mixed Function Oxygenases , Xanthophylls
10.
Plant Biotechnol J ; 20(3): 564-576, 2022 03.
Article in English | MEDLINE | ID: mdl-34695292

ABSTRACT

Grains of tetraploid wheat (Triticum turgidum L.) mainly accumulate the non-provitamin A carotenoid lutein-with low natural variation in provitamin A ß-carotene in wheat accessions necessitating alternative strategies for provitamin A biofortification. Lycopene ɛ-cyclase (LCYe) and ß-carotene hydroxylase (HYD) function in diverting carbons from ß-carotene to lutein biosynthesis and catalyzing the turnover of ß-carotene to xanthophylls, respectively. However, the contribution of LCYe and HYD gene homoeologs to carotenoid metabolism and how they can be manipulated to increase ß-carotene in tetraploid wheat endosperm (flour) is currently unclear. We isolated loss-of-function Targeting Induced Local Lesions in Genomes (TILLING) mutants of LCYe and HYD2 homoeologs and generated higher order mutant combinations of lcye-A, lcye-B, hyd-A2, and hyd-B2. Hyd-A2 hyd-B2, lcye-A hyd-A2 hyd-B2, lcye-B hyd-A2 hyd-B2, and lcye-A lcye-B hyd-A2 hyd-B2 achieved significantly increased ß-carotene in endosperm, with lcye-A hyd-A2 hyd-B2 exhibiting comparable photosynthetic performance and light response to control plants. Comparative analysis of carotenoid profiles suggests that eliminating HYD2 homoeologs is sufficient to prevent ß-carotene conversion to xanthophylls in the endosperm without compromising xanthophyll production in leaves, and that ß-carotene and its derived xanthophylls are likely subject to differential catalysis mechanisms in vegetative tissues and grains. Carotenoid and gene expression analyses also suggest that the very low LCYe-B expression in endosperm is adequate for lutein production in the absence of LCYe-A. These results demonstrate the success of provitamin A biofortification using TILLING mutants while also providing a roadmap for guiding a gene editing-based approach in hexaploid wheat.


Subject(s)
Intramolecular Lyases , Mixed Function Oxygenases , Triticum , beta Carotene , Anodontia , Carotenoids/metabolism , Endosperm/genetics , Endosperm/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Lutein/metabolism , Lycopene/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Provitamins/metabolism , Tetraploidy , Triticum/genetics , Triticum/metabolism , Xanthophylls/metabolism , beta Carotene/genetics , beta Carotene/metabolism
11.
BMC Plant Biol ; 21(1): 475, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34663216

ABSTRACT

BACKGROUND: Carrot (Daucus carota L.), an important root vegetable, is very popular among consumers as its taproot is rich in various nutrients. Abiotic stresses, such as drought, salt, and low temperature, are the main factors that restrict the growth and development of carrots. Non-heme carotene hydroxylase (BCH) is a key regulatory enzyme in the ß-branch of the carotenoid biosynthesis pathway, upstream of the abscisic acid (ABA) synthesis pathway. RESULTS: In this study, we characterized a carrot BCH encoding gene, DcBCH1. The expression of DcBCH1 was induced by drought treatment. The overexpression of DcBCH1 in Arabidopsis thaliana resulted in enhanced tolerance to drought, as demonstrated by higher antioxidant capacity and lower malondialdehyde content after drought treatment. Under drought stress, the endogenous ABA level in transgenic A. thaliana was higher than that in wild-type (WT) plants. Additionally, the contents of lutein and ß-carotene in transgenic A. thaliana were lower than those in WT, whereas the expression levels of most endogenous carotenogenic genes were significantly increased after drought treatment. CONCLUSIONS: DcBCH1 can increase the antioxidant capacity and promote endogenous ABA levels of plants by regulating the synthesis rate of carotenoids, thereby regulating the drought resistance of plants. These results will help to provide potential candidate genes for plant drought tolerance breeding.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/genetics , Carotenoids/metabolism , Daucus carota/genetics , Mixed Function Oxygenases/metabolism , Plant Growth Regulators/metabolism , Antioxidants/metabolism , Arabidopsis/physiology , Daucus carota/physiology , Droughts , Gene Expression , Gene Expression Regulation, Plant , Mixed Function Oxygenases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Stress, Physiological
12.
Foods ; 10(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071303

ABSTRACT

Pepper is the second most important vegetable crop in Bulgarian agriculture and has become the subject of extensive breeding programs that frequently employ induced mutagenesis. The success of breeding programs can be enhanced by the efficient and integral application of different biochemical and molecular methods to characterize specific mutant alleles. On the other hand, identifying new cost-effective methods is important under a limited-resources environment. In this paper we compare the levels of five health-related carotenoid compounds of fruits (α-carotene, ß-carotene, lutein, ß-cryptoxanthin, zeaxanthin) between a mutant variety Oranzheva kapia (possessing high ß-carotene concentration) and a corresponding initial pepper variety Pazardzhishka kapia 794. Both varieties are intended for fresh consumption. Pepper is a major natural source of ß-carotene. It was observed that fruit at both commercial and botanical maturity from mutant variety had greater α-carotene and ß-carotene concentrations to the initial variety (7.49 and 1.94 times higher, respectively) meaning that the mutant was superior in fruit quality to the initial genotype. Two hydroxylase enzymes, converting α- and ß-carotene to lutein and zeaxanthin, respectively, are known to exist in pepper and are encoded by two genes on chromosomes 3 and 6-CrtZchr03 and CrtZchr06. The molecular characterization of the mutant variety through locus-specific Polymerase chain reaction amplification, gene cloning and sequencing as well as expression was performed. Our results suggest that the increased ß-carotene accumulation in the mutant variety Oranzheva kapia results from a biosynthetic pathway breakdown due to deletion of CrtZchr03 gene.

13.
AMB Express ; 11(1): 83, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34097133

ABSTRACT

Dunaliella salina (D. salina) has been exploited as a novel expression system for the field of genetic engineering. However, owing to the low or inconsistent expression of target proteins, it has been greatly restricted to practical production of recombinant proteins. Since the accurate gene editing function of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system, ß-carotene hydroxylase gene was chosen as an example to explore D. salina application with the purpose of improving expression level of foreign genes. In this paper, based on pKSE401 backbone, three CRISPR/Cas9 binary vectors were constructed to targeting exon 1 and 3 of the ß-carotene hydroxylase of D. salina CCAP19/18 (Dschyb). D. salina mutants were obtained by salt gradient transformation method, and the expression of Dschyb gene were identified through real-time fluorescent quantitative PCR. Moreover, carotenoids content was analyzed by high-performance liquid chromatography at different time points after high intensity treatment. Compared with wild type strains, the ß-carotene levels of mutants showed a significant increase, nearly up to 1.4 µg/ml, and the levels of zeaxanthin decreased to various degrees in mutants. All the results provide a compelling evidence for targeted gene editing in D. salina. This study gave a first successful gene editing of D. salina which has a very important practical significance for increasing carotene yield and meeting realistic industry demand. Furthermore, it provides an approach to overcome the current obstacles of D. salina, and then gives a strong tool to facilitates the development and application of D. salina system.

14.
Plant Divers ; 43(1): 63-70, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33778226

ABSTRACT

Establishing a transgenic plant largely relies on a selectable marker gene that can confer antibiotic or herbicide resistance to plant cells. The existence of such selectable marker genes in genetically modified foods has long been criticized. Plant cells generally exhibit too low an activity of phosphomannose isomerase (PMI) to grow with mannose as a sole carbon source. In this study, we characterized PMI from the green microalga Chlorococcum sp. and assessed its feasibility as a selectable marker for plant biotechnology. Chlorococcum sp. PMI (ChlPMI) was shown to be closely related to higher plants but more distant to bacterial counterparts. Overexpression of ChlPMI in tomato induced callus and shoot formation in media containing mannose (6 g/L) and had an average transformation rate of 3.9%. Based on this transformation system, a polycistronic gene cluster containing crtB, HpBHY, CrBKT and SlLCYB (BBBB) was co-expressed in a different tomato cultivar. Six putative transformants were achieved with a transformation rate of 1.4%, which produced significant amounts of astaxanthin due to the expression of the BBBB genes. Taken together, these findings indicate that we have established an additional tool for plant biotechnology that may be suitable for genetically modifying foods safely.

15.
ACS Synth Biol ; 9(6): 1246-1253, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32408742

ABSTRACT

The salt-tolerant unicellular alga Dunaliella bardawil FACHB-847 can accumulate large amounts of lutein, but the underlying cause of massive accumulation of lutein is still unknown. In this study, genes encoding two types of carotene hydroxylases, i.e., ß-carotene hydroxylase (DbBCH) and cytochrome P450 carotenoid hydroxylase (DbCYP97s; DbCYP97A, DbCYP97B, and DbCYP97C), were cloned from D. bardawil. Their substrate specificities and enzyme activities were tested through functional complementation assays in Escherichia coli. It was showed that DbBCH could catalyze the hydroxylation of the ß-rings of both ß- and α-carotene, and displayed a low level of ε-hydroxylase. Unlike CYP97A from higher plants, DbCYP97A could not hydroxylate ß-carotene. DbCYP97A and DbCYP97C showed high hydroxylase activity toward the ß-ring and ε-ring of α-carotene, respectively. DbCYP97B displayed minor activity toward the ß-ring of α-carotene. The high accumulation of lutein in D. bardawil may be due to the multiple pathways for lutein biosynthesis generated from α-carotene with zeinoxanthin or α-cryptoxanthin as intermediates by DbBCH and DbCYP97s. Taken together, this study provides insights for understanding the underlying reason for high production of lutein in the halophilic green alga D. bardawil FACHB-847.


Subject(s)
Algal Proteins/metabolism , Chlorophyta/enzymology , Lutein/biosynthesis , Mixed Function Oxygenases/metabolism , Algal Proteins/classification , Algal Proteins/genetics , Amino Acid Sequence , Carotenoids/metabolism , Cloning, Molecular , Cryptoxanthins/metabolism , Escherichia coli/metabolism , Hydroxylation , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Phylogeny , Sequence Alignment , Substrate Specificity
16.
Mar Drugs ; 17(11)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683510

ABSTRACT

Astaxanthin is one of the strongest natural antioxidants and a red pigment occurring in nature. This C40 carotenoid is used in a broad range of applications such as a colorant in the feed industry, an antioxidant in cosmetics or as a supplement in human nutrition. Natural astaxanthin is on the rise and, hence, alternative production systems are needed. The natural carotenoid producer Corynebacterium glutamicum is a potent host for industrial fermentations, such as million-ton scale amino acid production. In C. glutamicum, astaxanthin production was established through heterologous overproduction of the cytosolic lycopene cyclase CrtY and the membrane-bound ß-carotene hydroxylase and ketolase, CrtZ and CrtW, in previous studies. In this work, further metabolic engineering strategies revealed that the potential of this GRAS organism for astaxanthin production is not fully exploited yet. It was shown that the construction of a fusion protein comprising the membrane-bound ß-carotene hydroxylase and ketolase (CrtZ~W) significantly increased astaxanthin production under high glucose concentration. An evaluation of used carbon sources indicated that a combination of glucose and acetate facilitated astaxanthin production. Moreover, additional overproduction of cytosolic carotenogenic enzymes increased the production of this high value compound. Taken together, a seven-fold improvement of astaxanthin production was achieved with 3.1 mg/g CDW of astaxanthin.


Subject(s)
Carotenoids/metabolism , Metabolic Engineering/methods , Corynebacterium glutamicum , Genetic Engineering , Membrane Fusion Proteins , Mixed Function Oxygenases/genetics , Oxygenases/genetics , Xanthophylls/metabolism
17.
J Photochem Photobiol B ; 193: 18-30, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30798151

ABSTRACT

Carotenoids as part of the photosystems are crucial for their assembly, light-harvesting, and photoprotection. Light of different wavelengths impacts the composition and structure of photosystems, thus offering the possibility to influence the carotenoid concentrations and composition in photosystems by illumination with specific narrow-banded light spectra. Key components involved in the regulation of gene transcription are still poorly characterized, particularly in leafy vegetables as compared to model plants. In particular, the effect of different light qualities and its connection to redox control mechanisms, which also determine the photosystem composition and structure, is not yet well understood. Furthermore, light quality effects are species-dependent, and thus, increase the need to perform research on individual vegetable species such as pak choi Brassica rapa ssp. chinensis. Here, we investigated the carotenoid concentrations and composition of pak choi sprouts grown for 6 days under blue, red, or white light emitting diodes (LEDs) as light source. After 6 days, the total carotenoid content was the highest under white and slightly reduced under blue or red LEDs. Blue, red, and white light differently affected the carotenoid composition mainly due to variations of the ß-carotene content which could be correlated to changes in the transcript levels of ß-carotene hydroxylase 1 (ß-OHASE1). Further investigations implied a redox controlled gene expression of ß-OHASE1. In addition, transcription factors related to light signaling and the circadian clock differed in their transcriptional abundance after exposure to blue and red light. RNA-Seq analysis also revealed increased transcript levels of genes encoding the outer antenna complex of photosystem II under red compared to blue light, indicating an adjustment of the photosystems to the different light qualities which possibly contributed to the alternations in the carotenoid content and composition.


Subject(s)
Brassica rapa/radiation effects , Carotenoids/biosynthesis , Light , Binding Sites , Brassica rapa/chemistry , Brassica rapa/growth & development , Carotenoids/analysis , Chromatography, High Pressure Liquid , Circadian Clocks/radiation effects , Gene Expression Regulation, Plant/radiation effects , Mass Spectrometry , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism
18.
J Agric Food Chem ; 67(4): 1072-1080, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30606005

ABSTRACT

Because it is an outstanding antioxidant with wide applications, biotechnological production of astaxanthin has attracted increasing research interest. However, the astaxanthin titer achieved to date is still rather low, attributed to the poor efficiency of ß-carotene ketolation and hydroxylation, as well as the adverse effect of astaxanthin accumulation on cell growth. To address these problems, we constructed an efficient astaxanthin-producing Saccharomyces cerevisiae strain by combining protein engineering and dynamic metabolic regulation. First, superior mutants of ß-carotene ketolase and ß-carotene hydroxylase were obtained by directed coevolution to accelerate the conversion of ß-carotene to astaxanthin. Subsequently, the Gal4M9-based temperature-responsive regulation system was introduced to separate astaxanthin production from cell growth. Finally, 235 mg/L of (3 S,3' S)-astaxanthin was produced by two-stage, high-density fermentation. This study demonstrates the power of combining directed coevolution and temperature-responsive regulation in astaxanthin biosynthesis and may provide methodological reference for biotechnological production of other value-added chemicals.


Subject(s)
Chlorophyta/enzymology , Directed Molecular Evolution/methods , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Saccharomyces cerevisiae/metabolism , Chlorophyta/genetics , Metabolic Engineering , Mixed Function Oxygenases/chemistry , Oxygenases/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Temperature , Xanthophylls/biosynthesis , Xanthophylls/chemistry
19.
Plant Sci ; 278: 80-87, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30471732

ABSTRACT

Some carotenoids are found in the Euglena gracilis, including ß-carotene, diadinoxanthin, diatoxanthins, and neoxanthin as the major species; however, the molecular mechanism underlying carotenoid biosynthesis in E. gracilis is not well understood. To clarify the pathway and regulation of carotenoid biosynthesis in this alga, we functionally characterized the cytochrome P450 (CYP)-type carotene hydroxylase gene EgCYP97H1. Heterologous in vivo enzyme assay in E. coli indicated that EgCYP97H1 hydroxylated ß-carotene to ß-cryptoxanthin. E. gracilis cells suppressing EgCYP97H1 resulted in marked growth inhibition and reductions in total carotenoid and chlorophyll contents. Analysis of carotenoid composition revealed that suppression of EgCYP97H1 resulted in higher level of ß-carotene, suggesting that EgCYP97H1 is physiologically essential for carotenoid biosynthesis and thus normal cell growth. To our knowledge, this is the first time EgCYP97H1 has been suggested to be ß-carotene monohydroxylase, but not ß-carotene dihydroxylase. Moreover, during light adaptation of dark-grown E. gracilis, transcript levels of the carotenoid biosynthetic genes (EgCYP97H1, geranylgeranyl pyrophosphate synthase EgcrtE, and phytoene synthase EgcrtB) remained virtually unchanged. In contrast, carotenoid accumulation in E. gracilis grown under the same conditions was inhibited by treatment with a translational inhibitor but not a transcriptional inhibitor, indicating that photo-responsive carotenoid biosynthesis is regulated post-transcriptionally in this alga.


Subject(s)
Carotenoids/biosynthesis , Euglena gracilis/metabolism , Mixed Function Oxygenases/physiology , Plant Proteins/physiology , Biosynthetic Pathways , Cell Proliferation/genetics , Escherichia coli/genetics , Euglena gracilis/enzymology , Euglena gracilis/radiation effects , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , RNA Interference , RNA, Messenger/metabolism
20.
3 Biotech ; 8(11): 450, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30333952

ABSTRACT

To investigate the biological function of zeaxanthin under UV light and oxidative stress we have increased its biosynthesis capacity in tobacco plants (Nicotiana tabacum cv. SR-1) by transformation with Citrus kinokuni ß-carotene hydroxylase gene (chyb) under constitutive promoter control. The chyb transformants synthesized zeaxanthin about 30% more than the controls under UV irradiation. For revelation of direct effects, pigment composition, chlorophyll fluorescence, and photosynthesis were detected immediately after UV treatment. Pre-illuminated chyb transgenics showed higher photosynthesis (NPQ capacity and F v / F m ratio of chyb transformants about 50% more than the controls). In addition, the transgenic plants showed less lipid peroxidation (MDA level was reduced about 40%) and the SOD activity was about 1.5 times of the control plants. Furthermore, the methylviologen treatment assay (more than 60% of chlorophyll in the chyb transformants) suggested that the transgenic plants suffered less oxidative damage than the controls. Our results indicate that enhancing zeaxanthin amount in plant cell contributes to UV and oxidative stress protection.

SELECTION OF CITATIONS
SEARCH DETAIL